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Abstract: Polyhydroxyalkanoates (PHA) are polyesters produced intracellularly by many bacterial
species as energy storage materials, which are used in biomedical applications, including drug
delivery systems, due to their biocompatibility and biodegradability. In this study, we evaluated the
potential application of this nanomaterial as a basis of inhaled drug delivery systems. To that end,
we assessed the possible interaction between PHA nanoparticles (NPs) and pulmonary surfactant
using dynamic light scattering, Langmuir balances, and epifluorescence microscopy. Our results
demonstrate that NPs deposited onto preformed monolayers of DPPC or DPPC/POPG bind these
surfactant lipids. This interaction facilitated the translocation of the nanomaterial towards the
aqueous subphase, with the subsequent loss of lipid from the interface. NPs that remained at the
interface associated with liquid expanded (LE)/tilted condensed (TC) phase boundaries, decreasing
the size of condensed domains and promoting the intermixing of TC and LE phases at submicroscopic
scale. This provided the stability necessary for attaining high surface pressures upon compression,
countering the destabilization induced by lipid loss. These effects were observed only for high NP
loads, suggesting a limit for the use of these NPs in pulmonary drug delivery.

Keywords: DPPC; POPG; PHA; dynamic light scattering; lipid monolayers; relaxation kinetics;
epifluorescence microscopy; polyhydroxyalkanoates; PHA nanoparticles

1. Introduction

The therapeutic efficacy of inhaled nanoparticles depends on their ability to cross
the extracellular and cellular defensive barriers imposed by the lungs. In this sense, the
nanoparticles that reach the alveoli first meet the interfacial layers of pulmonary surfactant,
a lipoprotein complex that covers the alveolar epithelium and constitutes the first line of
defense against inhaled entities. In addition to participating in the innate immune defense
of the lung, pulmonary surfactant is crucial to lower surface tension at the air/liquid
interface to values close to 0 mN/m, avoiding atelectasis and facilitating respiratory
mechanics [1]. The surface activity of pulmonary surfactant is characterized by three
essential properties that have to be exhibited during respiration: (i) rapid adsorption at the
air/alveolar fluid interface of the material secreted by type II pneumocytes and its transfer
to the interface during inhalation, forming a surface-active film; (ii) reorganization of the
interfacial film during the interfacial compression that occurs at exhalation, which allows
properly packing, further reducing surface tension at the interface to extremely low values
and thereby preventing the collapse of alveoli; and (iii) efficient spreading of packed lipids
to redistribute laterally during the expansion of the air/liquid interface on subsequent
inhalation [2–4].
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Pulmonary surfactant is composed of 90% lipids, dipalmitoylphosphatidylcholine
(DPPC) being the main phospholipid species. This lipid is characterized by saturated acyl
chains, which allow it to pack tightly at the air/liquid interface, producing maximum
reduction of surface tension at the end of exhalation and stabilization of open lungs [2].
Pulmonary surfactant also contains other phosphatidylcholine species, mainly unsaturated,
acidic phospholipids such as phosphatidylglycerol, and cholesterol. In addition to the
lipid components, surfactant contains four specific proteins: the hydrophobic proteins
SP-B and SP-C that facilitate respiratory mechanics by direct association with surfactant
layers and the collectins SP-A and SP-D that mainly participate in the innate immune
defense of the lung. The possible interactions between inhaled nanoparticles and surfactant
components critically depend on the composition of the nanomaterial, as well as on its
size and charge [5,6]. The subsequent adsorption of surfactant lipids and proteins on
the nanoparticle surface, forming a lipoprotein corona [7], may inhibit the surface-active
and immunomodulatory properties of surfactant by preventing these lipids and proteins
from locating at the interfacial film or in the aqueous phase where they perform their
functions (reviewed in ref. [6]). On the other hand, the formation of the corona alters the
surface properties of the nanoparticles and, therefore, can modify their biodistribution and
toxicity [8,9]. For instance, the coating of nanoparticulated gels with a lipoprotein film
that contains SP-B favors the vehiculization of encapsulated small interfering RNA [10,11].
Furthermore, recent studies by our group show that surfactant complexes favor the efficient
distribution of different drugs along the air-liquid interface, promoting their surface-
associated diffusion over long distances [12–14].

Among the different biopolymers with biomedical applications, it is worth highlight-
ing the polyhydroxyalkanoates (PHAs). PHAs are a class of polyesters produced by more
than 300 Gram-positive and -negative bacteria in sustainable processes characterized by
the presence of high carbon concentrations and limiting conditions of other nutrients.
This bioplastic accumulates in the form of insoluble spherical inclusions or granules as
carbon and energy storage materials. Structurally, PHA polymers are composed of up to
150 different monomers of hydroxylated fatty acids at carbon 3 that are linked through
esterification of the carboxyl groups with the hydroxyl groups of the subsequent monomers,
progressively elongating the molecule [15,16]. PHAs are characterized by being biodegrad-
able, biocompatible, and very versatile, which is why they have been used in different
biomedical applications, both for the development of drug delivery systems and in tissue
engineering [17,18]. Furthermore, PHA-based nanoparticles have better bioavailability and
encapsulation capabilities as well as less cytotoxicity than other polymeric materials [19,20].

The main objective of this work was to evaluate the potential application of PHA
nanoparticles as part of inhaled drug-delivery systems. To that end, we have assessed the
possible interaction between PHA nanoparticles (NPs) and pulmonary surfactant lipids.
Our results suggest that NPs could be useful for lung drug delivery since the nanomaterial
translocates into the subphase without apparently affecting the compression isotherms of
DPPC and DPPC/POPG films at lipid/nanomaterial weight ratios below 1:0.33. Larger
amounts of NPs slightly fluidized both types of lipid films without altering the ability of
DPPC to reduce surface tension to values below 2 mN/m.

2. Materials and Methods

PHA, a heteropolymer of poly(hydroxioctanoate-co-hexanoate) (Figure 1), was provided
by Bioplastech, Ltd. (Dublin, Ireland). Dipalmitoylphosphatidylcholine (DPPC), palmitoy-
loleoylphosphatidylglycerol (POPG) (Figure 1), and the fluorescent lipid 1-palmitoyl-2-{6-
[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine (NBD-
PC) were from Avanti Polar Lipids (Alabaster, AL, USA). The organic solvents, chloroform,
and methanol used to dissolve lipids, as well as acetone, which was used to dissolve PHA
were HPLC-grade (Thermo Fisher Scientific, Waltham, MA, USA).
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Figure 1. Chemical structure of PHA, DPPC, and POPG. PHA is a copolymer of hydroxyoctanoate
(HO) and hydroxyhexanoate (HH).

2.1. Nanoparticle Preparation

For PHA nanoparticle formation, a previously described emulsion-solvent method [21]
was used with some modifications. Briefly, PHA solubilized in acetone was added drop
by drop to an aqueous solution while the mixture was magnetically stirred at 700 rpm in
an Agimatic-N magnetic stirrer (Thermo Fisher Scientific, Waltham, MA, USA) at room
temperature to facilitate emulsion formation. The organic solvent was allowed to evaporate
at room temperature overnight.

2.2. Lung Surfactant Models

To evaluate the interaction of NPs with the different components of pulmonary surfac-
tant, three surfactant models were used: native pulmonary surfactant (NS) purified from
porcine lungs obtained from the slaughterhouse, the organic extract (hydrophobic fraction)
of pulmonary surfactant (EO), which contains all the surfactant lipids and the hydrophobic
proteins SP-B and SP-C, and interfacial films and multilamellar suspensions composed of
the main phospholipid species of surfactant, DPPC or a DPPC/POPG 7:3 (w/w) mixture
(PL). Animals used to recover these materials were healthy and subjected to Vet control
according to local regulations (Spanish hygiene rules legislation, law articles 83, 85 and
178). Pigs were sacrificed for food and not for the sole purpose of the study.

NS was purified as described [22]. Briefly, porcine lungs were rinsed with 2.5 L of
buffer A (5 mM Tris-HCl, pH 7.4, 150 mM NaCl) and cells and debris were removed
from the bronchoalveolar lavage fluid by centrifugation at 1000× g for 10 min. Next, the
supernatant was centrifuged for 1 h at 100,000× g and 4 ◦C using a 70 Ti fixed-angle rotor
(Beckman Coulter, Brea, CA, USA). The resulting pellet was homogenized in 16% (w/v)
NaBr 0.9% (w/v) NaCl and NS was obtained by density gradient centrifugation using
a NaBr gradient and homogenization of the resulting surfactant disc in 1.5 mL of 0.9%
(w/w) NaCl.

The hydrophobic fraction of NS was prepared by chloroform/methanol extraction as
described by Bligh and Dyer [23]. Briefly, NS was homogenized in a chloroform/methanol/
water (1:2:1 by volume) mixture and incubated for 30 min at 37 ◦C to promote protein
flocculation. Next, phase separation was induced by addition of chloroform and water
and sample centrifugation at 3000× g and 4 ◦C for 5 min, promoting the separation of
the hydrophobic and polar components of NS. Successive lavages with chloroform were
performed to maximize the amount of NS components in the hydrophobic phase. The
organic phase was collected after each lavage.

To obtain interfacial films and multilamellar suspensions of DPPC and POPG, both
lipids were first solubilized in chloroform/methanol 2:1 (v/v). To prepare multilamellar
suspensions, the required amounts of the organic solutions of DPPC and POPG were taken
and mixed and evaporated to dryness under a gentle stream of nitrogen, with solvent traces
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being subsequently removed by evacuation under reduced pressure for 2 h as described
in [24]. Then, dry lipid films were hydrated in buffer A at 45 ◦C.

Total phospholipid concentration in the different samples was estimated by phospho-
rus quantitation by the method of Rouser [25].

2.3. Dynamic Light Scattering (DLS) Measurements

DLS was used to determine the apparent hydrodynamic radius (RH) and polydisper-
sity (Pd) of PHA nanoparticle suspensions as well as to characterize the effect of surfactant
components on the nanomaterial size distribution. To that end, a DynaPro MS/X DLS detec-
tor equipped with an 824.7 nm-laser (Wyatt Technology, Santa Bárbara, CA, USA) was used.
Briefly, the nanomaterial (1 mg/mL), alone or incubated for 10 min with NS, EO, PL, or
DPPC multilamellar suspensions, was diluted 100-fold with milliQ water filtered 10 times
with filters of 0.22 µm (Q-Pod, Merck, Darmstadt, Germany) and the hydrodynamic radius
of the different components of the sample was calculated by the Stokes–Einstein equation
(Equation (1)):

RH =
kBT

6πηD
(1)

where D is the translational diffusion coefficient, kB the Boltzman constant, T the tempera-
ture, and η the viscosity. The same surfactant suspensions analyzed by DLS were exposed
to the presence of NPs.

Polydispersity values smaller than 15% were considered to correspond to monodis-
perse samples.

2.4. Monolayer Experiments

Monolayer experiments were performed in a thermostated Langmuir–Blodget trough
(total area of 195 cm2, 302RB ribbon barrier film balance, NIMA Technologies, Coventry,
UK) as previously described [25]. All measurements were performed at 25.0 ± 0.1 ◦C.

To obtain surface pressure-area isotherms, monolayers of DPPC and DPPC/POPG
were formed by spreading 10 µL of the lipid organic solutions (1 mg/mL) onto a buffer A
subphase. The solvents were allowed to evaporate for at least 10 min before starting mono-
layer compression at 50 cm2/min. For all the isotherms, an equal number of phospholipid
molecules was spread at the interface (13.6 nmol).

In a first approach, and to mimic exposure following inhalation, NPs were deposited
onto preformed DPPC and PL films. To that end interfacial films of the corresponding
phospholipids were first formed by spreading 10 µL of the organic solutions of the lipids,
and only once the organic solvents were evaporated and the interfacial films were equili-
brated, different volumes of a PHA nanoparticle suspension at 0.5 mg/mL were deposited
by a microsyringe at different places of the Langmuir trough and allowed to interact with
the interfacial film for 10 min before the recording of compression isotherms. The amounts
of phospholipids and nanoparticles deposited on the air/liquid interface was calculated
considering the volumes deposited of each solution and their respective concentrations.
After testing the effect of different NP/phospholipid ratios, the experiments in the presence
of three different illustrative NP amounts (0.13, 0.33, and 0.67 lipid/nanomaterial weight
ratio) are presented in the figures.

Alternatively, in a second approach, we tested the potential effect of the possible
direct partitioning of bioplastic polymer molecules into the lipid layers. For this purpose,
mixed lipid/PHA monolayers were obtained by deposition of 15 µL of a mixture of
5 µL of the polymer dissolved in acetone, at different concentrations, with 995 µL of the
chloroform/methanol lipid solution and the mixture was deposited onto the air/liquid
interface. Isotherms of the lipid/polymer mixtures were recorded after solvent evaporation.
Control experiments performed to evaluate the potential effect of the presence of traces
of acetone at the surface film, by adding equivalent amounts of pure acetone to the lipid
solution, indicated that the addition of acetone to the DPPC organic solution did not
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affect the compression isotherm of DPPC monolayers. Data shown are the mean of six
independent measurements.

Compression isotherms were analyzed in terms of the compressibility modulus, C−1
S ,

(Equation (2)):

C−1
S = −A

(
dπ

dA

)
T

(2)

where A is the molecular area, π the surface pressure, and T the temperature.

2.5. Relaxation Kinetics

DPPC and PL monolayers were compressed to a surface pressure of 47 or 33 mN/m
that was kept constant by automatically adjusting the surface area of the trough through
the movement of the ribbon barrier. Once the desired surface pressure was reached, either
NPs or buffer was deposited onto the interfacial film. A relaxation curve was obtained by
recording the trough surface area during the relaxation period as in [26].

To characterize the effect of NPs on the relaxation kinetics of both lipid films, data
were analyzed by fitting to Equation (3):

− log(A/A0) = k·
√

t (3)

where A and A0 are the trough areas at a given time t and at t = 0, respectively, and k is the
rate of the desorption process [27].

2.6. Epifluorescence Microscopy

The effect of NPs on the lateral structure of lipid films was analyzed by epifluorescence
microscopy. Briefly, DPPC, alone or mixed with POPG (1 mg/mL final lipid concentration),
was incubated with the fluorescent dye NBD-PC (Molecular Probes, Life Technologies,
Carlsbad, CA, USA) for 1 h at 37 ◦C to obtain a final molar ratio dye/surfactant of 1%.
Next, 15 µL of the lipid/dye suspension was spread onto the air-liquid interface of the
Langmuir–Blodgett trough and the organic solvent was allowed to evaporate for 10 min.
Afterwards, the interfacial film was transferred onto a glass coverslip during compression
at a constant speed of 25 cm2/min using the COVASP LB technique [28]. Traditional LB
films prepared at constant pressure only allow observation of structural effects at very few
well-defined compression states. In contrast, the use of the COVASP technique has the
huge advantage over classical LB films that it allows the capture of any compression-driven
feature, at any pressure, within the same film, which can later be observed in detail, once
the different surface pressures in the immobilized film are calibrated [29]. The resulting
supported film was observed under an epifluorescence microscope (Leica microsystems,
Wetzlar, Germany) equipped with a Hamamatsu digital camera.

3. Results

Dynamic light scattering was used to evaluate the possible interaction of PHA nanopar-
ticles with different components of pulmonary surfactant since this technique allows the
study of the formation of lipid and protein coronas on nanomaterials [30,31]. To that end,
the distribution of particle size in NS, OE, PL, and DPPC multilamellar suspensions was
assessed in the absence and presence of NPs (Figure 2a). PHA nanoparticles had a hydro-
dynamic radius, RH, of 63 ± 4 nm and a narrow distribution, while the different surfactant
preparations exhibited broad heterogeneous distributions. The presence of heterogeneous
distributions in lipid and lipid/protein suspensions is not surprising, as it can be frequently
seen in the literature even when homogenizing procedures such as sonication or extrusion
are used [32,33] as a consequence of the particular behavior of the different components in
the mixtures. The different size distributions shown in Figure 2a for NS, OE, and MLVs of
DPPC and DPPC/POPG can be explained by the presence of surfactant proteins in NS and
OE and the net charge and the potential segregation of phases differing in order/packing
and fluidity in the different liposomes. For OE, the presence of surfactant proteins SP-B and
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SP-C likely promotes the establishment of membrane–membrane contacts that increase the
cohesivity between surfactant layers by simultaneous binding to different membranes [2].
This is likely the basis of the monomodal distribution observed. For NS, the binding of
SP-A to surfactant lipids and SP-B [34] may somehow prevent the cohesion of surfactant
membranes promoted by SP-B and SP-C. This feature could be related with the bimodal
distribution observed. Regarding MLVs of DPPC or DPPC/POPG, the absence of surfac-
tant proteins and the subsequent decrease in membrane/membrane interactions could
contribute to the observed multimodal size distributions. On the other hand, it has been
shown that the presence of unsaturations in lipid acyl chains alters the lamellarity of
lipid membranes, increasing the heterogeneity of lipid preparations [32]. Therefore, it is
likely that the differing size distributions of DPPC and DPPC/POPG membranes could
be due to the C9-10 unsaturation in the oleic chain of POPG. Moreover, the presence of
unsaturated species decreases the membrane bending rigidity, favoring self-assembly of
the lipids in smaller multilamellar vesicles upon film hydration [32]. Additionally, the
negative charges of POPG would also contribute to the different size distributions of DPPC
and DPPC/POPG suspensions. Segregation of membrane patches with differences in elec-
trostatic repulsion (i.e., between regions particularly enriched in negatively charged POPG
molecules within the DPPC/POPG samples) would also favor the formation of liposomes
with different sizes, including a fraction with sizes smaller than those determined for pure
DPPC membranes [35].
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Figure 2. Interaction of PHA nanoparticles with pulmonary surfactant-related materials as determined by DLS. (a) Size
distributions and (b) correlograms. Materials tested in the absence or presence of PHA NPs included NS (native surfactant);
OE (the reconstituted organic extract of pulmonary surfactant); PL, a suspension of the lipid mixture DPPC/POPG 7:3
(w/w); and DPPC multilamellar vesicles. DLS measurements were performed at 25.0 ± 0.1 ◦C and a lipid/nanomaterial
weight ratio of 1:0.33.

As large particles diffuse more slowly than small ones [36], the nanoparticle-induced
displacement of the correlogram of all surfactant preparations to shorter times (Figure 2b)
indicates the formation of new aggregates with a diffusion intermediate between those
of the nanomaterial and that of the different surfactant aggregates. This is therefore an
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indication that surfactant proteins and lipids bind to the nanomaterial surface forming a
corona. As a result of this interaction, the peak of nude NPs disappeared while the peaks
corresponding to NS, OE, and PL vesicles were shifted towards smaller sizes (Figure 2a).
Interestingly, this effect was stronger for NS and PL than for OE. This could indicate that:
(i) surfactant protein SP-A, which is present in NS but not in OE, might facilitate the
interaction with the nanomaterial and/or (ii) proteins SP-B and SP-C, which are present
in OE but not in PL, would prevent the interaction of the nanomaterial with surfactant
lipids. For DPPC multilamellar vesicles, the interaction with the nanomaterial induced
the disappearance of the nanoparticle peak and shifted the lipid peaks to larger sizes
(Figure 2a) (form RH = 147 ± 3 nm to 180 ± 5 nm, and from 1010 ± 9 nm to 1932 ± 20 nm).
The comparison of NPs effects on the size distributions of PL and DPPC suspensions
suggests that NPs have a stronger affinity for POPG than for DPPC.

To gain insight into the interaction of NPs with pulmonary surfactant lipids, we
evaluated the effect of the nanomaterial on the compression isotherms of DPPC and PL
interfacial films. Figure 3a shows the effect of PHA nanoparticles on the π-A isotherms
and the compressibility modulus of DPPC films. In the absence of nanoparticles, the
isotherm exhibited a plateau at 9–12 mN/m, indicative of liquid expanded (LE)/tilted
condensed (TC) phase coexistence, and a collapse pressure of 70 ± 2 mN/m (Figure 3(a1)).
The deposition of low amounts (lipid/nanomaterial weight ratio of 1:0.13) of NPs onto
a preformed DPPC monolayer had a negligible effect on the compression isotherm. In-
creasing the amount of deposited NPs up to a lipid/nanomaterial weight ratio of 1:0.33
shifted the isotherm to lower molecular areas (Figure 3(a1)). This can be attributed to the
incorporation of the nanomaterial into the monolayer and the subsequent binding and
exclusion of lipid molecules upon the squeeze-out of NPs during film compression. As a
result, the monolayer was destabilized and it collapsed at lower surface pressures than in
the absence of nanoparticles (64± 1 mN/m). A further increase in the amount of deposited
NPs (1:0.67 lipid/nanomaterial weight ratio) resulted in a compression isotherm that al-
most overlapped with that of pure DPPC films, and the collapse pressure partly recovered
(67 ± 1 mN/m) (Figure 3(a1)). This indicates that the interaction of NPs with the DPPC
monolayer is hindered at small lipid/nanomaterial weight ratios. Compression isotherms
were analyzed in terms of the compressibility modulus (C−1

S ). For pure DPPC films, the
LE/TC transition appeared as a pronounced minimum of C−1

S at a surface pressure of
9 mN/m, which separated the LE phase (C−1

S values between 12 and 50 mN/m) and the
TC phase (C−1

S ~100–200 mN/m) (Figure 3(a2)). Interaction of the nanomaterial with the
DPPC monolayer slightly shifted the minimum to higher surface pressures (10 mN/m),
which indicates that NPs stabilized the LE phase. In addition, in the presence of NPs, the
maximum value of the compressibility modulus decreased from 158 ± 2 mN/m for pure
DPPC films to 144 ± 3 and 146 ± 2 mN/m, for 1:0.33 and 1:0.67 lipid/nanomaterial weight
ratios, respectively, indicative of a slight fluidization of the interfacial film.

On the other hand, the deposition of the nanomaterial onto a monolayer composed
of DPPC/POPG (7:3, w/w) had no impact on the qualitative features of the film for all
the lipid/nanomaterial weight ratios analyzed (Figure 3(b1)). However, the analysis of
the isotherms in terms of the compressibility modulus indicates that large amounts of
NPs again stabilized the LE phase and somehow reduced the maximum compressibil-
ity value (from 110 ± 2 mN/m for pure PL films to 101 ± 1 and 104 ± 2 mN/m for
lipid/nanomaterial weight ratios of 1:0.33 and 1:0.67, respectively), indicative of fluidiza-
tion of the films (Figure 3(b2)).

The perturbing influence of NPs on DPPC and PL monolayers was further studied by
following relaxation kinetics of the lipid films at constant surface pressure for a lipid/NPs
weight ratio of 1:0.33. At a surface pressure of 47 mN/m, the deposition of NPs onto a
DPPC film did not affect its time-dependent relaxation kinetics, which showed no area loss
during the examined relaxation period (Figure 4a). However, deposition of NPs onto a
preformed monolayer of DPPC/POPG (7:3, w/w) subtly destabilized the film, promoting
a reduction in the area occupied by lipids in a two-step process (Figure 4a): a slow area
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reduction during the first 10 min, probably due to the reorganization of lipids upon addition
of the nanomaterial, followed by a sharp area decrease indicative of NPs-promoted lipid
withdrawal. NPs exerted a more pronounced effect at a surface pressure of 33 mN/m,
at which the lipids were less tightly packed, with a more conspicuous NP-promoted
reduction in surface area for both lipid films (Figure 4a). It is interesting to note that
DPPC and DPPC/POPG films were affected differently by NPs. Namely, deposition of the
nanomaterial induced a slight destabilization of the DPPC film for 15 min after which the
monolayer became stable; the films containing anionic phospholipids showed a biphasic
desorption process similar to that observed at 47 mN/m, although with a steeper slope.
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Figure 3. Effect of NPs on compression isotherms and compressibility modulus of interfacial phospho-
lipid films. (a) DPPC, (b) DPPC/POPG (7:3, w/w) monolayers. The nanomaterial was deposited onto
the preformed monolayer and allowed to interact for 10 min before starting monolayer compression
at 50 cm2/min. Measurements were performed at 25.0 ± 0.1 ◦C.

According to the nucleation and growth model of monolayer collapse proposed by
Smith and Berg [26], if the molecular loss from the monolayer is due to desorption of lipid
molecules into the subphase, a linear relationship between−log(A/A0) and the square root
of time should be obtained, whereas the absence of a linear relationship would indicate
that the area loss during relaxation would be caused by the formation of three-dimensional
aggregates. Figure 4b shows that, at a surface pressure of 47 mN/m, a linear relationship
between −log(A/A0) and

√
t was obtained, where A is the monolayer area at a given time

and A0 the area at t = 0 min. This indicates that the monolayer molecular loss is due to
NP-induced desorption of lipid molecules into the subphase. The desorption rate values
obtained for both lipid films at 47 and 33 mN/m (Table 1) and the small changes observed
in the A/A0 ratios (Figure 4a) indicate that the process occurs slowly and that only trace
amounts of lipids would be withdrawn from the interfacial films.
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at a constant surface pressure of 47 or 33 mN/m in DPPC and DPPC/POPG (7:3, w/w) films, in the
absence and presence of NPs (lipid/nanomaterial weight ratio of 1:0.33). A and A0 are the trough
surface areas at a given time, t, and at t = 0 min, respectively. (b) Effect of NPs on constant pressure
relaxation data for DPPC and PL films expressed as −log(A/A0) versus

√
t. Data shown are the

mean of three independent measurements. The standard deviation for each relaxation kinetic was
too small to be displayed by error bars.

Table 1. Rate desorption constants (k1, k2) for the NPs-induced dissolution of DPPC and PL
(DPPC/POPG 7:3, w/w) monolayers compressed at 47 and 33 mN/m.

π (mN/m) Sample k1 (1/
√

min) (r2) k2 (1/
√

min) (r2)

47

DPPC - -
DPPC + NPs - -

PL - -
PL + NPs 0.0002 (0.992) 0.002 (0.993)

33

DPPC - -
DPPC + NPs 0.001 (0.997) -

PL 0.0002 (0.993) -
PL + NPs 0.003 (0.995) 0.003 (0.997)

The goodness of fit is given by the linear regression coefficient (r2).

To determine whether the effect of NPs on phospholipid monolayers could be due
to the incorporation of some PHA molecules out from the NPs within the interfacial film,
we evaluated the effect of the presence of PHA on the compression isotherms of DPPC
and PL films formed already in the presence of bioplastic. To that end, PHA, dissolved in
acetone, was mixed with the lipids in chloroform/methanol and the lipid/PHA mixture
was deposited onto the air/liquid interface, forming a mixed lipid/PHA monolayer. In
contrast to what was observed for DPPC monolayers in the presence of NPs, the compres-
sion isotherms of DPPC films shifted to higher molecular areas in the presence of PHA
molecules (lipid/PHA weight ratio of 1:0.33) (Figure 5(a1)), which indicates that PHA
molecules incorporated and occupied some space at the interfacial film. It is interesting
to note that this effect was partly abolished at larger amounts of PHA for which a shorter
displacement of the isotherm was observed (Figure 5(a1)). This would indicate that incor-
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poration of PHA molecules into the monolayer is hindered at high PHA content. Likely,
the deposition of large amounts of PHA on the air/liquid interface and the subsequent
diffusion of acetone away from the plastic into the subphase, or its evaporation towards
the air side, might induce the rapid formation of polymer aggregates that could translocate
into the subphase largely without affecting the lipid film. Evaluation of the compressibility
modulus of DPPC films in the absence and presence of PHA (Figure 5(a2)) indicates that the
incorporation of PHA molecules fluidized the film, shifting the LE/TC phase coexistence
to higher surface pressures (from 9 mN/m in the absence of PHA to 11 mN/m in the
presence of PHA) and decreasing the compressibility moduli of the TC phase. On the
other hand, PHA molecules at a lipid/PHA weight ratio of 1:0.33 also destabilized PL
films, as indicated by the shift of the compression isotherm to lower molecular areas and
the decrease in collapse pressure (from 70 ± 1 mN/m to 65 ± 1 mN/m), indicative of
PHA-promoted lipid sequestration. Increasing PHA content to a lipid/polymer weight
ratio of 1:0.67 resulted in minor changes in the compression isotherm of PL, which slightly
shifted to lower molecular areas (Figure 5(b1)). The interaction of PHA with PL films
decreased the compressibility moduli of the TC phase without affecting the LE phase
(Figure 5(b2)). This effect was weaker for the largest content of PHA assayed, which would
indicate that incorporation of large amounts of PHA in the PL monolayer is also hampered.
Taken together, our results indicate that NP-induced destabilization of DPPC and PL films
would be due to the direct binding of lipid molecules to the nanomaterial surface and not
to the transfer of PHA molecules into the monolayers.
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films. (a) DPPC, (b) PL films. Mixed PHA/lipid films were obtained by spreading a mixture of
PHA, dissolved in acetone, and DPPC or PL, dissolved in chloroform/methanol, onto the air/liquid
interface. Measurements were performed at 25.0 ± 0.1 ◦C and at a compression rate of 50 cm2/min.
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To characterize the impact of NPs and PHA on the LE/TC phase transition behavior of
surfactant phospholipid films subjected to compression, both DPPC and DPPC/POPG lipid
films, doped with the fluorescent lipid NBD-PC, were transferred onto a solid support and
visualized under epifluorescence microscopy in the absence and presence of NPs or PHA.
Pure DPPC films segregated under compression dark multilobed domains characteristic
of the TC phase, which grew in size as the surface pressure increased (Figure 6). The
comparison of these images with those obtained in the presence of NPs illustrates how
NPs decreased the size and number of condensed domains (Figure 6), causing a relative
decrease of the LC phase and the subsequent fluidization of the monolayer. NPs also altered
the morphology of the condensed domains, which became dendritic and were encircled by
a gray halo. Given that the fluorescent probe partitions into the LE phase and is excluded
from the more tightly packed TC phase, the gray-like phase would correspond to a new
lipid phase, with a lipid packing intermediate between those of the LE and TC phases, in
which the fluorescent probe incorporated to a lesser extent than in the LE phase. On the
other hand, the incorporation of PHA molecules into DPPC films induced the complete
disappearance of the LE phase and the appearance of the gray phase (Figure 6). In addition,
PHA facilitated the nucleation of condensed domains but hampered their growth (Figure 6),
fluidizing the monolayer in agreement with the reduction in the compressibility modulus
of the DPPC/PHA isotherm described above. For surface pressures above 11 mN/m, black
solid domains formed reticular structures enclosed by the gray phase and bright spots of
LE phase appeared (Figure 6), suggesting a preferential interaction of PHA molecules with
the fluid/condensed domain boundaries.
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Figure 6. Epifluorescence microscopy of interfacial DPPC films in the absence and presence of NPs and PHA. Images of
DPPC, alone and in the presence of NPs or PHA molecules (lipid/nanomaterial or PHA ratio of 1:0.33), at different surface
pressures were obtained upon transfer of the corresponding interfacial films onto glass slides and observation under an
epifluorescence microscope. DPPC films were doped with NBD-PC, which partitions preferentially into the LE phase.

In the case of the anionic DPPC/POPG PL films, LE/TC phase coexistence was
observed for all the surface pressures assayed (Figure 7). Deposition of the nanomaterial
onto preformed PL films stabilized the LE phase, shifting the LE/TC phase coexistence
to higher surface pressures. Since PL compression isotherms were not affected by NPs, it
is conceivable that small TC domains could still be formed, whose sizes could perhaps
be below the optical resolution of a light microscope. This hypothesis is reinforced by
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the finding that the TC domains observed in the presence of NPs were smaller and more
numerous than those observed in the absence of the nanomaterial at any given surface
pressure (Figure 7), as described above for pure DPPC films. Moreover, NPs also induced
the appearance of the probe-excluding gray phase, which distributed evenly in the film
when TC domains appeared and formed reticular structures enclosing condensed domains
as the surface pressure increased. On the other hand, the incorporation of PHA molecules
into the PL monolayer exerted a further fluidizing effect, increasing the surface pressure at
which phase coexistence appeared and decreasing the size of condensed domains (Figure 7).
These results agree with the observed effect of PHA on PL compression isotherms. PHA
also induced the appearance of the gray phase, which distributed randomly within the
monolayer at all the surface pressures assayed.
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Epifluorescence microscopy images of monolayers made of DPPC/POPG (7:3, w/w), alone and in the presence of NPs
or PHA molecules (lipid/nanomaterial or PHA ratio of 1:0.33), at different surface pressures. PL films were doped with
NBD-PC, which incorporates in the LE phase.

4. Discussion

Pulmonary surfactant constitutes the first barrier that inhaled particles meet in the
alveolar region. Different studies have demonstrated that surfactant components interact
with nanoparticles. These interactions can determine the lifetime, fate, and toxicity of
the nanomaterial in the airways [9,37] as well as adversely affect pulmonary surfactant
function [6]. Therefore, in this work, we evaluated whether PHA nanoparticles are suitable
for lung drug delivery by studying the interaction of this nanomaterial with pulmonary
surfactant and interfacial films made of the main surfactant lipids.

Our results demonstrate that NPs interact with surfactant proteins and lipids. In this
regard, DLS measurements of NPs in the presence of native pulmonary surfactant or sus-
pensions made of the organic extract of pulmonary surfactant, a mixture of DPPC/POPG
or pure DPPC multilamellar vesicles, show that the nanomaterial interacts with surfactant
lipids and that this interaction could be promoted by SP-A, present in our natural surfac-
tant preparation. As a matter of fact, a role of SP-A promoting surfactant lipid binding to
different nanomaterials has been reported [38]. This effect may be related to the oligomeric
nature of SP-A and its ability to bind to different ligands through diverse domains, which
would facilitate the simultaneous binding of the protein to the nanomaterial and to sur-
factant lipids. In contrast, SP-B and SP-C did not facilitate the interaction of surfactant
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lipids with NPs. These results correlate with those of Wohlleben and coworkers [38], who
found that SP-B only promotes lipid binding to nanoparticles functionalized with amino or
PEG residues.

Regarding the interaction of surfactant lipids with PHA nanoparticles, we demon-
strated that NPs interact with vesicles and films composed of DPPC or a mixture of
DPPC/POPG 7:3 (w/w). It is noteworthy that NPs did not substantially affect the com-
pression isotherms or the compressibility of both types of lipid films at lipid/nanomaterial
weight ratios below 1:0.33. However, at NPs concentrations ≥ 1:0.33, a fluidizing effect was
observed in both monolayers, this effect being weaker for a lipid/NP weight ratio of 1:0.67
than for 1:0.33. This suggests that the nanomaterial may agglomerate and perhaps segregate
at the interface, which would contribute to the loss of NPs to the subphase. This hypothesis
is supported by some studies that show that nanoparticles spread onto a preformed DPPC
monolayer agglomerate upon solvent evaporation [39–41]. Increasing the concentration
of deposited nanomaterial would increase agglomerate size, facilitating its loss towards
the subphase. Loss of nanomaterial to the subphase was also indicated by NPs effects on
both DPPC and PL films since penetration of NPs into the monolayers would shift the com-
pression isotherms to higher molecular areas. Thus, the shifting of the DPPC isotherm to
lower molecular areas would indicate that NPs could somehow sequester DPPC molecules
once translocating to the subphase [41,42]. On the other hand, the finding that isotherms
of PL films following deposition of NPs were identical to the control suggests that NPs
do not remain associated but translocate to the subphase. Because of the hydrophobic
nature of PHA, one could expect that NPs would remain associated to the interfacial
film instead of translocating to the subphase [43]. However, the hydrophobic interactions
between lipid acyl chains and the nanomaterial surface would promote the formation of
a lipid corona in which the lipid polar headgroups would increase the hydrophilicity of
the nanoparticle/lipid complex, facilitating the migration of the nanomaterial towards the
aqueous subphase [44]. In this regard, the relaxation experiments performed at constant
surface pressure demonstrated that NPs promoted a slight desorption of lipid molecules
from both DPPC and anionic PL films, this effect being stronger for the latter.

NPs also incorporated into both tested phospholipid films, leading to the appearance
of perturbed regions appearing as a gray-like phase under the fluorescence microscope.
These regions could represent a sort of “alloy” in which the presence of bioplastic could
facilitate the intermixing of TC and LE nanodomains. This would partly prevent the
incorporation of the fluorescent probe, at least with the same density as observed in the
pure LE phase, resulting in a less bright region. For pure DPPC films, dark TC domains
surrounded by that gray phase in a bright LE background were observed, indicative of a
clear preference of the nanomaterial for defect structures at the fluid-condensed boundaries.
However, for anionic monolayers, NPs apparently distributed evenly into the monolayer,
both in the fluid POPG-enriched phase and at LE/TC phase coexistence boundaries. The
location of NPs at the LE/TC borders would decrease the line tension imposing an energy
barrier to domain coalescence, kinetically stabilizing them against merging, hence decreas-
ing the size of condensed domains [45]. Since domain growth requires the migration of
lipid molecules to the closest nuclei [45], the increased lipid packing of the NPs-promoted
gray phase would increase monolayer viscosity [46], decreasing the rate of domain motion,
thus hindering their growth [45,47]. This behavior recalls that of cholesterol, which has
been shown to slow down domain coarsening in surfactant monolayers by affecting the
diffusivity of DPPC molecules [48].

An interesting conclusion from our experiments on the interaction of NPs with
both bilayers (as observed by DLS) and monolayers (in the Langmuir and epifluores-
cence experiments) made of the main surfactant phospholipids is that the segregation
of ordered/disordered-fluid phases, intrinsic to the typical composition of saturated/
unsaturated surfactant phospholipids, may have an impact on the interaction with nanos-
tructured materials. NPs seem to somehow interact selectively with fluid areas, accu-
mulating at boundaries between ordered/disordered regions. Those regions could be
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particularly favorable to bend at the nanoscale, facilitating the transfer of lipid layers to
form lipid- or lipid/protein-based surface coronas. This, on one hand, could substantially
influence the fate of NPs through their interactions with subjacent biological systems,
i.e., the respiratory epithelium. It may also have some impact on the organization and
performance of pulmonary surfactant structures and their fundamental role to stabilize the
delicate structure of alveoli against the demanding breathing mechanics.

Still, and despite the reduction observed in the size of condensed domains, the tested
lipid films retained their ability to reduce surface tension upon compression to very low
values in the presence of NPs. This suggests that the formation of a network of the
nanomaterial-induced phase in which condensed domains are embedded would maintain
the properties of a continuous condensed phase, with the stability and flexibility required
to attain and support high surface pressures (low surface tensions) upon compression.
The fact that NPs slightly decreased the compressibility modulus of the TC phase in both
DPPC and DPPC/POPG films reinforces this hypothesis. Formation of such alloy-like
structures is also supported by the observation of nanometer-sized domains in DPPC
and DPPC/DPPG films [49] as well as in rat [50] and bovine surfactant monolayers [51].
Furthermore, the formation of networks of DPPC nanodomains has been proposed by
mesoscopic kinetic modeling [52].

Our results show that NPs effects on DPPC and PL films were not caused by the
transfer of PHA molecules into the interfacial layers. Unlike NPs, PHA incorporated into
DPPC films altered van der Waals interactions between adjacent lipid molecules with the
consequent fluidization of the monolayer. PHA also destabilized PL films by withdrawing
lipid molecules, which decreased the attainable collapse pressure. On the other hand, as
previously described for NPs, the interaction of PHA with DPPC and POPG acyl chains
promoted the formation of a perturbed phase with a lipid packing intermediate between
those of the LE and TC phases. However, the stability that this new phase would confer to
both films was not enough to counterbalance the destabilizing effect of PHA, especially in
anionic monolayers. Thus, it is likely that the reduced surface area of NPs compared to
that of PHA molecules would minimize hydrophobic interactions with surfactant lipids,
decreasing the amount of lipids that were lost upon the translocation of NPs towards
the subphase.

In addition to the interfacial layer, pulmonary surfactant is composed of a complex
three-dimensional network of interconnected membranes that acts as a reservoir of fresh
material, ensuring correct recycling of the surfactant structures that have lost their func-
tional properties because of the continuous respiratory cycling and high oxidative stress
at the alveolar space [1]. Our results suggest that PHA nanoparticles would cross the
surfactant monolayer reaching the alveolar lining fluid. The interaction of the nanomaterial
with surfactant films at the air/liquid interface and with the surfactant membranes in the
alveolar fluid would result in the formation of a lipoprotein corona. This corona has been
shown to critically modulate the toxicity and biodistribution of the nanomaterial [53]. In
this regard, it has been reported that such lipoprotein coating promotes the phagocytosis of
the nanomaterial by alveolar macrophages [31,54,55] and its eventual uptake by epithelial
cells [10] where the nanomaterial can be hydrolyzed by lysosomal lipases [56]. As a result,
the intracellular delivery of the cargo would occur, reducing the dose needed to obtain the
desired therapeutic effects and the unwanted side effects [57].

5. Conclusions

In summary, our results demonstrate that PHA nanoparticles could be used for pul-
monary drug delivery since (i) the nanomaterial translocated through the interfacial mono-
layer into the aqueous phase, which would allow the delivery of the cargo to its target site;
and (ii) the interaction of monolayer-incorporated NPs with surfactant lipids promoted the
formation of a new lipid phase with characteristics intermediate between those of the LE
and TC phases that still allowed the attainment of high surface pressures (very low surface
tensions) upon compression. Further studies to consider the role of surfactant proteins on
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the interaction of NPs with surfactant membranes are guaranteed to confirm the feasibility
of PHA nanoparticles as pulmonary drug delivery systems.
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