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GOLMI suppresses autophagy-mediated anti-tumor immunity

in hepatocellular carcinoma
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Dear Editor,

Immune-mediated tumor elimination depends on the produc-
tion of cytokines and the recruitment of immune cells in the
tumor microenvironment. Cell death-related signals such as ATP
release from tumor cells are crucial for the activation of down-
stream immune responses.’ GOLM1, also known as GOLPH2 and
GP73 as a Golgi transmembrane protein involved in the transport
of protein cargo through the Golgi apparatus has been extensively
studied in various cancers for its multifunctional roles in
promoting cancer proliferation and metastasis through the AKT/
mTOR pathway.>* Its secreted form has been used as a serum
biomarker in patients along with hepatocellular carcinoma (HCC)
tumorigenesis and progression.* However, its functional role in
anticancer immunity is still unclear.

Our immunohistochemical results demonstrated that GOLM1ex-
pression levels were significantly higher in malignant HCC tissues than
in benign liver tissues (Fig. 1a, b). Kaplan-Meier survival analysis
indicated that HCC patients with high GOLM1 expression (cutoff
value = 96.5) showed a worse prognostic factor (Fig. 1¢). We further
evaluated the inverse correlation between CD8 and GOLM1
expression levels in HCC tissues, which suggested that GOLM1 might
be involved in immune regulation in HCC (Fig. 1d, supplementary Fig.
S1a). Importantly, the tumors with a high expression level of GOLM1
were poorly differentiated, indicating that GOLM1 may predict the
malignant progression of HCC (Supplementary Tables 1-3). Collec-
tively, GOLM1 expression is elevated in tumor cells and inversely
correlated with CD8" T cell infiltration and clinical outcome in the
tumor microenvironment of human HCC.

To further determine the role of GOLM1 in anti-tumor immunity,
we firstly generated several independent clones of H22 hepatoma
and MCA205 fibrosarcoma cell lines that lacked Golm1 expression
(Fig. 1e, supplementary Fig. S1b). Both Golm1~/~ H22 hepatoma
and MCA205 fibrosarcoma exhibited a vigorous reduction in
tumor growth in immune-competent mice as compared with their
WT parental cells (Fig. 1f, g). Interestingly, both Golm1~/~ H22 and
MCA205 cells grew into tumors at similar sizes as their
corresponding WT cells in T cell-deficient nu/nu mice (Supple-
mentary Fig. S1c). Although abdominal massive malignant ascites
produced in both groups at an early stage, the lack of Golm1
expression in H22 tumor cells prolonged mice median survival
significantly from 21 days to 29.5 days. In addition, 40% of mice
have totally recovered at day 40 manifested by abdominal
malignant ascites disappearance (Fig. 1h). These findings demon-
strated that tumor regression associated with Golm1 deficiency
occurs in an immune-dependent fashion.

Indeed, the knockout of Golm1 increased the number of tumor-
infiltrating CD4" or CD8" T cells, IFNy-production cytotoxic T
lymphocytes, higher proportions of F4/80" MHCII* macrophages
and CD11c¢™ MHCII* dendritic cells including CD11b Ly6C™ cell
subtype (Fig. 1i-l, supplementary Fig. S1d). Moreover, IFNy
secreted by TILs isolated from H22 and MCA205 Golm1~'~ tumors
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environment presented more than that of the corresponding
Golm1™* tumors (Fig. 1m, n). Particularly, Golm1~'~ tumor
displayed a greater proportion of apoptotic cells staining with
the noteworthy expression of activated caspase-3 than in Golm1-
sufficient controls (Fig. 1k, ), implying that increased cell death
may trigger the recognition by antigen-presenting cell and
elicitation of the specific antitumor immune response. Altogether,
Golm1 deficiency likely promotes T cells and APCs recruitment into
tumors leading to increased production of cytokines like IFNy.
Chemotherapy-induced immunogenic cell death (ICD) is
expected to influence the composition and the architecture of
tumor immune infiltration, which contributes to the elimination of
residual tumor cells. In our study, Annexin V'DAPI™ subpopula-
tions of Golm1~'~ cells were increased as compared to WT cells,
suggesting that Golm1 deficiency promoted the early stage of
apoptosis (Fig. 1o, supplementary Fig. Sle). Consistently, the
western blotting analysis indicated that the intracellular levels of
cleaved-PARP and cleaved-Caspase8 (p43/41) were increased
along with the reduction of cleaved-FLIP_ after MTX treatment
in Golm1~'~ H22 cells (Supplementary Fig. S1f). More importantly,
Golm1 deficiency significantly increased the secretion of ATP in
response to MTX treatment supporting that ATP might play a
critical role in antitumor immunity in Golm1~/~ tumor (Fig. 1p). To
abolish extracellular ATP in the tumor microenvironment, the
ecto-ATPase CD39 was overexpressed on the surface of tumor
cells. The presentence of CD39 on Golmi1~/~ MCA205 cells
significantly restored tumor growth to a similar rate as Golm1™/*
MCA205 (Fig. 1q). Thus, Golm1 deficiency may promote antitumor
immunity through an increased extracellular ATP release.
Selective autophagy helps to regulate the clearance of dying cells
by the generation of energy-dependent engulfment signals including
‘eat me’ and ‘find me’ signals. We found that Golm1 knockout
increased the abundance of LC3 puncta and the expression levels of
the key proteins of autophagy including LC3II/LC3I and ATG? (Fig. 1r,
s, and supplementary Fig. S2a). We observed that the autophagy
upstream suppressors such as phospho-AKT (Thr308), phospho-AKT
(Ser473), and phospho-mTOR (Ser2481) were reduced to lower levels
in Golm1~'~ cells than Golm1*/* cells after starvation. On the other
hand, ULK1 complex proteins including ULK1, ATG13, and FIP200,
which are essential to initiate autophagy, were maintained at high
levels in Golm1~~ cells instead of a strong reduction in Golm1™'*
cells under the starvation condition (Fig. 1s). To further verify the
contribution of GOLM1 regulated autophagy formation to ATP
release, we generated Golm1™'~ Atg5~'~ cells and observed that
Golm1™~ Atg5~"~ cells abolished the increased ATP release in
Golm1~'~ cells (Fig. 1t). As TSC2 is an important autophagy activator
in the ATK-mTOR signaling pathway, we have also generated
Golm1~/~ Tsc2™'~ cells and observed that Golm1~/~ Tsc2 ™/~ tumors
grew at similar rates as Golm1** tumors, much faster than Golm1~/~
tumors (Fig. Tu). In addition, our HCC tissue microarray analysis
indicated that the expression of GOLM1 is a negative correlation with
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the expression of LC3 (Fig. 1v). Together, the results further support
that GOLM1 promotes tumor growth by suppressing autophagy
formation and ATP release via the AKT/mTOR pathway.

RNA sequencing was performed to further explore the potential
downstream molecules that may contribute to GOLM1 promoting
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tumor growth.
Ontology subsets were “immune system process”,
stimulus” and “response to stress” (Fig. 1w). Clustering analysis
data indicated that the following categories of genes were
upregulated in Golm1 deficient cells as compared to Golm1

Interestingly, the top three enriched Gene
“response to
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Fig. 1 GOLM1 suppresses autophagy-mediated anti-tumor immunity in hepatocellular carcinoma. a, b Expression of GOLM1
immunohistochemical reaction in benign liver tissues (n=48) and cancerous tissues (n=161). Tan dyeing indicates positive
GOLM1 staining in the cytoplasm of liver cells. ¢ Kaplan-Meier cumulative survival curves of HCC patients grouped as low expression or
high expression of GOLM1 (n = 101, cutoff value = 96.5). d Analysis of correlation between the expression of CD8 and GOLM1 in HCC tissues
(n = 138). e Western blot by using an anti-mouse GOLM1 antibody showed successful gene knockout in H22 and MCA205 cells generated with
a CRISPR vector carrying a scrambled guide RNA sequence. p-actin was used as a loading control. f, g Tumor growth curves of
immunocompetent Balb/c mice subcutaneously inoculated H22 cells (f), and C57BL/6 mice inoculated MCA205 cells (g). Tumor progression is
monitored 2-3 times per week and depicted as error bars of mean+SEM at each time point. Each group of tumor sizes contains 5 mice, and
these results are representative of three independent experiments. h Golm1~'~ H22 and control cells were implanted into in mouse liver to
establish an orthotopic HCC model and implanted mice survival was observed. i, j At the time point of 10 days, MCA205 tumors in wild-type
C57BL/6 mice were harvested and processed to detect the indicated cell populations by flow cytometry. Total tumor-infiltrating lymphocytes
(TILs) percentage in CD45™" cell population (i), and in CD11b™ cell population (j) were shown. k, | At the time point of 10 days, MCA205 tumors
in wild-type C57BL/6 mice were harvested and processed to detect the indicated proteins by immunofluorescence microscopy.
Immunofluorescence staining images of CD8 and Cleaved-Caspase3 were represented (k) and the expression level was summarized in |
(Scale bars: 100 pm). m, n MCA205 tumors in wild-type C57BL/6 mice were harvested and processed to detect IFNy secretion by ELISpot assay.
m Representative images of ELISpot responses from H22 (up) and MCA205 (down) tumors. Each well is represented a mouse tumor, and the
quantitative data are shown in n. o0 Golm1™*, Golm1*/~, and Golm1~/~ H22 cells were treated with or without MTX for 24 h. Cell apoptosis was
detected through staining with Annexin V plus vital dye DAPI followed by flow cytometry analysis and a quantitative summary is shown. p
Golm1** and Golm1~~ H22 cells were treated with or without MTX for 24 h. Quantification of ATP secretion from cell supernatants
immediately collected and detected by chemiluminiscence assay. q Growth curves of immunocompetent mice bearing Golm1™*, Golm1~~,
CD39 overexpressing Golm1*™”" and CD39 over-expressing Golm1~’~ MCA205 tumors. r Golm1™" and Golm1~"~ MCA205 cell lines stably
expressing RFP-GFP-LC3 reporter protein were generated via lentivirus-mediated overexpression. The cells that exhibited a large number of
RFP-GFP-LC3 dots after treatment of EBSS (3 h) were analyzed by confocal immunofluorescence. Quantification of cells with Red-GFP-LC3
puncta is shown. s Golm1*/*, Golm1™~, and Golm1~"~ H22 cells were treated with completed medium or Earle’s balanced salt solution (EBSS)
for 3 h. Cell lysates were prepared to be available for western blot detection, the blots were exposed as indicated antibodies and further
exposed to the respective secondary antibodies. Representative western blot analysis of autophagy-related proteins (left) and key
components of AKT-mTOR signaling pathway (right). t WT, Golm1~"~ and Golm1~/~ Atg5 /= H22 cells were treated with or without EBSS for
the indicated time. Quantification of ATP secretion from cell supernatants immediately collected and detected by chemiluminiscence assay. u
Growth curves of immunocompetent mice bearing Goim1**, Golm1~'~ and Golm1~/~ Tsc2~/~ MCA205 tumors. v Analysis of correlation
between the expression of LC3 and GOLM1 in HCC tissues (n = 138, r = —0.3502, P = 0.0457). w, x Golm1™*, Golm1*/~, and Golm1~/~ H22
tumors in Balb/c mice were isolated at day 10 after implantation, and gene expression was analyzed by RNA sequencing (n = 3/group). Top
functional pathway items by GO analysis and IPA (v). Heat map demonstrates type | interferon-related genes with a P value of less
than 0.05 and a fold change of greater than 2 over the control group (w). y Tumor growth curves of Ifnar ~~ mice implanted with Golm1*/*
and Golm1~~ MCA205 cells. The quantitative variables between the two groups are analyzed by the Mann-Whitney U test (f, g, q, t, u, y) or
unpaired Student’s t-test (b, i, j, I, n, o, p, r). Correlation between two groups is by the two-tailed Pearson’s correlation analysis (d, v).
Quantitative data are represented as mean + SEM; ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001
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WT cells: (1) chemokines and chemokine receptors like Ccl12,
Cxcl10, Cer5, and Cxcr3, which may be involved in the recruitment
of T cells; (2) early myeloid genes like H2-d1 and Tap1 which were
linked to antigen processing and presentation; (3) CD molecules
like Cd4, Cd8a, and Cd68; and (4) IFN signaling or ISGs such as Ifng,
Stat1, Ifnar1, Oasla, Ifit2, and Irf8 (Fig. 1x). We next compared the
tumor ;;rowth rates between Golm1™~ and Golm1™™ cells in
Ifnar1="~ mice. As shown in Fig. 1y, the sizes of Golm1~/~ and
Golm1™™ tumors in Ifnar1™~ mice were similar at multiple
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