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Immune homeostasis is a constant balancing act between effector T cells and regulatory T
cells defined by Foxp3 expression, the transcription factor that drives their differentiation
and immunosuppressive activity. Immune homeostasis is altered when Treg cells are not
generated or maintained in sufficient numbers. Treg cells rendered unstable by loss of
Foxp3 expression, known as ex-Treg cells, gain pro-inflammatory functions. Treg cells
may also become dysfunctional and lose their suppressive capabilities. These alterations
can cause an imbalance between effector and regulatory subsets, which may ultimately
lead to autoimmunity. This review discusses recent studies that identified genetic factors
that maintain Treg cell stability as well as preserve their suppressive function. We focus on
studies associated with systemic lupus erythematosus and highlight their findings in the
context of potential therapeutic gene targeting in Treg cells to reverse the phenotypic
changes and functional dysregulation inducing autoimmunity.
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INTRODUCTION

Regulatory T cells maintain immune homeostasis and prevent autoimmune diseases by limiting the
responses of proinflammatory and autoimmune T cells. Several subsets of Treg cells have been
characterized, among which the classical Foxp3+ CD4+ T cells, referred to here as Treg cells, play an
essential role. The mechanisms by which these cells maintain immune homeostasis involve
inhibitory cytokines, cytolysis, and metabolic disruption of effector T (Teff) cells (1). Treg cells
are defined by the stable expression of Foxp3, a forkhead/winged helix transcription factor, and high
levels of the high affinity interleukin-2 receptor (IL-2R) a chain (CD25) on their surface (2), which
are the main genes required for Treg cell development, maintenance, and function (3). There are
two major types of Treg cells: thymus Tregs (tTregs) that develop in the thymus, and peripheral
Treg (pTregs) cells that are generated in peripheral sites. In addition, studies have been conducted
on induced Treg (iTregs) cells that are induced in vitro by T cell receptor (TCR) activation in the
presence of TGFb (4). Treg cell stability, i.e. the maintenance of their transcriptional program, is
indispensable for the preservation of their function. Furthermore, unstable or “ex-Treg” cells induce
inflammation not just by a lack of suppression but also in a direct manner by secreting
inflammatory cytokines (5).
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DEFECTIVE NUMBER OR FREQUENCY
OF TREGS LEAD TO AUTOIMMUNE
DISEASES

Numerical and/or functional Treg anomalies contribute to
autoimmune diseases such as type 1 diabetes (6), rheumatoid
arthritis (7), and systemic lupus erythematosus (SLE) (8). The
absolute number of circulating Treg cells is decreased in SLE
patients with active disease as compared to healthy controls
(9–13). The number of Treg cells was shown to have a strong
inverse correlation with SLEDAI (Systemic Lupus Erythematosus
Disease Activity Index) scores, showing the lower numbers of
Treg cells corresponding to increased disease severity (11, 12).
Controversially, other studies have reported increased (14–16) or
similar (17, 18) Treg cell numbers in SLE patients as compared to
healthy controls. The discrepancy between these studies has been
attributed to different definitions and gating strategies for Treg
cells, including the fact that expression of Foxp3 alone is not a
reliable marker for human Treg cells, further complicating
analyses of their function and stability (12, 19). Variations in
the treatment regimen with immunosuppressive drugs may also
contribute to the large variations in relative Treg cell frequencies
in SLE patients. Dysfunctional Treg cells have also been reported
in SLE patients (8), including the expansion of a Treg population
with a low CD25 expression (20).

This review discusses recent studies that have identified
intrinsic genetic factors maintaining Treg cell stability as well
as preserving their suppressive function. We focus on studies
associated with systemic lupus erythematosus pathogenesis, or
with a lupus-like phenotype, and we highlight their findings in
the context of potential therapeutic gene targeting in Treg cells to
reverse the phenotypic changes and functional dysregulation
inducing systemic autoimmunity. The many studies that have
reported gene targeting affecting Treg cells in other autoimmune
diseases such as arthritis, uveitis or experimental autoimmune
encephalomyelitis are not included in this review. Additionally,
other studies that have reported deletions of specific genes in
other cell types, such as dendritic cells, that affect Treg cell
development and function are also not mentioned in this review.
SINGLE GENE DETERMINANTS OF TREG
CELL HOMEOSTASIS

Scrufy mice do not produce Treg cells due to a mutation in
Foxp3, causing them to develop a severe inflammatory disease
with autoimmune components, including lupus-like
manifestations (21). A large number of studies have now
defined Foxp3 as the master regulator of Treg cell
differentiation and functions (3). A recent study has shown
that Foxp3 sustained expression is also necessary to maintain
Treg functions once they have differentiated (22). Reverse genetic
approaches have identified several genes that control Treg cell
number, stability and/or functions through Foxp3 expression,
and whose deficiency or overexpression lead to autoimmunity or
lupus-like manifestations.
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Negative Regulators of Foxp3 Expression
The AP1 transcription complex is comprised of a network of
heterodimers formed by proteins of the Jun, Fos, ATF, and MAF
families. Fos/Jun dimers promote the expression of Foxp3
through direct binding to its promoter in response to TCR
signaling (23). Within this transcription complex, Fos-like 2
(Fosl2) inhibits Treg development in a cell-intrinsic manner (24).
Fosl2 transgenic mice develop spontaneous autoimmunity and
systemic inflammation with disease phenotypes resembling that
of Treg-deficient IPEX patients and scurfy mice. On the other
hand, mice lacking Fosl2 in CD4+ T cells display less severe
disease phenotypes. Mechanistically, Fosl2 interrupts Treg
development by repressing the expression of Foxp3 as well as
that of other genes involved in Treg differentiation or
function (24).

NFIL3 (Nuclear factor Interleukin 3 regulated, also known as
E4 binding protein 4, E4BP4) represses numerous genes and
regulates diverse biological processes (25, 26). In the immune
system, NFIL3/E4BP4 has a vital role for many cell types
including Th1, Th2, NKT and Treg cells by regulating the
plasticity of cytokine production (27, 28). Treg cells are the T
cell subset with the lowest Nfil3 expression, and its
overexpression attenuated the suppressive ability and stability
of these cells (29). Not only does NFIL3 binds directly to the
Foxp3 promoter reducing Foxp3 expression, but it also
downregulates the promoter activity of Treg hallmark genes
such as Icos, Tnfrsf18, Ctla4, and Il2ra, in both Foxp3-
independent and dependent pathways (29). Accordingly, Nfl3-
deficiency in T cells increased Foxp3 expression, but decreased
the frequency of Foxp3-expressing follicular regulatory T (Tfr)
cells, resulting in an expansion of follicular helper T (Tfh) cells
and the production of autoantibodies (30). Tfr cells are a
specialized subsets of tissue Treg cells that work to constrain
the activity of Tfh cells and germinal center (GC) B cells with
whom they share the Bcl6 transcription factor (31). A decreased
relative frequency of Tfr cells has been correlated with disease
activity in SLE patients (32). NFIL3 expression was increased and
its phosphorylation was decreased in CD4+ T cells from patients
with SLE with a positive correlation to disease activity (30).
These alterations were associated with the characteristic
expansion of Tfh cells in SLE. It would be of great interest to
follow up this study with an analysis of the impact that NFIL3
increased expression and decreased phosphorylation has on Treg
and Tfr cell numbers and functions in SLE.

Positive Regulators of Foxp3 Expression
NF-kb is one of the multi-molecular complexes that interacts
with Foxp3 to control Treg cell transcriptional programs and
biology. c-Rel, one of its subunits activated by TCR signaling,
supports tTreg development and Foxp3 expression by binding to
its promoter and one of its regulatory non-coding sequences
(CNS3) (33). NF-kb maintains the stability of mature Treg cells
by preventing them from converting into effector-like T cells
through mechanisms involving IKKa and IKKb kinases, which
are upstream activators of the NF-kb pathway (34, 35). Foxp3
forms a complex with Rel-A, one of the most abundant NF-kb
May 2022 | Volume 13 | Article 887489
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subunits in conventional T cells, and with other transcription
factors including Helios and p300, leading to its full functionality
as a transcriptional activator (36). Foxp3-Cre mediated depletion
of Rel-A in established Treg cells resulted in defective effector
Treg cells that led to the development of an autoimmune
syndrome characterized by a massive T cell activation, immune
infiltrations of several tissues, as well as the production of
inflammatory cytokines, and autoantibodies (36, 37).
Furthermore, Rel-A deficient Treg cells were unstable and lost
Foxp3 expression becoming ex-Tregs expressing high amounts of
proinflammatory cytokines IFNg and TNFa (36).

Bcl10 is a gene in the Carma1-Bcl10-Malt1 (CBM) signaling
complex that controls NF-kB and MAPK activation in T cells
following TCR activation (38). Bcl10 is necessary for the
development of Treg cells and their suppressive function.
Bcl10-deficient Treg cells converted in proinflammatory
effector T cells secreting IFNg, leading to a fatal systemic
autoimmunity (39). This indicated that Bcl10-mediated NF-kB
activation is required for Treg cell development and function.
Previous studies have reported that HIF1-a directly binds to the
IFNg promoter in VHL-deficient Treg cells, a model described
later in the text, provoking an increased IFNg production and
impairing Treg cell function (40). This phenotype is also
displayed in Bcl10-deficient Treg cells (39).

Sclerostin domain-containing protein 1 (SOSTDC1) is
selectively expressed in Tfh cells (41), which secretes this factor
once they have lost the ability to help GC B cells (42). SOSTDC1
deficiency greatly reduced the generation Tfr cells, which in turn
enhanced humoral immunity against viruses (42) .
Mechanistically, SOSTDC1 inhibits the canonical WNT-b-
catenin pathway (43), which in turn inhibits Treg cell
differentiation (44, 45). It should be noted that an autoimmune
phenotype was not reported in these mice. This implies that
although the differentiation of tTreg cells into Tfr cells was
impaired, Treg cells themselves were functional and the effect
of SOSTDC1 secreted by Tfh cells is confined to the GCs.
Inhibition of Tfr cell differentiation in SOSTDC1-deficient
mice was mediated by the stabilization of b-catenin (42). As a
negative feedback loop, late-stage Tfh cells secrete SOSTDC1,
which commits Treg cells in the GC to the Tfr fate by blocking
WNT stimuli. Uncontrolled WNT-b-catenin signaling plays a
role in autoimmune diseases (46), which may be due, at least in
part, to defective Treg and Tfr cell differentiation.
GENES REGULATING TREG CELL
FUNCTION AND STABILITY THROUGH
THEIR METABOLISM

Mammalian target of rapamycin corresponds to two kinase
complexes, mTORC1 and mTORC2, which function as a
central metabolic checkpoint. The functional links between
metabolism and effector functions has been dissected in T cells,
in which the integration by mTOR of the stimulatory signals and
the energy status of the cells plays a critical role (47). Treg cells
display diminished activity of the mTOR pathway as compared
Frontiers in Immunology | www.frontiersin.org 3
to Teff cells (46, 47), and increased mTOR activity negatively
affects the generation and function of Treg cells (48–51).
However, mTORC1 deficiency profoundly impairs Treg
development and function (52). Mechanistically, mTORC1
enables cholesterol synthesis and lipid metabolism that are
triggered by IL-2 signaling, both for which being required for
Treg cell proliferation and the upregulation of suppressive
molecules. mTOR signaling is required for the generation and
function of both tTregs and pTregs, and its Foxp3-driven
deletion impairs mitochondrial metabolism and oxidative
phosphorylation, which is the main source of energy in Treg
cells (53). Accordingly, Treg-specific deletion of the
mitochondrial transcription factor Tfam severely impaired
Treg suppressive functions (53). A recent genome-wide
CRISPR/Cas9 screen combined with in silico analyses of
protein-protein interaction networks identified novel
regulatory modules that mediate mTORC1 signaling in Treg
cells (54). The requirement for the expression of Sec31a and
Ccdc101, two key genes in these modules, was validated when
their deficiency in Treg cells impaired their suppressive functions
and led to inflammatory phenotypes. SEC31A promotes
mTORC1 activation by interacting with the GATOR2
component SEC13 to protect it from SKP1-dependent
proteasomal degradation. Therefore, SEC31A expression is
necessary to maintain mTORC1 activation in Treg cells. On
the other hand, CCDC101 is a member of the SAGA complex, a
potent inhibitor of mTORC1. Therefore, CCDC101 limits the
expression of glucose and amino acid transporters and maintains
a relative metabolic quiescence that characterizes Treg cells.
Ccdc101-deficiency impairs Treg cells by unleashing an
overreactive mTORC1. Additionally, Lamtor1, a lysosomal
scaffold protein for mTORC1 is also important for Treg cell
survival. Mice with Lamtor1-deficient Treg cells develop severe
autoimmunity showing that Lamtor1 is a vital intrinsic factor for
Treg suppressive functions, but not for their development and
survival (55).

PP2A is a serine-threonine phosphatase composed of a
catalytic C subunit PP2Ac, a scaffold A subunit PP2AA and a
regulatory B subunit PP2AB (56). PP2A is highly expressed in
Treg cells, and mice with a Treg-specific deletion of a member of
the PP2AA subunit developed multi-organ autoimmunity with
similarities to the scurfy phenotype (57). This indicated that
PP2A activity is required to maintain Treg cells. PP2AA-
deficiency increased mTORC1 activity in Treg cells, resulting
in enhanced glycolysis and oxidative phosphorylation (57), a
phenotype that was reversed by a treatment with mTOR
inhibitor rapamycin. Therefore, PP2A activity is necessary to
prevent mTORc1 overactivation, a process essential for
suppressive function of Treg cells. In addition, PP2Ac is
required for Treg cell to function by preventing the loss of
expression of the IL-2Rb chain, enabling IL-2 signaling (58).
PPP2R2D is a regulatory subunit of PP2A whose expression is
increased in T cells from patients with SLE. Mice with PPP2R2D-
deficient T cells developed a reduced systemic autoimmunity in
response to TLR7 activation (59). Furthermore, PPP2R2D-
deficiency enhanced the suppressive function of Treg cells,
May 2022 | Volume 13 | Article 887489
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which was supported by an increased IL-2 transcription in
conventional T cells, a process that is negatively regulated by
PPP2R2D (59). Therefore, PPP2R2D regulates Treg cells
through PP2A in a cell-extrinsic manner (IL-2 secretion from
conventional T cells), as opposed to PP2A controlling Treg
function through mTORC1 in a cell-intrinsic manner.

HIF-1a and HIF-2a are two master transcription factors
responsible for the physiological responses to hypoxia (60).
Under normoxic conditions, prolyl hydroxylase domain
proteins (PHD2/PHD3) hydroxylate HIF-1a and HIF-2a
allowing for their recognition by von-Hippel Lindau tumor
suppressor (VHL)-containing E3 complex, ubiquinating the
transcription factors for proteasomal degradation. This process
is interrupted under hypoxic conditions, allowing the
accumulation of HIF-1a and HIF-2a (61). In immune cells
under normoxic conditions, the expression of HIF-1a can also
be increased by mTOR activation (62) and induce glycolysis (63).
Germline Hif1a-deficiency promoted the differentiation of Treg
cells over Th17 cells (64, 65). Mechanistically, HIF-1a promotes
Foxp3 degradation by the proteasome (64). Germline Hif1a
deficiency also inhibited glycolysis in favor of mitochondrial
metabolism, which promoted Treg cell differentiation (65).
Interestingly, Hif1a-deficiency in established Treg cells
(through Foxp3-Cre mediated deletion) did not impair Treg
cell function (66). This indicated that HIF-1a regulates Treg cell
differentiation but not their maintenance and function. Hif2a-
deficiency in established Treg cells impaired their suppressive
activity despite normal Foxp3 expression (66). Moreover, Hif2a-
deficient Treg cells showed an enhanced secretion of IL-17 (66).
Importantly, patients with SLE and associated lupus nephritis
have increased numbers of IL-17-producing Treg cells in their
peripheral blood (67). These studies demonstrate a complex
crosstalk between HIF-1a and HIF-2a in Treg cells in which
HIF-1a prevents their differentiation and HIF-2a stabilizes
their function.

VHL-deficiency in Treg cells impaired their suppressive
activity and stability leading to massive inflammation (40).
VHL-deletion induced a HIF-1a-mediated expression of
glycolytic enzymes in Treg cells that promoted Th1
differentiation. Moreover, HIF-1a directly activates the Ifng
promoter. These results contrast with the lack of phenotype
resulting from direct deletion of Hif1a in Treg cells (59), and
suggest that HIF-2a constitutive expression in VHL-deficient
Treg cells is likely to play a role.

Serine/Arginine-rich splicing factor 1 (SRSF1) is the
prototype member of the highly conserved serine 1 arginine
(SR) family of RNA-binding proteins (68). SRSF1 expression was
decreased in the T cells of SLE patients with severe disease
showing an overactive T cell phenotype (69). Deletion of SRSF1
in T cells led to systemic autoimmunity and lupus nephritis that
was associated with mTOR activation in T cells (70). Treg-
specific deletion of SRSF1 also led to systemic autoimmunity
with Treg cells losing their suppressive function and producing
proinflammatory cytokines (70). As with pan-T cell deletion,
SRSF1-deficient Tregs displayed a highly glycolytic metabolism
and mTOR activation.
Frontiers in Immunology | www.frontiersin.org 4
TREG CELL REGULATION IN
SPONTANEOUS MOUSE MODELS
OF LUPUS
Many studies have documented alterations in Treg numbers and
functions in spontaneous mouse models of lupus (71). Multiple
mechanisms are responsible for these phenotypes, with a major
contribution of the inflammatory milieu created by cytokines
such as Type 1 IFN and IL-6. Whether the genetic susceptibility
that drives lupus pathogenesis in these models affects
intrinsically Treg cells, at least in part, is less understood. The
frequency of Treg cells varies across a wide range in mice and
humans without pathogenic consequences (72). NZW mice do
not develop autoimmunity, but their genome contains lupus
susceptibility genes that are revealed when combined with other
genomes such as NZB or BXSB (73). NZW mice present a low
frequency of Treg cells, which was found to be cell-intrinsic and
due to a low Foxp3 expression leading to a poor stability of the
Treg program (72). Although NZW Treg cells express a
distinctive transcriptional profile, it could not be attributed to
a single genetic defect. Therefore, the NZW Treg phenotype is
likely to be supported by a complex polygenic inheritance,
similar to lupus susceptibility as a whole in NZW-derived
strains (74). However, we propose that these intrinsically
defective NZW Treg cells become pathogenic when combined
with other immune defects induced by alleles from lupus-
prone strains.

The (NZB x NZW) F1-derived NZM2410 strain is a model of
lupus in which an analysis of genetic susceptibility has been
conducted, and genes regulating T cell function have been
identified (74). NZM2410 mice carry three major susceptibility
loci associated with lupus nephritis, Sle1, Sle2, and Sle3 (75).
Congenic strains carrying separately each of these loci on a non-
autoimmune C57BL/6 (B6) background present distinct
autoimmune endophenotypes that correspond in combination
to the lupus phenotype of the parental strain (76). Sle1 had the
strongest linkage to lupus nephritis and its expression is
necessary for the development of autoimmunity in NZM2410
mice (77). Sle1 regulates the function of T cells (78) in a cell-
intrinsic manner (79), and it decreases the number and function
of Treg cells (78). Sle1 corresponds to at least three sub-loci,
Sle1a, Sle1b, and Sle1c (80). Within Sle1a, genetic linkage analysis
identified an interacting locus Sle1a1 responsible for expanding
the number of activated CD4+ T cells while reducing the
frequency of pTreg cells (81). Sle1a1 only contains one
functional gene, Pbx1 (81), a transcription factor required for
mammalian organogenesis (82). Pbx1 is required for the
development of B cells and the function of hematopoietic stem
cells (83, 84), but its function in T cells had not been
characterized. Sle1a1 corresponds to the overexpression of the
truncated splice isoform Pbx1-d over Pbx1-b, the normal
isoform, in T cells (85). Pbx1-d lacks both the DNA-binding
and HOX-binding domains and functions as a dominant
negative (86). The mouse and human PBX1 proteins share
complete homology, and PBX1-D was found more frequently
in the CD4+ T cells from SLE patients than healthy controls (85).
May 2022 | Volume 13 | Article 887489
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Furthermore, PBX1-D expression in human CD4+ T cells is
associated with defective Treg cells (87). Mice overexpressing
Pbx1-d in T cells replicated the phenotypes of B6.Sle1a1
congenic mice as previously mentioned (88). Pbx1-d transgenic
overexpression in T cells impaired iTreg differentiation as well as
the induction or maintenance of pTreg cells in a cell-intrinsic
manner (88). On the other hand, Pbx1-d overexpression in CD4+

T cells expanded Tfh cell differentiation (88). These results
suggest that Pbx1 regulates the balance between Treg and Tfh
cells, and that Pbx1-d contributes to autoimmunity by tilting the
balance in favor of Tfh over Treg cells. This impaired Pbx1-d-
mediated T cell homeostasis has consequences on lupus
associated atherosclerosis, with chimeric atherosclerosis-prone
Frontiers in Immunology | www.frontiersin.org 5
mice carrying Pbx1-d expressing T cells developing more severe
lesions than mice carrying Pbx1-b expressing T cells (89).
Furthermore, there is evidence that dyslipidemia and Pbx1-d
expression synergized to impair Treg cell functions. The
mechanism by which Pbx1 and its dominant negative Pbx1-d
isoform regulate T cell function has not been established yet.
Interestingly, Pbx1 directly upregulates NFIL3 expression (90),
and NFIL3 regulates the expression of Foxp3 and other Treg-
associated genes (29). A disruption of the Pbx1/NFIL3 axis is
therefore a potential mechanism by which Pbx1-d may alter the
Treg/Tfh cell balance in favor of autoimmunity.

Within the Sle1c locus (91), recombinant congenic analysis
mapped an activated CD4+ T cell phenotype to the Sle1c2 sub-
FIGURE 1 | Schematic view of genes regulating Treg cell development, function, and/or stability. The genes are presented according to their effect on Treg cells. (A)
Negative regulators whose over expression leads to an expansion of Tfh cells or inhibition of Tfr cells (Green arrows indicates gene overexpression).? indicates that
the Pbx1-d direct target is unknown. (B) Positive regulators whose deletion leads to the inhibition of Tfr cells or the generation of ex-Treg cells producing IFNg and
TNFa (Red X indicates gene deletion). (C) Genes regulating Treg cells through their metabolism by way of mTOR, glycolysis and/or mitochondria metabolism leading
to decreased immunosuppressive activity. Red arrows between genes and their target indicate an enhancing effect with expression of the target being decreased by
the gene deletion. Red blocked arrows indicate an inhibitory effect with expression of the target being increased by the gene overexpression. Figure created with
BioRender.com.
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locus and the estrogen-related receptor gamma (Esrrg) gene it
contains (91). Esrrg is essential in maintaining mitochondrial
metabolism through activation of oxidative phosphorylation, the
electron transport chain and ATP production in multiple cell
types (91), but its function in T cells was unknown. Esrrg
expression is reduced in the CD4+ T cells of B6.Sle1c2
congenic mice, in association with altered mitochondrial
functions and a decreased mitochondrial mass (91). This
phenotype is consistent with that of CD4+ T cells of SLE
patients in which mitochondrial defects have been described
(92). Esrrg deletion in Treg cells altered the expression of genes
involved in mitochondrial and Treg programs (93). This led to
impaired suppressive function as well as differentiation into Tfr
cells, which allowed for greater Tfh cell and humoral responses.
These results suggest that the hypomorph Esrrg lupus
susceptibility allele contributes to autoimmune pathogenesis by
reducing the metabolic fitness of Treg cells.
CONCLUSION

In summary, several genes have been identified as being
responsible for sustaining the differentiation, function, and
stability of Treg cells. The most common approach has been
reverse genetics. Only a few Treg-specific studies have been
conducted, but continued analyses of selective gene knockouts
or overexpression models could advance our knowledge of novel
genes that negatively or positively control Treg cells. However,
CRISPR/Cas9 screens such as the one recently performed for
mTORC1 activation in Treg cells (54) are likely to accelerate the
speed of discovery and uncover novel genetic pathways through a
less biased evaluation than classical reverse genetic approaches.
The dissection of genetic susceptibility in a spontaneous mouse
model of lupus has identified two genes that directly impact Treg
cell homeostasis. So far, genetic loci associated with human lupus
susceptibility, or susceptibility to other autoimmune diseases, have
not been linked with Treg phenotypes. It is therefore unknown if
Frontiers in Immunology | www.frontiersin.org 6
allelic variations directly impacting Treg phenotypes confer
autoimmune susceptibility in human populations.

The majority of genes that have been identified to regulate
Treg cells either directly control Foxp3 expression or their
cellular metabolism (Figure 1). Treg cells are highly sensitive
to mTOR activation, requiring “just the right amount” for
optimal differentiation and suppressive function. Several genes
have been identified in mice to maintain this “Goldilocks”
homeostasis. The maintenance of mitochondrial metabolism or
glycolysis, which is partially under mTORC1 control, is also
required by Treg cells. It is predicted that other metabolic genes
are also involved, and in silico analyses of protein-protein
networks may be useful in pinpointing critical nodes in
these networks.

Adoptive Treg cell therapies are being evaluated in clinical
trials for autoimmune diseases and transplantation (94). The
identification of regulatory networks that ensure their stability
hand functions has great translational potentials to maximize
these approaches. This knowledge could also benefit efforts to
deactivate Treg cells in the tumor microenvironment to
potentiate immunotherapies. This will require a comprehensive
validation of these genetic pathways in human Treg cells,
although the restraints of the read-out to in vitro suppression
greatly limit the scope and the interpretation of these
translation studies.
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