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Simple Summary: The late—and in most cases at an advanced stage—diagnosis of patients with
ovarian cancer (OC) and the high recurrence rate make this malignant disease the most lethal among
gynecological cancers. With a mortality-to-incidence ratio of 0.74, OC is a tumor with the fifth most
frequent progression after esophageal cancer, liver cancer, pancreatic cancer, and brain tumors. The
updated FIGO staging system is the gold standard in the clinic and includes surgical, radiologic,
and pathologic elements to describe the extent of OC. This system is used to describe tumor extent,
plan further therapy, and predict prognosis. However, it is consistently observed that patients
with identical stages and treatments have a completely different outcome in terms of survival and
recurrence. This fact indicates that this classification alone is not sufficient for the prognosis of
OC in the vast majority of cases. Over the last two decades, many studies have demonstrated the
critical role of the tumor microenvironment in tumorigenesis, progression, prognosis, and response
to chemotherapy. In the current study, we investigate the role of CD16 expression in OC.

Abstract: Background: Ovarian cancer (OC) is the most aggressive and fatal malignancy of the female
reproductive system. Debulking surgery with adjuvant chemotherapy represents the standard treat-
ment, but recurrence rates are particularly high. Over the past decades, the association between the
immune system and cancer progression has been extensively investigated. However, the interaction
between chemotherapy and cancer immune infiltration is still unclear. In this study, we examined
the prognostic role of CD16 expression in OC, as related to the effectiveness of standard adjuvant
chemotherapy treatment. Methods: We analyzed the infiltration by immune cells expressing CD16,
a well-characterized natural killer (NK) and myeloid cell marker, in a tissue microarray (TMA) of
47 patient specimens of primary OCs and their matching recurrences by immunohistochemistry
(IHC). We analyzed our data first in the whole cohort, then in the primary tumors, and finally in
recurrences. We focused on recurrence-free survival (RFS), overall survival (OS), and chemosensitiv-
ity. Chemosensitivity was defined as RFS of more than 6 months. Results: There was no significant
correlation between CD16 expression and prognosis in primary carcinomas. However, interestingly,
a high density of CD16-expressing tumor-infiltrating immune cells (TICs) in recurrent carcinoma
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was associated with better RFS (p = 0.008) and OS (p = 0.029). Moreover, high CD16 cell density
in recurrent ovarian carcinoma showed a significant association with chemosensitivity (p = 0.034).
Univariate Cox regression analysis revealed that the high expression of CD16+ TIC in recurrent cancer
biopsies is significantly associated with an increased RFS (HR = 0.49; 95% CI 0.24–0.99; p = 0.047)
and OS (HR = 0.28; 95% CI 0.10–0.77; p = 0.013). However, this was not independent of known
prognostic factors such as age, FIGO stage, resection status, and the number of chemotherapy cycles.
Conclusions: The high density of CD16-expressing TICs in recurrent ovarian cancer is associated
with a better RFS and OS, thereby suggesting a previously unsuspected interaction between standard
OC chemotherapy and immune cell infiltration.

Keywords: ovarian cancer; CD16; tissue microarray; immunohistochemistry; prognosis; biomarker;
recurrence

1. Introduction

According to the global cancer statistics, ovarian cancer (OC), with 313,959 new cases
in 2020, is the ninth most commonly diagnosed malignancy in women [1] and represents the
most fatal tumor of the female reproductive system [2]. Due to the nonspecific symptoms
and the lack of a screening test, the detection of this malignant disease is made at an
advanced stage, and most patients will develop recurrences despite initially curative
therapy [3].

Epithelial, germ cell, and sex-cord-stromal OC represent the three different histological
types of OC, with the epithelial type being the most common (approximately 90% of the
cases) [4,5]. Because of this heterogeneity, histologic interpretation of resected tissue
is challenging, and evaluation by specialized pathologists is warranted. For example,
carcinomas are subdivided into high-grade serous, low-grade serous, endometrioid, clear
cell, and mucinous subtypes [6]. Because of this heterogeneity, some studies suggest the
additional use of electron microscopy [7]. In addition, tumor differentiation grade plays a
crucial role in the prognosis and overall survival in patients with OC [8,9].

The FIGO staging system, considering radiological, surgical, and pathological features,
is widely used in order to describe tumor extent and predict prognosis [10,11]. OC gold
standard treatment consists of debulking surgery, including total hysterectomy, bilateral
salpingo-oophorectomy as well as omentectomy, followed by adjuvant chemotherapy
with carboplatin and paclitaxel [12–15]. However, we consistently find that patients with
identical tumor stages and treatment display entirely different clinical outcomes, thus
suggesting that currently applied prognostic tools are inadequate.

Over the past 25 years, the association between the immune system, tumor microenvi-
ronment, and prognosis of solid tumors has been thoroughly investigated [16–18]. While
in malignancies like colorectal cancer (CRC) a variety of biomarkers influencing tumor
growth, and malignant cell proliferation and migration have been clearly identified [19,20],
the OC microenvironment has not been investigated in similar detail [21]. Recently, we
observed that a high density of OC infiltrating cells expressing CD66b, a protein that be-
longs to the carcinoembryonic Ag supergene family [22], independently predicts response
to chemotherapy in OC [23].

Cluster of differentiation 16 (CD16), also known as FcγRIII, is a cell surface molecule
expressed by a variety of immune cells, including granulocytes, macrophages, NK, and T-
cell subsets binding conserved sections of IgG and mediating antibody-dependent cellular
cytotoxicity (ADCC) [24–29]. Moreover, CD16-positive cells may directly recognize poorly
characterized tumor ligands, also in the absence of marker-specific IgG [30]. Importantly,
tumor infiltration by CD16+ myeloid cells has been shown to be associated with improved
survival in colorectal carcinoma [31]. In the case of OC, it has been shown that the injection
of expanded CD56superbrightCD16+ NK cells in patient-derived xenograft ovarian cancer



Cancers 2021, 13, 5783 3 of 13

murine models was shown to result in tumor size reduction and improved OS [32]. These
results suggest that the high expression of CD16+ cells also plays a critical role in OC.

With this in mind, in this study, we investigated the prognostic significance of OC
infiltration by CD16+ cells with a particular emphasis on response to chemotherapy in
primary and recurrent disease. The secondary aim of the study was to thoroughly explore
the interaction between the different particles of the immune microenvironment in OC.

2. Materials and Methods
2.1. Patients

In our study, we included 47 patients with unselected, clinically annotated primary
tumors and their matched recurrences. With the intention of generating a homogenous
group, we included only high-grade [33] serous ovarian carcinomas (2.1% FIGO stage II,
80.9% FIGO stage III, and 17% FIGO stage IV). Treatment consisted of primary debulking
surgery followed by at least three cycles of platinum-based adjuvant chemotherapy. Since
recurrence occurred in all patients, we divided them into two groups according to the
free interval after completion of chemotherapy. Tumors recurring less than six months
after completion of adjuvant treatment were considered chemoresistant, whereas those
recurring more than 6 months after completion of the chemotherapy were defined as
chemosensitive [34]. Individual clinicopathological and survival data were obtained from
the medical records and Gynecologic Tumor Registry.

2.2. Tissue Microarray Construction

The harvested tissues, which came from four different institutes in Switzerland (In-
stitute of Pathology of the University Hospital of Basel and the Cantonal Hospitals of
St. Gallen, Baden, and Liestal), were processed to construct a tissue microarray (TMA)
from unselected, nonconsecutive, formalin-fixed, paraffin-embedded primary OC tissue
blocks, as previously described [35]. Briefly, tissue cylinders with a diameter of 1 mm were
punched from morphologically representative areas of each donor block and brought into
one recipient paraffin block (30 × 25 mm) [36]. We took each punch from the center of
the tumor in an area without necrosis so that each TMA spot consisted of more than 50%
tumor cells.

2.3. Immunohistochemistry

We used standard indirect immunoperoxidase procedures (IHC; ABC-Elite, Vector
Laboratories, Burlingame, CA, USA) as described in previous studies by our team [37].
Immunohistochemical (IHC) staining was performed on 4 mm sections of formalin-fixed
paraffin-embedded (FFPE) recipient TMA blocks by using CD16-specific polyclonal anti-
bodies (PA5-80622, Invitrogen, Waltham, MA, USA). Briefly, sections were pre-treated with
CC1 (Ventana Medical Systems, Tucson, AZ, USA) for 16 min and incubated with a primary
anti CD16 antibody at a 1:400 dilution for 20 min. The staining procedure was performed
on a benchmark immunohistochemistry staining system (Ventana Medical Systems) using
iVIEW-DAB as the chromogen. Areas with necrosis, artifacts, or ≤25% of preserved tumor
tissue were excluded from the analysis. Cut-off scores for low- or high-density subgroups
(Figure 1) were defined by using the median value (=16 positive cells/punch).

2.4. Evaluation of Immunohistochemistry

Two trained research fellows (A.L. and O.N.) performed immunohistochemical analy-
sis, and two experienced pathologists (L.T. and E.C.) validated the data independently. All
of them were blinded to clinical, histopathological, and survival data. TICs were counted
for each punch (approximately one high power (20×) field).



Cancers 2021, 13, 5783 4 of 13Cancers 2021, 13, x 4 of 13 
 

 

 
Figure 1. (A,B) Images demonstrate a high CD16 expression in TICs, whereas (C,D) images show only low to moderate 
CD16 expression in TICs. TICs: tumor-infiltrating cells. 
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ysis, and two experienced pathologists (L.T. and E.C.) validated the data independently. 
All of them were blinded to clinical, histopathological, and survival data. TICs were 
counted for each punch (approximately one high power (20×) field). 

2.5. Statistical Analysis 
Data were analyzed by using STATA software version 13 (StataCorp, College Station, 

TX, USA) and the Statistical Package Software R (version 4.0.2, http//.r-project.org, ac-
cessed on 24 May 2021). Cut-off values used to classify OC with low or high immune cell 
infiltration were available from previous publications or generated by applying regres-
sion tree analysis [38]. In this case, cut-off scores used to classify ovarian carcinomas with 
low or high CD16 expression were defined according to staining intensity (0 and 1 versus 
2 and 3) or cut-off = 16 cells. Kruskal–Wallis, Chi-Square, or Fisher’s exact tests were used 
to explore the association of the clinicopathological features with the corresponding 
groups of the biomarker. Kaplan–Meier survival curves were compared accordingly to 
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Figure 1. (A,B) Images demonstrate a high CD16 expression in TICs, whereas (C,D) images show only low to moderate
CD16 expression in TICs. TICs: tumor-infiltrating cells.

2.5. Statistical Analysis

Data were analyzed by using STATA software version 13 (StataCorp, College Station,
TX, USA) and the Statistical Package Software R (version 4.0.2, http//.r-project.org, ac-
cessed on 24 May 2021). Cut-off values used to classify OC with low or high immune cell
infiltration were available from previous publications or generated by applying regression
tree analysis [38]. In this case, cut-off scores used to classify ovarian carcinomas with low or
high CD16 expression were defined according to staining intensity (0 and 1 versus 2 and 3)
or cut-off = 16 cells. Kruskal–Wallis, Chi-Square, or Fisher’s exact tests were used to explore
the association of the clinicopathological features with the corresponding groups of the
biomarker. Kaplan–Meier survival curves were compared accordingly to the log-rank test.
The p-value was adjusted for multiple comparisons according to Benjamini and Hochberg
(1995). The identification of independent predictors of RFS was tested with univariate and
multivariate hazard Cox regression analyses, considering the dichotomized CD16 density.
p-values < 0.05 were considered statistically significant.

http//.r-project.org


Cancers 2021, 13, 5783 5 of 13

3. Results
3.1. Patient and Tumor Characteristics

Table 1 summarizes the clinicopathological characteristics of patients included in our
study. In particular, the median age was 58 years (range: 34–77 years). Of the patients
studies, 1 patient had FIGO stage II (2.1%), 38 patients had FIGO stage III (80.9%), and
8 patients had FIGO stage IV (17%) disease. Furthermore, 16 patients (34.0%) were tumor
free after the debulking operation, while 17 patients (36.2%) had residual disease smaller
than 2 cm and 13 patients (27.7%) had residual disease larger than 2 cm. In one patient, the
residual disease status was unclear. Postoperatively, all 47 patients received at least three
cycles of chemotherapy, with 39 of them (83%) receiving six or more cycles. Tumors from
33 patients (70.2%) could be classified as chemosensitive (see above), whereas those from
14 patients (29.8%) were chemoresistant. The 6-month RFS rate was 0.53 (0.38–0.66) and
the 3-year OS rate was 0.47 (0.29–0.63).

Table 1. Patients’ characteristics of overall cohort (n = 47).

Characteristics n = 47 (%)

Age (media, range) 58 (34–77)
FIGO stage: 1 (2.1)

II 1 (2.1)
IIIA 5 (10.6)
IIIB 32 (68.2)
IIIC 8 (17.0)
IV

Residual disease
None 16 (34.0)
<2 cm 17 (36.2)
≥2 cm 13 (27.7)

Unclear 1 (2.1)
Number of chemotherapy cycles

<6 8 (17.0)
6 or more 39 (83.0)

Response to chemotherapy 33 (70.2)
CS 14 (29.8)
CR

RFS in months 10.1 (9.89–10.30)
OS in months 41.4 (40.77–42.03)
CD16 TIC P 17.01 (15.38–18.64)
CD16 TIC R 43.16 (30.21–56.11)

CD16 Score P 105.3 (93.78–116.82)
CD16 Score R 97.2 (75.72–108.68)

Missing clinicopathological information was assumed to be missing at random. CS: chemosensitive, CR: chemore-
sistant, TIC: tumor-infiltrating cells, RFS: recurrence-free survival, OS: overall survival, CI: confidence interval.

3.2. Association of Clinicopathological Features with CD16 Expression in Primary OC

We observed a high expression of CD16 in TICs in from primary OC of 21 patients
and a low expression in TICs from cancers of 22 patients with primary OC. There was no
significant difference in OS and RFS between the two groups (Table 2A). Moreover, the
chemosensitivity of primary tumors was not correlated with high CD16 expression. All
other clinicopathological features (age, FIGO stage, residual disease, numbers of chemother-
apy cycles, and response to chemotherapy) were similarly distributed in the two groups.

3.3. Association of Clinicopathological Features with CD16-Positive TIC Density in Recurrent OC

To further investigate the role of CD16 expression in OC, we compared the patients
with high and low CD16 density in the matched recurrent carcinomas. General clinicopatho-
logical features (age and FIGO stage) were equally distributed between the two groups.
However, we found that patients with high expression of CD16 in TICs in their recurrent
biopsies had a significantly longer OS compared to the patients with low CD16 expression
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(52.8 vs. 29.0 months, p = 0.008). Moreover, high CD16 cell density in recurrent ovarian
carcinoma showed a significant association with chemosensitivity (p = 0.034). Details of
CD16 expression in association with clinicopathological data are illustrated in Table 2B for
recurrent cancer biopsies.

Table 2. (A) Patients’ characteristics according to dichotomized distribution of CD16-positive TICs in primary cancer
biopsies (cut-off = 16 cells/punch, 50th percentile, n = 43 *). (B) Patients’ characteristics according to dichotomized
distribution of CD16-positive TICs in recurrent cancer biopsies (cut-off = 16 cells/punch, 50th percentile, n = 37 *).

Characteristics CD16high, n = 21 (%) CD16low, n = 22 (%) p-Value

Age (media, range) 58.6 (45–73) 56.4 (34–77) 0.635
FIGO stage:

II 0 (0.0) 1 (4.5)
IIIA 0 (0.0) 0 (0.0)
IIIB 4 (19.0) 1 (4.5)
IIIC 13 (61.9) 17 (77.4)
IV 4 (19.0) 3 (13.6) 0.324

Residual disease

0.795
None 7 (33.3) 6 (27.3)
<2 cm 8 (38.1) 8 (36.4)
≥2 cm 5 (23.8) 8 (36.4)

Unclear 1 (4.8) 0 (0.0)
Number of CT cycles

0.499<6 2 (9.5) 4 (18.2)
6 or more 18 (85.7) 18 (81.8)

Response to chemotherapy
CS 15 (71.4) 15 (68.2) 0.817
CR 6 (28.6) 7 (31.8)

Recurrence-free survival in months 10.81 (8.63–12.99) 8.36 (6.58–12.14) 0.43
Overall survival in months 36.92 (31.11–41.72) 47.87 (42.05–53.69) 0.174

(A)

Characteristics CD16high, n = 18 (%) CD16low, n = 19 (%) p-Value

Age (media, range) 58.6 (45–73) 56.4 (34–77) 0.097
FIGO stage:

II 1 (5.6) 0 (0.0)
IIIA 1 (5.6) 0 (0.0)
IIIB 3 (16.6) 2 (10.5)
IIIC 9 (50.0) 14 (73.7)
IV 4 (22.2) 3 (15.8) 0.619

Residual disease 0.017
None 6 (33.3) 9 (47.4)
<2 cm 11 (61.1) 3 (15.8)
≥2 cm 1 (5.6) 6 (31.6)

Unclear 0 (0.0) 1 (5.2)
Number of CT cycles 0.63

<6 2 (11.1) 3 (15.8)
6 or more 16 (88.9) 15 (78.9)

Response to chemotherapy 0.034
CS 16 (88.9) 11 (57.9)
CR 2 (11.1) 8 (42.1)

Recurrence-free survival in months 12.67 (10.26–15.08) 6.58 (5.17–7.99) 0.029
Overall survival in months 52.77 (46.53–59.01) 29.00 (25.74–32.26) 0.008

(B)

* percentages may not add up to 100% due to missing values of defined variables; missing clinicopathological information was assumed
to be missing at random. Variables are indicated as absolute numbers, %, median, or range. Age, RFS, and OS were evaluated using
the Kruskal–Wallis test. FIGO stage, residual disease, numbers of chemotherapy cycles, and chemoresistance were analyzed using the
Chi-square or the Fisher’s exact test. CT: chemotherapy, CS: chemosensitive, CR: chemoresistant.
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3.4. Correlation of CD16 TIC with Other Cells of the Immune Microenvironment

To further elucidate the immune microenvironment in high CD16 biopsies, we per-
formed a Spearman correlation analysis with other immune markers [22,35], but no signifi-
cant correlation was detectable in primary cancer biopsies. In sharp contrast, in recurrent
cancer biopsies, there was a significant correlation with the expression of CD66b, IL-17,
MPO, and CXCR4 (Table 3A,B).

Table 3. (A) Correlation analysis of CD16 with CD66b-, IL-17-, MPO-, FOXP3-, and CXCR4-positive
tumor cell infiltration in primary ovarian cancer biopsies. (B) Correlation analysis of CD16 with
CD66b-, IL-17-, MPO-, FOXP3-, and CXCR4-positive tumor cell infiltration in recurrent ovarian
cancer biopsies.

Immune Marker CD66b IL-17 MPO FOXP3 CXCR4

CD16
rho 0.026 0.147 0.171 0.171 0.029

p-value 0.868 0.347 0.274 0.279 0.856

(A)

CD16
rho 0.395 0.328 0.331 0.353 0.441

p-value 0.016 0.048 0.045 0.060 0.008

(B)

3.5. Prognostic Significance of CD16 Expression in Recurrent OC

Kaplan–Meier plots clearly indicated that the recurrence-free and overall survival
were significantly improved in recurrent OC with a high density of CD16 TICs, compared to
tumors showing a low density (HR = 0.28; 95% CI 0.28–0.77; p = 0.013) (Figure 2). However,
in a multivariate Hazard Cox regression survival analysis, CD16 expression could not
retain its role as an independent prognostic factor for OS. FIGO stages and age were devoid
of prognostic significance in univariate and multivariate analyses (Table 4).
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Table 4. Uni- and multivariate Hazard Cox regression analysis of OS in recurrent ovarian cancer.

Univariate Multivariate

HR 95% CI p-Value HR 95% CI p-Value

Age 1.02 0.99–1.05 0.194 1.03 0.94–1.11 0.527

CD16 high vs. low 0.29 0.11–0.77 0.013 0.79 0.08–7.64 0.845

Residual disease < 2 cm 0.61 0.25–1.49 0.277 0.29 0.44–2.01 0.213

Residual disease ≥ 2 cm 1.28 0.49–3.38 0.616 3.54 0.66–18.94 0.139

Number of chemotherapy cycles 1.04 0.83–1.30 0.750 0.88 0.57–1.35 0.552

FIGO stage:

IIIA 1.68 0.10–27.67 0.717 1.39 0.05–38.55 0.847
IIIB 1.43 0.15–13.99 0.759 3.17 0.25–39.89 0.371
IIIC 2.08 0.27–15.92 0.482 5.21 0.27–98.84 0.272
IV 2.03 0.23–17.59 0.52 6.97 0.44–111.16 0.17

Multivariate analyses showing Hazard ratios and p-value for all recurrent cancer biopsies conferred by categorized CD16 density, age,
residual disease after cytoreductive surgery, number of chemotherapy cycles, and FIGO classification.

4. Discussion

Despite the combination of debulking surgery and adjuvant chemotherapy, OC is
still characterized by poor prognosis [39] and requires an intensive follow-up [40]. Tumor
recurrences are frequently treated by chemotherapy [41,42], but responsiveness is highly
heterogeneous [43–45]. In this context, it is important to point out the high toxicity of these
therapies, which has a devastating impact on patients’ quality of life, especially when this
treatment is ultimately ineffective. Therefore, the identification of markers predicting the
response of recurrent tumors is urgently required.

Although we have made significant progress in understanding the role of the microen-
vironment and immune cells in the progression of malignancies over the past few decades,
there are still controversial issues that warrant further investigation. Tumor-associated
macrophages (TAMs) and tumor-associated neutrophils (TANs) have been implicated in
both promoting and inhibiting tumor growth [46]. Lehman et al. showed that the tissue
environment determines which cellular effector pathways are responsible for antibody-
dependent tumor immunotherapy. Their results suggest that TAMs may play a dual role:
not only do they promote tumor growth in certain tissue environments, but they also
contribute to tumor cell destruction during antibody-mediated immunotherapy.

In our study, we investigated the expression of CD16 in tumor-infiltrating cells (TICs),
aiming at identifying markers predicting the response to therapy in primary and recurrent
ovarian cancer.

CD16 (Fc gamma RIII) is highly expressed by NK cells and to moderate levels by
granulocytes, tissue macrophages, and subsets of monocytes, eosinophils, and dendritic
cells [26]. CD16 mediates antibody-dependent cellular cytotoxicity (ADCC) and antibody-
dependent phagocytosis (ADP) by NK cells and macrophages, respectively. Moreover,
it has been demonstrated to directly recognize poorly characterized tumor ligands [47].
CD16 is reported to be the most potent activating receptor on freshly isolated human NK
cells, able to elicit strong cytotoxicity and cytokine production [24]. Indeed, although the
role of CD16-mediated ADCC may differ among cancer stages, a correlation between CD16
polymorphism and the clinical efficacy of therapeutic antibodies has been reported [48,49].
However, infiltration by NK cells in primary OC is limited [50].

The interactions between the different particles of the microenvironment are crucial.
In the case of NK cells, it has been shown that their full activation requires the interaction
of different cell-surface receptors [28]. Interestingly, in the recurrent cancer biopsies of our
cohort, there was a significant correlation with CD66b, IL-17, MPO, and CXCR4, suggesting
a stronger immune response in samples with high CD16. With this study, we aim to
highlight the importance of the immune microenvironment in cancer development and
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demonstrate the correlation and predictive significance of a high density of CD16-positive
tumor-infiltrating immune cells with RFS and OS. To date, numerous studies have shown
that the immune response is a favorable prognostic factor for the clinical outcome of
OC [51]. The goal would be to combine reliable biomarkers, which predict the response to
treatment and lead to individualized therapy [52]. Henriksen et al. also investigated the
role of NK cells expressing CD16 at high levels, but this time in peripheral samples, and
found that a low blood NK cell counts were associated with an unfavorable prognosis in
recurrent metastatic ovarian cancer during chemotherapy [53]. Similarly, an increase in
CD16+ populations in the peripheral blood of patients with lymphoma, breast cancer, and
colorectal cancer has been associated with a better prognosis [54–56]. Although this is a
different approach, it correlates with our findings on the relationship between immune
response and chemo-responsiveness.

Our data show for the first time that a high density of CD16-positive TICs represents
a favorable prognostic marker in recurrent ovarian cancer and an indirect marker of tumor
chemosensitivity. Intriguingly, CD16+ immune cell infiltration was devoid of prognostic
relevance in primary OC. We might therefore speculate that chemotherapy is able to induce,
in a subset of patients, the recruitment and/or the activation of CD16+ immune cells,
influencing in turn the effects of subsequent chemotherapy cycles.

The functional significance of myeloid cells, including high CD16 expressors, is hotly
debated. Lung cancer infiltration is associated with poor prognosis [57], whereas infiltration
of colorectal cancer by myeloid cells correlates with a favorable clinical course [31,58,59].
Our data contribute to this debate by identifying an additional variable, represented by
earlier chemotherapy treatment, of prognostic relevance in recurrent cancers.

Our study has several limitations. First, it is a retrospective study. However, emerging
data might help to develop prospective studies. Second, the sample size is small, and
therefore our results need to be validated in larger patient cohort to add more power to our
results and facilitate their generalization. Indeed, using the data resulting from this com-
prehensive retrospective analysis, we plan to study a new independent cohort of patients
to validate our results, which will be part of an ongoing prospective study. Finally, there
was a significant difference in the residual disease between the two groups, which could
explain our finding. However, univariate Hazard Cox regression indicates that residual
disease status does not significantly affect the OS in our cohort. Nevertheless, these findings
might pave the way towards innovative studies, addressing the prognostic and predictive
significance of immune cell infiltration within the context of tumor chemotherapy.

5. Conclusions

In conclusion, we demonstrate with this study that the high density of CD16-expressing
TICs in recurrent ovarian cancer samples is associated with significantly better RFS and OS,
suggesting a previously unsuspected interaction between standard OC chemotherapy and
immune cell infiltration. Our results might be the rationale for using CD16-expressing TICs
as a prognostic marker for recurrent ovarian cancer and as an indirect marker for tumor
chemosensitivity. Furthermore, these results could be used for the development of novel
treatment modalities by modifying the tumor immune microenvironment in OC patients,
especially in the context of personalized medicine.
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