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Simple Summary: Our work is motivated by the increasing production of chemicals with environmen-
tally harmful effects to our aquatic ecosystems. We show that it is possible to detect and distinguish the
presence of several different emerging contaminants, using the photochemical responses of a microalgae
species, which is among the most abundant phytoplankton group in the oceans. We use several machine
learning and deep learning models that operate on chlorophyll fluorescence induction curves, which
are composed of fluorescence values taken at different time steps from the microalgae exposure trials,
achieving up to 97.65% accuracy when predicting the type of contaminant, and up to 100% in several
cases when predicting the exposure concentration. Our results show the combination of these models
with the fluorescence induction curves creates a powerful tool for ecotoxicity assessment, capable of
classifying model organisms for their contaminant exposure, both in terms of type and concentration,
opening new doors for toxicophenomics developments.

Abstract: Over recent decades, the world has experienced the adverse consequences of uncontrolled
development of multiple human activities. In recent years, the total production of chemicals has
been composed of environmentally harmful compounds, the majority of which have significant
environmental impacts. These emerging contaminants (ECs) include a wide range of man-made
chemicals (such as pesticides, cosmetics, personal and household care products, pharmaceuticals),
which are of worldwide use. Among these, several ECs raised concerns regarding their ecotoxico-
logical effects and how to assess them efficiently. This is of particular interest if marine diatoms are
considered as potential target species, due to their widespread distribution, being the most abundant
phytoplankton group in the oceans, and also being responsible for key ecological roles. Bio-optical
ecotoxicity methods appear as reliable, fast, and high-throughput screening (HTS) techniques, pro-
viding large datasets with biological relevance on the mode of action of these ECs in phototrophic
organisms, such as diatoms. However, from the large datasets produced, only a small amount of data
are normally extracted for physiological evaluation, leaving out a large amount of information on the
ECs exposure. In the present paper, we use all the available information and evaluate the application
of several machine learning and deep learning algorithms to predict the exposure of model organisms
to different ECs under different doses, using a model marine diatom (Phaeodactylum tricornutum) as
a test organism. The results show that 2D convolutional neural networks are the best method to
predict the type of EC to which the cultures were exposed, achieving a median accuracy of 97.65%,
while Rocket is the best at predicting which concentration the cultures were subjected to, achieving a
median accuracy of 100%.
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1. Introduction

In recent decades, there is an evident increase in the development of uncontrolled
human activity [1]. The relationship between increased human population density and en-
vironmental changes in coastal regions is well known. Coastal waters are the ultimate sink
of sewage and other by-products of human activities. The EU’s Task Group for the Marine
Strategy Framework Directive (MSFD) implementation recommended that monitoring pro-
grams covering the chemical contaminants concentrations should also integrate biological
measurements of the effects of the contaminants on marine organisms [2]. The combination
of conventional and newer, effect-based methodologies, with the assessment of environ-
mental contaminant concentrations, provides a powerful and comprehensive approach [2].
It is also striking that the pace of chemical discovery is growing rapidly, with the Chem-
icals Abstracts Service (CAS REGISTRY) reporting in May 2011 the registration of the
60th million chemical substance, and the 50th million substance registration in only 2009,
highlighting the continued acceleration of synthetic chemical innovation [3]. Among these,
several contaminants have raised concerns due to their ecotoxicological effects and how
to assess them efficiently. For example, pesticides continue to be detected in surface and
groundwater [4], pharmaceuticals, concentrated in wastewaters discharged from house-
holds and medical facilities are also present in coastal areas [5] and personal care products
are being detected in phytoplankton cells even at remote locations [4], highlighting their
environmental persistence.

At the basis of most marine systems are phototrophs, cycling solar energy, and soaking
carbon, fueling the trophic web. Any disturbance at this level has inevitable impacts on the
whole marine ecosystem. Contaminants toxic effects are known to have severe and specific
influence on these organisms, especially impairing their photosynthetic metabolism [6–10].
Having both biochemical and biophysical components allows the photosynthetic mech-
anisms to be addressed remotely [11]. Pulse amplitude modulated (PAM) fluorometry
emerges as a potential non-invasive high-throughput screening (HTS) tool [9,10]. These
techniques use optical signatures as a proxy of the phototroph physiology, allowing for
detection of disturbances at the primary productivity level [12], to efficiently evaluate
contaminants’ effects with a dose-related response [13], and have been integrated into
numerical indexes, easily used by stakeholders [12,14]. The integrated repeated measures,
over time, without organism scarification is another key benefit of this approach. Phyto-
plankton is the first compartment to be affected by contaminants. As small (0.2–200 um),
single or chain-forming, cells suspended in water with very high surface:volume ratios,
they respond quickly to suspended toxicants with high uptake rates, being used as pollu-
tion indicator species [15].

These facts are the cornerstone of the pioneering research field of toxicophenomics,
which merges plant phenomics, measuring traits, such as plant growth and performance
using non-invasive technologies, with ecotoxicology, shifting the use of these phenotyping
tools to address contaminant induced stress in autotrophs. Optical techniques to disclose
different groups of samples exposed to different degrees of contamination has been applied
in marine phototrophs with a high degree of efficiency, in both ecotoxicological trials
and under field conditions [6,8,16], and using communities as meta-organisms instead
of single species [17]. The application of these bio-optical technologies produces large
data packages with physiological interest, regarding the effects of a given compound in
an autotrophic organism, and also with a high volume of data points that can be used
by machine learning techniques, to produce classifiers of the toxicity degree to which
organisms are exposed [18]. Consequently, the increase in big data from HTS systems
needs efficient data processing and analytical pipelines. These bio-optical data have been
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successfully used in the past as biomarkers for contaminant exposure with a high degree of
efficiency, although using only less than 10% of the information provided by these optical
techniques. These optical biomarkers have been used from field to experimental trials using
a wide array of organisms from microalgae to higher plants [9,10,14]. Conventional data
analysis pipelines typically involve computer vision tasks (e.g., wheat head counting using
object detection), which are addressed through the development of signal processing or
machine learning (ML) algorithms [19]. When exposed to anthropogenic contaminants the
typical chlorophyll a induction curves suffer alterations, not only on their intensity values
but also on their shape [9]. These curves are composed of more than 400 data points referent
to the chlorophyll a fluorescence echo of the organism derived from its photochemical
fitness, but only some key points are effectively used for photochemical variable calculation,
discarding a high number of data points that can be potentially used for high-throughput
screening of the test organisms [9]. Contaminant exposure affects not only the specific
time points used for photochemical variable calculation but also the remaining curve data
points [9]. Such a large dataset is, therefore, overlooked, despite its potential to be analyzed
by machine learning techniques, in order to disclose at a fine-scale resolution, the changes
provoked by contaminant exposure in all the chlorophyll a induction curves data points,
with a sensitivity that would escape the manual and traditional human analysis.

In this context, the aim of this paper is to evaluate the performance of several machine
learning and deep learning methods in predicting the exposure of model organisms to
different emerging contaminants (EC) under different exogenous concentrations, based on
the complete set of fluorescence data as a potential set of biomarkers of contaminant expo-
sure. This combination of machine learning with non-conventional biomarkers, intent to
disentangle the potential of not only whole fluorescence profiles as descriptors (biomarkers)
of contaminant exposure but also to address the power of machine learning in disentan-
gling slight and unperceivable features that can be later used for automatic classification
of marine diatom cultures exposed to a wide array of contaminants in ecotoxicological
trials. For this purpose, a model ecotoxicological organism was used as a test organism,
with marine diatom cultures of Phaeodactylum tricornutum subjected to thirteen emerging
contaminants at various exposure concentrations. The resulting chlorophyll fluorescence
induction curves are used as time series data, along with pre-defined endpoints, were used
to address two tasks: (i) identifying which of the thirteen contaminants considered was
applied, and (ii) at which exposure concentration. To address both points, we used five
different machine learning and deep learning algorithms:

• Random Forests: This classifier is an ensemble algorithm that uses the majority vote
of a set of decision trees to make predictions;

• XGBoost: This classifier is a state-of-the-art ensemble algorithm that uses a set of
decision trees optimized with gradient boosting in order to minimize errors;

• ROCKET: A recent state-of-the-art time series classification algorithm that uses ran-
dom convolution kernels to increase the dimensionality of a dataset and, together
with a simple regression classifier (commonly Ridge);

• Neural Networks: Deep learning models based on the original multi layer perceptron.
These networks have a large amount and variety of layers and are trained by means
of gradient descent. Although for regular artificial neural networks (ANN) the feature
engineering part is done a priori, convolutional neural networks (CNN) perform this
step using convolutional and pooling layers. CNNs can be used for multi-dimensional
data, so they can process 1D, 2D, or 3D.

In this work, the 2D CNNs have the particularity of using as input data the images of
the plotted time series data, instead of the numeric values.

2. Materials and Methods
2.1. Ecotoxicological Assays

Phaeodactylum tricornutum Bohlin (Bacillariophyceae; strain IO 108-01, Instituto Por-
tuguês do Mar e da Atmosfera (IPMA)) axenic cell cultures (maintained under asexual
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reproduction conditions) were grown in f /2 medium [20], under constant aeration in a
phytoclimatic chamber, at 18 ◦C, programmed with a 14/10 h day/night photoperiod (RGB
1:1:1, maximum PAR 80 µmol photons m-2 s-1), a sinusoidal function to mimic sunrise and
sunset, and light intensity at noon, set to replicate a natural light environment [21]. Cul-
tures are visually inspected periodically, under the microscope to ensure their axenic state.
Exposure trials were conducted according to the Organization for Economic Cooperation
and Development (OECD) recommendations for algae assays (OECD, 2011), with minor
adaptations, and the suggested initial cell density for microalgae cells with comparable
dimensions to ı (initial cell density = 2.7× 105 cells mL−1). According to OECD guidelines,
carbon was provided to cultures through aeration with ambient air. Exposure time was
reduced to 48 h since in previous studies was observed that after 72 h the cultures enter
the stationary phase and, thus, exhibit ageing effects that can mask the exposure trial [21].
Exposure conditions in terms of nutrient composition, light, and temperature environment
were kept as those for culture maintenance. Forty-eight hours after inoculation (endpoint),
cells were exposed to the target concentrations of the selected emerging contaminants
(diclofenac, ibuprofen, propanol, fluoxetine, glyphosate, sodium dodecyl sulphate (SDS),
triclosan, copper engineered nanoparticles (CuO), zinc engineered nanoparticles (ZnO),
and titanium engineered nanoparticles (TiO)) and legacy contaminants (dissolved ionic
copper (CuSO4), dissolved ionic Zn (ZnSO4), and dissolved ionic titanium (TiO2)). Expo-
sure occurred for 48 h to ensure it covered the exponential growth phase [21–23]. Target
concentrations were selected aiming to cover a concentration gradient reflecting not only
the detected environmental concentrations found in the literature, but also concentrations
known to have significant biological effects in P. tricornutum. As observed in previous
works [21–23] this is a fast-growing strain, hence the exposure period was reduced from
72 h to 48 h to avoid cell ageing processes, that could occur in the stationary phase be-
yond the 48 h time point. All manipulations were executed within a laminar flow hood
chamber, ensuring standard aseptic conditions. At the end of the exposure period, 1 mL
of culture (per replicate) was used for bio-optical assessment, via chlorophyll-a pulse
amplitude modulated (PAM) fluorometry (FluorPen FP100, Photo System Instruments,
Brno, Czech Republic). Cell subsamples for bio-optical assessment were acclimated for
15 min in the dark and chlorophyll transient light curves (Kautsky plots) were generated
using the preprogrammed OJIP protocol, according to [23].

Each sample corresponds to a chlorophyll fluorescence induction curve and contains
the fluorescence values taken at different time steps from a model diatom used in ecotoxicol-
ogy (Phaeodactylum tricornutum) exposed to 13 different emerging contaminants at different
concentrations, following the international standards for ecotoxicological assays. Each
curve is composed of 458 measurements per sample, taken in intervals of 10 milliseconds
each. For each contaminant and concentration, 30 independent replicates were obtained,
totaling 1950 samples. Table 1 contains some details regarding this dataset, including the
identification of the contaminants and different concentrations used, and the distribution
of samples between contaminants and concentrations. Further details on the techniques
and protocols used for obtaining the data can be found in [6–8,16,24]. Cell density was
evaluated in all experimental reactors at the end of the exposure trials and the percentage
of growth inhibition towards the respective control condition was calculated, as well as the
half-maximal inhibitory concentration (IC50), according to the OECD (2011) guidelines.

The same dataset is used differently for the two tasks we address. For the task
of identifying the contaminant, we consider 13 classes, each corresponding to one EC
regardless of its concentration, therefore 120/150/180 samples per class, depending on the
EC (see Table 1). Additionally, control test units (absence of tested compound) were also
performed so that it was possible to disclose the effects of the EC and its concentrations in
the physiology of the cultures under the same conditions as the test bioreactors. The task
of identifying the EC concentration is subdivided into 13 subtasks, each dealing with only
one EC. Each of these subtasks considers 3–5 classes, depending on the EC, where each
class contains exactly 30 samples, each corresponding to a specific concentration (Table 1).
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In order to disentangle with a higher resolution the effects of each EC under each dose,
an extended analysis of the fluorescence transients was done by calculating the difference
in relative variable fluorescence towards the respective control units, allowing this way to
have variation towards the control and represented as ∆V curves (expressed as V = f (t)),
i.e., subtracting fluorescence values of the controls of transients normalized between:

(1) Fo and FP (FM), i.e., Vt = (Ft − Fo)/(FP − Fo), ∆Vt = (Vt,treatment −Vt,control);
(2) ∆WK = (WK,treatment −WK,control) [25].

Table 1. OPTOX dataset summary, containing the contaminants, the different concentration values
and the distribution of samples among them. The first section of the table includes pharma, pesticides,
and personal care products, while the second section includes metals and nanoparticles.

EC Concentrations (µg L−1) #Samples #Samples per Concentration

Diclofenac dcf [0, 0.8, 3, 40, 100, 300] 180 30
Fluoxetine fx [0, 0.3, 0.6, 20, 40, 80] 180 30
Glyphosate gliph [0, 10, 50, 100, 250, 500] 180 30
Ibuprofen ibu [0, 0.3, 3, 40, 100, 300] 180 30

Propranolol prop [0, 0.3, 8, 80, 150, 300] 180 30
Sodium Dodecyl Sulphate sds [0, 0.1, 1, 3, 10] 150 30

Triclosan tri [0, 0.1, 1, 10, 50, 100] 180 30

Dissolved Ionic Copper
Copper Engineered Nanoparticles

Cud
Cunp

[0, 1, 5, 10] 120 30

Dissolved Ionic Titanium
Titanium Engineered Nanoparticles

Tid
Tinp

[0, 10, 50, 200] 120 30

Dissolved Ionic Zinc
Zinc Engineered Nanoparticles

Znd
Znnp

[0, 1, 5, 10] 120 30

2.2. Methods

We use a set of different machine learning and deep learning algorithms to perform
classification. In total, we test five algorithms, including Random Forests (RF) [26], XG-
Boost (XGB) [27], Rocket [28], deep artificial neural networks (ANN) and convolutional
neural networks (CNN) [29].

Regarding the CNNs, we test three different approaches: 1D, where the input is
the one-dimensional induction curves; 2D, where we use image representations of the
induction curves; and 2D Log, like 2D but with a logarithmic time axis. Regarding the 2D
CNNs, for the remainder of this work, they will be designated simply as CNNs, and the
methodology used to transform the induction curves into images is described in more
detail in [18].

2.3. Hardware and Software

All experiments were performed on a Windows 10 machine with one NVIDIA 2080 TI
GPU with 11GB of RAM. All models were implemented in Python 3.6 using the following
packages: Scikit-learn (0.23.1), XGBoost (1.1.1), and Tensorfow (2.3) [30,31].

2.4. Architecture and Parameters

This section provides technical details regarding the implementation and parameters
of the used methods and is intended to aid in the reproducibility of the experiments.

For both RF and XGB trees, we perform an independent grid search per run, for the
optimal values of their parameters. Regarding RF, we grid search for the following
parameters: criterion {gini, entropy}, No. estimators {5, 10, 15, 20} and maximum depth
{2, 5, 7, 9}. As for XGB trees, we grid search for the following parameters: maximum depth
{2, 5, 7, 9}, No. estimators {50, 100, 200}, learning rate {0.1, 0.01, 0.001}, and tree method
{auto, exact, approx, hist}.

For both ANNs and CNNs, we use a simple and shallow architecture. The ANNs
(These ANNs are in essence multilayer perceptrons (MLPs) with normalization and
dropout.) are composed of four batch normalization layers, six fully connected layers, and
five dropout layers (for the dropout layer we performed several initial tests with different
rates, and since there was no significant difference, decided to use the standard rate value
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of 0.7). The 1D CNNs are composed of four batch normalization layers, three interspersed
convolutional and max-pooling layers, and two fully connected layers. Lastly, the CNNs
are composed of five interspersed convolutional and max-pooling layers, and three fully
connected layers with two dropouts in between. These architectures, as well as the hyper-
parameters, can be seen in Figure 1. No form of grid-search or Bayesian hyperparameter
and topology optimization was performed for these models, all values being derived
from a small set of manual tests. Regarding weight initialization, we decided to use the
Xavier/Glorot to avoid having the gradient vanishing or exploding, and every batch was
normalized to have a mean of zero and a standard deviation of one (BatchNormalization
layers) so the training was faster and to help improve generalization. For the optimizer, we
use ADAM with a learning rate of 0.001.

Figure 1. Architectures of the different deep learning models used in this work. The first network corresponds to the ANN
used, it is composed by a set of BatchNormalization, Dense (fully connected), and Dropout layers. The second corresponds
to the 1D CNN, composed by a set of BatchNormalization, 1D Convolution, and 1D MaxPooling layers, followed by a
flatten operation to reduce the dimensionality of the data in order to pass it to the two dense layers that serve as a classifier.
The last network corresponds to our 2D CNN, composed by 2D Convolution, 2D MaxPooling, a flatten and both Dense and
Dropout layers. Each layer from models has its parameters discretized inside the corresponding box.
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2.5. Experimental Setup

For both tasks, we follow the same methodology regarding the splitting of the data.
In each trial, we randomly select 20% of the data to be our test set, to validate the models,
and the remaining 80% is used for training. We perform 30 independent runs per method,
so for each task/subtask we obtain a sample of 30 results that can be statistically analyzed
and compared.

The choice of the number of epochs to run with the deep learning methods was based
on a set of trials. Performing increments of 50 epochs we analyzed the convergence of the
training loss of the networks and stopped adding epochs once the loss appeared to have
stabilized. Based on these trials, we established that both CNNs run for 300 and 100 epochs
on the first and second task, respectively, and ANN and 1D CNN run for 500 epochs on
both tasks.

3. Results

In the present work, the authors aim to study the applicability of the obtained fluores-
cence data in automatic machine-learning-based systems, for ecotoxicological classification
of marine diatoms-based exposure trials, and, thus, the physiological responses of the
cells will not be discussed in the present work, as this is out of the scope of the present
work. The physiological effects of each contaminant are discussed elsewhere [6–8,16,23,24].
Nevertheless, and in order to better understand the magnitude of the ecotoxicological
effects observed in the cultures, relative growth inhibition and half-maximal inhibitory
concentrations were also determined as proxy measures of the toxicity effects observed
in the cultures, that are unequivocally connected with the photochemical results (Table 2).
Although the octanol–water partition coefficients have similar values among tested sub-
stances, the P. tricornutum exposures to these xenobiotics led to very different responses in
terms of growth inhibition, a process that is intrinsically connected with the photochemical
processes (Table 2).

Table 2. Octanol–water partition coefficients (log KOW; NA—not applicable) and concentrations
applied of the tested compounds, and respective growth inhibition (%, negative values indicate
growth inhibition) and half-maximal inhibitory concentration (IC50) assessed for each exposure
trial set.

Exposure log K (OW)
(OECD 107)

Concentration
(µg L−1)

Growth Inhibition
(%) IC50 (µg L−1)

Diclofenac 1.9

0 0

318.9

0.8 −8.5
3 −14.9

40 −34.9
100 −38.9
300 −42.8

Propranolol 3.12

0 0

194.6

0.3 −19.37
8 1.7

80 −31
150 −68.6
300 −56.1

Fluoxetine 4.65

0 0

47.3

0.3 −7.42
0.6 −10.1
20 −24.8
40 −38.8
80 −82.8

Ibuprofen 2.48
0 0

350.60.8 −17.1
3 −20.1



Biology 2021, 10, 932 8 of 21

Table 2. Cont.

Exposure log K (OW)
(OECD 107)

Concentration
(µg L−1)

Growth Inhibition (%) IC50 (µg L−1)

Ibuprofen 2.48
40 −18.2

350.6100 −37.7
300 −40

Glyphosate −1.6

0 0

225.9

10 0.92
50 −21
100 −28
250 −75.5
500 −89.2

SDS −2.03

0 0

11.4
0.1 −15.5
1 −21.1
3 −24.6

10 −43.8

Triclosan 4.76

0 0

691.7
0.1 −0.55
1 −1.41

10 −1.6
100 −2.39

Dissolved Ionic Copper NA

0 0

14.61 −12.2
5 −24.1

10 −33.6

Copper Engineered Nanoparticles NA

0 0

8.311 −21
5 −33.1

10 −57.7

Dissolved Ionic Titanium NA

0 0

577.510 −5.15
50 −11.9
200 −18

Titanium Engineered Nanoparticles NA

0 0

634.310 12.3
50 0.47
200 −7.46

Dissolved Ionic Zinc NA

0 0

73.91 −7.56
5 −6.51

10 −8.37

Zinc Engineered Nanoparticles NA

0 0

88.41 3.39
5 −4.27

10 −7.22

We report our results in tables, boxplots, spider plots, and heatmaps. Accuracy values
are reported as proportions (0–1) in the tables and plots, but for convenience, we also use
them as percentages (0–100) in the text. When presenting median results of the 30 runs, we
determine the statistical significance of the observed differences with the non-parametric
Kruskal–Wallis test. Whenever we refer to better and best or worse and worst results, it
means the p-value of the statistical test was <0.01. All the p-values are presented in tables
in Appendix A.

For the task of predicting the type of EC, the best results are obtained by the CNN
Log, with a median accuracy of 97.65% on the test set, as detailed in Table 3. Observing
the results of the best CNN Log model on the heatmap of Figure 2, we see that the vast
majority of ECs are correctly classified with accuracy values of 100%, with Cu_d and Zn_np
having the lowest accuracy values of 94.44%. The best models of the other deep learning
methods also achieve very good results, as well as Rocket, but not so consistently in all the
classes. For example, 1D CNN achieves accuracy 100% in even more classes than CNN
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Log, but reaches only 84.38% in one of the classes (TRI). Looking at the boxplot of Figure 3,
we see that 1D CNN indeed shows a very high dispersion of results, revealing to be a less
reliable method despite its high median accuracy. ANN also reveals a higher dispersion
than Rocket or the CNNs. Regarding RF and XGB trees, their overall accuracy is much
lower than the others in terms of median and best results.

DCF FX GLIPH IBU PROP SDS TRI CU_d CU_np TI_d TI_np ZN_d ZN_np

RF

XGB

Rocket

ANN

1D CNN

CNN

CNN Log

0.619

0.6538 0.8387

0.9091

0.8205

0.8889 0.7308

0.675

0.75

0.8837

0.8065

0.7692

0.6296

0.8333

0.8846

0.9

0.8438

0.7333

0.6429

0.8864

0.8529

0.8696

0.825

0.85

0.68

0.7059

0.8571

0.8571 0.875

0.8333

1

0.9583

0.9615

0.9815

1

0.9737

1

1

1

0.9815

1

0.9677

1

1

1

0.9524

1

1

1

0.9815

0.9815

0.9444

0.9512

0.9444

1

0.9167

0.9189

1

1

1

1

1

0.9355

1

0.9167

0.9444

1

0.963

1

1

1

1

1

1

1

1

0.913

1

0.9722

1

1

1

1

1

0.9444

1

1

1

1

1

0.9444 0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 2. Heatmap depicting the accuracy per class of each best performing model when predicting the different types
of ECs.

RF XGB Rocke
t ANN 1D CN

N CNNCNN 
Log

0.6
0.7

0.8
0.9

1.0

Figure 3. Boxplot showing the distribution of accuracy obtained by each method on the test set, in 30
independent runs of predicting the EC.

Table 3. Median overall accuracy obtained by the different methods when predicting the different
types of ECs on the training and test set. The best test result is represented in green.

Train Test

Random Forests 0.9625 0.7461
XGBoost 0.9983 0.8076
Rocket 0.9991 0.9705
ANN 0.8493 0.9089

1D CNN 0.9993 0.9641
CNN 0.9815 0.9732

CNN Log 0.9807 0.9765

The spider plot of Figure 4 contains the same data as the heatmap of Figure 2, rep-
resented in a different way and omitting the RF and XGB results since these two clearly
cannot compete with the other methods. The advantage of having these two plots for
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the same data are that while it is easier to view the large differences between the models
on the spider plots, the heatmaps make it easier to compare the concrete values of the
accuracy per class given that the color scheme was chosen to emphasize the small yet
relevant differences that can not be seen in the spider plots. Here we can easily verify
which ECs are easier or harder to predict and observe the consistency or disparity of results
obtained by the different models for each EC. We observe that ECs, such as GLIPH, IBU,
Cu_np, and Ti_d, are always very well classified, whereas PROP, TRI, Cu_d, and Ti_np
represent a challenge for most models.

Figure 4. Spider plot depicting the accuracy per class of each best performing model when predicting
the different types of ECs.

Regarding the task of predicting the concentrations of the different ECs, the scenario
changes. Table 4 shows that Rocket is the superior method, achieving the best median test
accuracy in all but one EC, followed by ANN which surpasses Rocket in one EC and shares
the best results in 7 other ECs, and then by 1D CNN that shares 5 of the best results with
Rocket and ANN. CNN and CNN Log only achieve one best result each. Regarding RF and
XGB trees, although they do not claim any best results, on this task they do not perform so
much worse than the other methods. SDS is the hardest EC to predict the concentration,
probably because even on a small amount it simply kills the microalgae. Zn_np is another
EC where predicting the concentration is not so easy.

Looking at the boxplots of Figure 5, for most ECs and methods we observe a higher
dispersion of accuracy values than what we saw on the first task. Although on the first task
the median accuracy was very close to the best result, here it is seldom the case. For this
reason, the heatmap and spider plots that follow report the results of the models that
achieve median, not best, results. The heatmap in Figure 6 and the spider plots in Figure 7
show the accuracy per concentration for all 13 ECs. The large heatmap is a concatenation of
13 smaller parts. Looking at both types of plots, we observe a large disparity of behaviors.
Some classifiers are generally superior to others, but the performance of each method
depends not only on the EC but also on its concentration, with no clear relationship
between the concentration and the accuracy.
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Figure 5. Boxplots showing the distribution of accuracy obtained by each method on the test set, in 30 independent runs of
predicting the concentration of each given EC.



Biology 2021, 10, 932 12 of 21

D
C

F
_
0
_
8

D
C

F
_
_
_
3

D
C

F
_
_
4
0

D
C

F
_
1
0
0

D
C

F
_
3
0
0

F
X

_
0
_
3

F
X

_
0
_
6

F
X

_
_
2
0

F
X

_
_
4
0

F
X

_
_
8
0

G
L
IP

H
_
_
1
0

G
L
IP

H
_
_
5
0

G
L
IP

H
_
1
0
0

G
L
IP

H
_
2
5
0

G
L
IP

H
_
5
0
0

IB
U

_
_
0
3

IB
U

_
_
_
3

IB
U

_
_
4
0

IB
U

_
1
0
0

IB
U

_
3
0
0

P
R

O
P

_
0
_
3

P
R

O
P

_
_
_
8

P
R

O
P

_
_
8
0

P
R

O
P

_
1
5
0

P
R

O
P

_
3
0
0

S
D

S
_
0
_
1

S
D

S
_
_
_
1

S
D

S
_
_
_
3

S
D

S
_
_
1
0

T
R

I_
0
_
1

T
R

I_
_
_
1

T
R

I_
_
1
0

T
R

I_
_
5
0

T
R

I_
1
0
0

C
U

_
d
_
_
1

C
U

_
d
_
_
5

C
U

_
d
_
1
0

C
U

_
n
p
_
_
1

C
U

_
n
p
_
_
5

C
U

_
n
p
_
1
0

T
I_

d
_
_
1
0

T
I_

d
_
_
5
0

T
I_

d
_
2
0
0

T
I_

n
p
_
_
1
0

T
I_

n
p
_
_
5
0

T
I_

n
p
_
2
0
0

Z
N

_
d
_
_
1

Z
N

_
d
_
_
5

Z
N

_
d
_
1
0

Z
N

_
n
p
_
_
1

Z
N

_
n
p
_
_
5

Z
N

_
n
p
_
1
0

RF

XGB

Rocket

ANN

1D CNN

CNN

CNN Log
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6. Heatmap depicting the accuracy per class of the models when predicting the different concentrations of the
different ECs. This heatmap is a concatenation of 13 smaller ones. The x-axis lists all the ECs at different concentrations (see
Table 1).

Table 4. Median overall accuracy obtained by the different methods when predicting the different concentrations of the
ECs on the training and test set. The best test results for each EC are represented in green. The last row reports the median
results for all ECs.

RF XGB Rocket ANN 1D CNN CNN CNN Log

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

DCF 1 0.9 1 0.8833 1 1 1 1 1 1 1 0.9666 1 0.9666
FX 1 0.8333 1 0.8333 1 0.9666 0.9833 0.95 1 0.9333 1 0.9 1 0.8333
GLIPH 1 0.9666 1 0.9333 1 1 0.9833 0.9666 1 1 1 0.9333 1 0.9666
IBU 0.9916 0.8666 1 0.8333 0.9708 0.9 0.9916 0.95 1 0.9333 1 0.8666 1 0.833
PROP 1 0.9666 1 0.9666 1 1 1 0.9833 1 1 1 0.9666 1 1
SDS 1 0.8333 1 0.7916 1 0.9166 0.9895 0.9583 1 0.875 1 0.7916 1 0.75
TRI 1 0.9 1 0.8333 1 1 0.9833 0.9666 1 0.9666 1 0.9333 1 0.9333
Cu_d 1 0.8333 1 0.8888 1 1 0.9722 0.9444 1 0.9444 1 0.8333 1 0.8888
Cu_np 1 0.8888 1 0.8333 1 0.9444 0.9722 0.9444 1 0.9444 1 0.8888 1 0.8333
Ti_d 1 0.8888 1 0.8888 1 1 0.9861 1 1 1 1 0.8888 1 0.8611
Ti_np 1 0.9444 1 0.8888 1 1 0.9861 1 1 1 1 1 1 0.9444
Zn_d 1 0.8888 1 0.8888 1 0.9722 0.9861 0.9444 1 0.9444 1 0.8611 1 0.9444
Zn_np 0.9791 0.7777 1 0.7777 1 0.8888 0.9722 0.9166 1 0.8888 1 0.8611 1 0.7222

Median 1 0.8888 1 0.8833 1 1 0.9861 0.9583 1 0.9444 1 0.8888 1 0.8888
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Figure 7. Spider plots depicting the accuracy per class of each model when predicting the different concentrations of an EC.
Each vertex within the circle corresponds to the concentration of that EC.

4. Discussion

The results reported above reveal that from the first task (predicting the EC) to the
second task (predicting the concentration of the EC) the ranking of best methods changes.
This seems to have been caused by a relative failure of the CNNs on the second task,
after being so successful on the first one.

Several hypotheses may be advanced regarding this change: the normalization of the
data, which is performed only for the second task (Section 2.5); the strong reduction in the
number of classes (from 13 on the first task to 3–5 on the second); the strong reduction in
the number of samples available in each class (from 120–180 on the first task to only 30 on
the second). In order to test whether the culprit is the normalization of the data, we have
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performed experiments with non-normalized data for the second task. However, with this
setting the CNNs obtained worse results than with normalization, thus discarding it as the
cause for their failure.

Regarding the reduction in the number of classes, although it is normally expected
that fewer classes mean easier problems, the labels used for the second task are not a subset
of the first, but rather a refinement of each of the original labels. This defines a different
problem, one that may be more difficult than the first one, even after splitting it into
13 independent subproblems. In order to check whether the set of 13 subproblems represent
an easier or harder challenge than the one problem of the first task, we compare the results
of predicting the EC (Table 3) with the median results of predicting the concentrations
for each of the ECs (last row of Table 4). On the training set, all the methods do better
on the median of the 13 problems of predicting concentrations than on the one problem
of predicting the EC. In fact, not only the median is better, but also the single results of
each of the 13 problems, most of them a perfect accuracy of 100%. Rocket is the only
method reporting a single case where the training accuracy is higher when predicting
the EC (99.91%) than when predicting the concentration of one of the ECs (IBU, 97.08%).
Additionally, the CNNs do better on all the problems of the second task than on the one
problem of the first task. Therefore, the learning of the training set is clearly easier on the
second task. As for generalization on the test set, some methods are better on the second
task (RF, XGB, Rocket, ANN) while others are worse (1D CNN, CNN, CNN Log), and this
is what changes the ranking of the methods.

We investigated what causes the relative lack of generalization ability in 1D CNN
and both CNNs, with a clear hypothesis in mind. One cause might be because there are
not enough data to further split the training set into a validation set, which would allow
us to implement an early stopping training criteria for the models. This is aggravated by
the fact that these methods learn the training data very easily, and indeed we confirmed
that there is a moderate amount of over-fitting. Assuming the amount of data was larger
than 30 samples per class, it is possible we could have made better choices regarding the
number of epochs to run, and the convolutional DL approaches would be expected to
perform much better than they did on the second task. DL is indeed known to require large
amounts of data to achieve a good performance, so this finding is actually not surprising,
and strongly suggests the need for data augmentation.

One interesting result we obtained is related to the performance obtained by the CNNs
that use logarithmic time data (CNN Log) and the CNNs that use time steps (CNN). It is
common to use logarithmic scales of the temporal data for visualizing the Kautsky curves,
but, of course, most ML methods only use the values of the time series for performing the
classification, regardless of how they would be visualized. However, both CNN and CNN
Log rely on plots of the data, and, therefore, they “see” the data differently depending
on the x-axis, and we have observed that using a logarithmic scale is not always the best
option. Although it proved to be significantly better on the first task (p-values of the
statistical test in Appendix A), on the second task we have the opposite scenario, where the
regular CNN is more often significantly better than CNN Log. This suggests that, when
performing the necessary data augmentation for improving the performance of the CNNs,
one easy way to implement it is to use both regular and logarithmic data.

5. Conclusions and Future Work

We evaluated the performance of several machine learning and deep learning methods
in two different tasks of predicting the exposure of a model marine diatom (Phaeodactylum
tricornutum) to different emerging contaminants under different doses, using only the
chlorophyll fluorescence induction curves as data. The first task was to identify which of
the 13 contaminants are detected, while the second task was to identify the concentration
of the contaminant. We used five different machine learning and deep learning algorithms
on both tasks, including Random Forests, XGBoost trees, Rocket, and several deep neural
architectures, including 1D and 2D convolutional neural networks (CNNs). The 2D CNNs
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had the particularity of using as input data the plots of the time series data, instead of the
numeric values. One of these methods (CNN Log) was given the plots with a logarithmic
x-axis, as it is normally visualized, while the other used a linear scale with equally spaced
time points (CNN). On the first task, the best results were obtained by CNN Log, with a
median test accuracy of 97.65% over 30 independent runs, closely followed by other deep
learning approaches and also the Rocket method. On the second task, the best method was
Rocket and other deep learning approaches, while the 2D CNNs performed comparatively
bad. Whereas Rocket proved to be a reliable method for both tasks, we analyzed the
reasons for the relative failure of the 2D CNNs on the second task and concluded that it
was caused by the occurrence of moderate over-fitting, probably due to an insufficient
amount of training data.

Thus, the combination of machine learning algorithms with fluorescence HTS data
resultant from fluorescence induction curves appears as a powerful tool for ecotoxicity
assessment fast large data package evaluation aiming to classify model organisms, such as
diatoms, for their contaminant exposure both in terms of type and concentration, opening
new doors for toxicophenomics developments.

Markedly, future work should also progress to test contaminant mixtures, as well as
complex phytoplankton communities, in order to produce models with broader ecological
meaning and providing a better assessment of contaminants exposure in natural environ-
ments, despite current international ecotoxicological and risk assessment guidelines largely
focus on individual chemicals of concern, which are simpler to address although unlikely
to occur in natural environments.

In the future, we also plan to perform data augmentation by training the models
using both regular and logarithmic data, as both of them provided good results without
one proving to be overall better than the other. Another thing we intend to do in the
future is to test and develop models to detect which chemical form, either ionic solution
or engineered nanoparticles, is the EC, by comparing the induction curves of the same
concentration produced by both. Beyond the bioinformatics point of view, the present work
also highlights the potential of the application of these machine learning algorithms to assist
ecotoxicological evaluation of model diatom cultures exposed to a myriad of contaminants.
The proposed analysis pipelines can be integrated into an automatic bio-optical assessment
system fed by fluorescence sensors producing accurate classifications of the toxicity degree
to which the cells are subjected to, and thus reducing operator-associated artifacts and
errors. This opens a new door for ecotoxicology not only reinforcing the potential of
bio-optical features to be used as biomarkers of contaminant exposure but also introducing
machine learning methodologies as tools to assist the ecotoxicological classifications which
are on the basis of key assessments, such as Ecological Risk Assessment (ERA), crucial for
impact and biomonitoring studies. Moreover, the data analysis pipeline here proposed, can
be easily transposed to other autotrophic organisms, subjected to different stress/xenobiotic
conditions, once calibrated and validated against known biochemical or morphological
descriptors of stress.
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Appendix A

Table A1. Kruskal–Wallis p-values comparing all methods of the EC prediction task. Above the diagonal, we have the
results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or red when the
method on the left is significantly better or worse, respectively.

EC RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 1.23e−10 2.58e−11 2.80e−11 1.89e−08 2.63e−11 2.68e−11

Test

XG 2.24e−11 ——– 2.60e−11 2.82e−11 1.01e−07 2.65e−11 2.70e−11

Rocket 1.88e−11 1.08e−05 ——– 2.59e−11 4.04e−03 3.64e−02 5.79e−04

ANN 2.82e−11 2.26e−11 1.90e−11 ——– 7.04e−04 2.64e−11 2.69e−11

1D CNN 2.34e−11 8.89e−02 8.08e−01 2.36e−11 ——– 3.19e−04 2.68e−06

CNN 2.54e−11 2.03e−11 1.70e−11 2.56e−11 3.09e−08 ——– 6.93e−03

CNN Log 1.63e−09 2.07e−11 1.73e−11 2.61e−11 6.55e−09 2.55e−02 ——–
Training

Table A2. Kruskal–Wallis p-values comparing all methods of the DCF concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

EC RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 1.43e−01 1.88e−11 6.03e−11 1.43e−04 5.66e−07 5.66e−07

Test

XG 5.32e−03 ——– 1.40e−10 1.89e−10 2.98e−05 1.73e−08 1.73e−08

Rocket 5.32e−03 1.00e+00 ——– 6.34e−01 1.91e−03 9.42e−08 9.42e−08

ANN 2.98e−01 1.36e−04 1.36e−04 ——– 5.28e−03 9.88e−07 9.88e−07

1D CNN 9.28e−01 5.34e−03 5.34e−03 2.08e−01 ——– 2.92e−01 2.92e−01

CNN 5.32e−03 1.00e+00 1.00e+00 1.36e−04 5.34e−03 ——– 1.00e+00

CNN Log 5.32e−03 1.00e+00 1.00e+00 1.36e−04 5.34e−03 1.00e+00 ——–
Training

Table A3. Kruskal–Wallis p-values comparing all methods of the FX concentration prediction task. Above the diagonal, we
have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or red
when the method on the left is significantly better or worse, respectively.

FX RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 3.69e−01 2.64e−06 1.65e−06 1.15e−02 1.94e−02 2.44e−01

Test

XG 4.97e−01 ——– 1.03e−08 2.31e−09 1.00e−04 7.84e−04 7.65e−01

Rocket 6.16e−05 5.92e−04 ——– 8.63e−01 8.09e−03 4.35e−07 1.26e−09

ANN 6.54e−03 7.45e−06 4.94e−10 ——– 7.98e−03 2.64e−07 1.78e−10

1D CNN 4.13e−03 4.52e−02 4.02e−02 3.34e−08 ——– 2.77e−02 2.41e−05

CNN 6.16e−05 5.92e−04 1.00e+00 4.94e−10 4.02e−02 ——– 6.19e−08

CNN Log 6.16e−05 5.92e−04 1.00e+00 4.94e−10 4.02e−02 1.00e+00 ——–
Training
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Table A4. Kruskal–Wallis p-values comparing all methods of the GLIPH concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

GLIPH RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 2.84e−03 7.00e−06 8.98e−01 1.35e−02 8.08e−04 3.23e−01

Test

XG 1.27e−03 ——– 2.80e−09 7.73e−03 3.12e−06 8.80e−01 6.39e−05

Rocket 1.27e−03 1.00e+00 ——– 3.38e−04 6.72e−02 3.69e−11 1.41e−04

ANN 2.65e−05 5.40e−10 5.40e−10 ——– 5.21e−02 1.81e−04 2.52e−01

1D CNN 8.34e−03 3.17e−01 3.17e−01 1.13e−08 ——– 5.40e−09 2.08e−01

CNN 1.27e−03 1.00e+00 1.00e+00 5.40e−10 3.17e−01 ——– 2.49e−10

CNN Log 1.27e−03 1.00e+00 1.00e+00 5.40e−10 3.17e−01 1.00e+00 ——–
Training

Table A5. Kruskal–Wallis p-values comparing all methods of the IBU concentration prediction task. Above the diagonal, we
have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or red
when the method on the left is significantly better or worse, respectively.

IBU RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 4.60e−03 1.93e−01 5.17e−04 1.87e−03 9.16e−01 5.92e−01

Test

XG 4.27e−06 ——– 2.63e−05 1.24e−08 5.16e−08 4.61e−05 3.68e−05

Rocket 3.07e−04 4.38e−08 ——– 1.40e−02 3.97e−02 6.04e−03 7.58e−02

ANN 9.75e−01 2.88e−07 1.11e−03 ——– 3.54e−01 1.50e−08 5.54e−06

1D CNN 1.09e−03 4.02e−02 1.08e−06 2.07e−04 ——– 1.88e−07 7.81e−05

CNN 4.27e−06 1.00e+00 4.38e−08 2.88e−07 4.02e−02 ——– 6.10e−02

CNN Log 4.27e−06 1.00e+00 4.38e−08 2.88e−07 4.02e−02 1.00e+00 ——–
Training

Table A6. Kruskal–Wallis p-values comparing all methods of the PROP concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

PROP RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 3.27e−01 4.22e−05 4.16e−02 2.46e−03 6.34e−01 1.63e−06

Test

XG 5.32e−03 ——– 1.09e−03 3.62e−01 4.54e−02 1.71e−02 5.79e−05

Rocket 5.32e−03 1.00e+00 ——– 1.83e−02 2.16e−01 2.18e−10 2.71e−01

ANN 9.69e−01 2.65e−03 2.65e−03 ——– 3.78e−01 2.79e−03 1.72e−03

1D CNN 2.83e−01 4.02e−02 4.02e−02 2.19e−01 ——– 1.03e−04 2.72e−02

CNN 5.32e−03 1.00e+00 1.00e+00 2.65e−03 4.02e−02 ——– 1.86e−11

CNN Log 5.32e−03 1.00e+00 1.00e+00 2.65e−03 4.02e−02 1.00e+00 ——–
Training

Table A7. Kruskal–Wallis p-values comparing all methods of the SDS concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

SDS RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 1.89e−03 4.23e−05 1.76e−08 9.15e−02 1.17e−01 4.13e−05

Test

XG 6.28e−04 ——– 1.46e−09 8.01e−11 2.18e−05 2.25e−02 9.10e−01

Rocket 6.28e−04 1.00e+00 ——– 3.35e−03 1.46e−02 4.23e−10 1.40e−11

ANN 2.38e−04 5.00e−09 5.00e−09 ——– 5.19e−06 5.93e−11 1.40e−11

1D CNN 1.49e−02 1.54e−01 1.54e−01 2.66e−07 ——– 6.22e−04 2.38e−08

CNN 6.28e−04 1.00e+00 1.00e+00 5.00e−09 1.54e−01 ——– 2.62e−05

CNN Log 6.28e−04 1.00e+00 1.00e+00 5.00e−09 1.54e−01 1.00e+00 ——–
Training
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Table A8. Kruskal–Wallis p-values comparing all methods of the TRI concentration prediction task. Above the diagonal, we
have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or red
when the method on the left is significantly better or worse, respectively.

TRI RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 7.03e−04 9.62e−11 4.89e−08 4.99e−07 4.22e−03 6.36e−02

Test

XG 1.05e−02 ——– 1.67e−11 1.05e−10 1.32e−09 3.22e−08 7.14e−07

Rocket 1.05e−02 1.00e+00 ——– 1.96e−03 6.46e−04 2.89e−12 6.91e−12

ANN 8.89e−06 1.59e−09 1.59e−09 ——– 5.67e−01 5.66e−08 6.83e−07

1D CNN 8.16e−01 1.06e−02 1.06e−02 2.67e−04 ——– 1.65e−09 3.99e−08

CNN 1.05e−02 1.00e+00 1.00e+00 1.59e−09 1.06e−02 ——– 7.93e−01

CNN Log 1.05e−02 1.00e+00 1.00e+00 1.59e−09 1.06e−02 1.00e+00 ——–
Training

Table A9. Kruskal–Wallis p-values comparing all methods of the Cu_d concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

Cu_d RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 5.93e−01 6.08e−10 1.60e−03 4.64e−02 1.19e−01 2.90e−01

Test

XG 5.97e−05 ——– 4.43e−11 1.53e−03 6.12e−02 1.63e−03 6.50e−01

Rocket 5.97e−05 1.00e+00 ——– 3.66e−07 1.26e−10 1.54e−12 1.01e−12

ANN 6.94e−09 1.22e−11 1.22e−11 ——– 7.96e−02 6.24e−11 1.69e−08

1D CNN 5.17e−04 3.17e−01 3.17e−01 2.85e−10 ——– 1.94e−09 2.36e−06

CNN 5.97e−05 1.00e+00 1.00e+00 1.22e−11 3.17e−01 ——– 7.24e−06

CNN Log 5.97e−05 1.00e+00 1.00e+00 1.22e−11 3.17e−01 1.00e+00 ——–
Training

Table A10. Kruskal–Wallis p-values comparing all methods of the Cu_np concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

Cu_np RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 2.12e−02 3.28e−06 3.73e−05 3.82e−04 6.96e−01 3.70e−02

Test

XG 2.06e−02 ——– 1.20e−08 3.32e−08 2.82e−07 2.64e−03 3.08e−01

Rocket 2.06e−02 1.00e+00 ——– 2.68e−01 2.80e−02 1.15e−07 9.62e−10

ANN 4.23e−09 1.40e−10 1.40e−10 ——– 4.85e−01 1.91e−07 2.78e−09

1D CNN 8.49e−01 4.02e−02 4.02e−02 4.21e−08 ——– 2.90e−07 3.52e−09

CNN 2.06e−02 1.00e+00 1.00e+00 1.40e−10 4.02e−02 ——– 7.65e−03

CNN Log 2.06e−02 1.00e+00 1.00e+00 1.40e−10 4.02e−02 1.00e+00 ——–
Training

Table A11. Kruskal–Wallis p-values comparing all methods of the Ti_d concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

Ti_d RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 8.88e−01 6.10e−07 3.86e−07 2.36e−05 1.72e−01 1.16e−02

Test

XG 1.27e−03 ——– 1.66e−06 8.50e−07 3.70e−05 1.73e−01 3.76e−02

Rocket 1.27e−03 1.00e+00 ——– 6.24e−01 6.19e−01 3.88e−08 5.14e−09

ANN 7.26e−04 7.92e−07 7.92e−07 ——– 2.06e−01 5.14e−10 1.10e−10

1D CNN 4.07e−01 2.06e−02 2.06e−02 4.20e−04 ——– 1.23e−05 2.54e−08

CNN 1.27e−03 1.00e+00 1.00e+00 7.92e−07 2.06e−02 ——– 2.53e−05

CNN Log 1.27e−03 1.00e+00 1.00e+00 7.92e−07 2.06e−02 1.00e+00 ——–
Training
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Table A12. Kruskal–Wallis p-values comparing all methods of the Ti_np concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

Ti_np RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 8.23e−04 1.12e−04 1.47e−03 2.21e−02 4.84e−06 4.86e−01

Test

XG 1.54e−01 ——– 8.15e−10 1.51e−08 4.89e−07 4.45e−11 5.04e−03

Rocket 1.54e−01 1.00e+00 ——– 3.94e−01 7.37e−02 1.54e−01 7.93e−06

ANN 1.86e−06 3.06e−07 3.06e−07 ——– 3.61e−01 4.02e−02 1.09e−04

1D CNN 5.84e−01 3.17e−01 3.17e−01 1.15e−06 ——– 5.25e−03 9.09e−04

CNN 1.54e−01 1.00e+00 1.00e+00 3.06e−07 3.17e−01 ——– 2.52e−07

CNN Log 1.54e−01 1.00e+00 1.00e+00 3.06e−07 3.17e−01 1.00e+00 ——–
Training

Table A13. Kruskal–Wallis p-values comparing all methods of the Zn_d concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

Zn_d RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 9.88e−01 9.85e−06 4.13e−05 1.13e−03 1.00e+00 1.90e−02

Test

XG 5.34e−03 ——– 1.35e−07 1.07e−06 1.37e−04 8.21e−01 1.93e−03

Rocket 5.34e−03 1.00e+00 ——– 1.68e−01 3.51e−02 7.79e−10 2.72e−08

ANN 9.01e−06 4.58e−09 4.58e−09 ——– 1.66e−01 6.71e−11 1.29e−05

1D CNN 8.65e−02 1.54e−01 1.54e−01 1.29e−07 ——– 6.29e−07 3.27e−02

CNN 5.34e−03 1.00e+00 1.00e+00 4.58e−09 1.54e−01 ——– 3.28e−07

CNN Log 5.34e−03 1.00e+00 1.00e+00 4.58e−09 1.54e−01 1.00e+00 ——–
Training

Table A14. Kruskal–Wallis p-values comparing all methods of the zn_np concentration prediction task. Above the diagonal,
we have the results for the test set, and below for the training set. Significant results (p < 0.01) are represented in green or
red when the method on the left is significantly better or worse, respectively.

Zn_np RF XG Rocket ANN 1D CNN CNN CNN Log

RF ——– 8.92e−01 1.75e−06 1.07e−05 1.83e−03 3.11e−03 1.25e−01

Test

XG 5.07e−06 ——– 7.84e−08 1.63e−07 6.85e−05 2.59e−05 4.68e−02

Rocket 1.94e−05 3.17e−01 ——– 8.92e−01 1.72e−01 6.42e−03 1.89e−10

ANN 1.05e−01 1.26e−11 4.89e−11 ——– 1.03e−01 6.66e−04 1.31e−10

1D CNN 2.74e−04 7.81e−02 3.13e−01 1.80e−09 ——– 1.12e−01 1.31e−06

CNN 5.07e−06 1.00e+00 3.17e−01 1.26e−11 7.81e−02 ——– 1.91e−08

CNN Log 5.07e−06 1.00e+00 3.17e−01 1.26e−11 7.81e−02 1.00e+00 ——–
Training
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