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Abstract: For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing
sex-specific development, uncovering cytological differences between the sexes, and developing
theoretical models. Through the invention and continued improvements in genomic technologies,
we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the
advances in research on dioecy and sex chromosomes. We start by first discussing the early works that
built the foundation for current studies and the advances in genome sequencing that have facilitated
more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination
genes uncovered by genome sequencing. We synthesize these results to find some patterns are
emerging, such as the role of duplications, the involvement of hormones in sex-determination,
and support for the two-locus model for the origin of dioecy. Though across systems, there are also
many novel insights into how sex chromosomes evolve, including different sex-determining genes
and routes to suppressed recombination. We propose the future of research in plant sex chromosomes
should involve interdisciplinary approaches, combining cutting-edge technologies with the classics
to unravel the patterns that can be found across the hundreds of independent origins.

Keywords: dioecy; sex determination; seed plants; bryophytes; whole-genome sequencing; two-
gene model

1. Introduction

Across land plants exists an amazing variety of strategies for sexual reproduction [1].
Species have independently evolved self-incompatibility loci [2], temporal variation in
flower development [3,4], and spatial distancing of male and female organs on the same
plant [5–7], among many others [1]. Perhaps the most extreme case is dioecy, where
sex-specific structures develop on separate plants. In angiosperms, dioecy is rare, found
in an estimated 5% of species, but has hundreds of independent origins across more
than half of the families [5]. In the other land plant lineages, most species are dioecious,
at approximately 65% of gymnosperms, 68% of liverworts, 57% of mosses, and 40% of
hornworts (technically the term in bryophytes is dioicous because they are haploid when
expressing gametic sex, but here we will use dioecious for simplicity) [8,9]. The frequency
and phylogenetic breadth of dioecy across plants provides an unparalleled opportunity to
examine the key forces involved in its repeated evolution.

Early models theorized how dioecy can evolve from a hermaphroditic ancestor [10–12],
invoking the need for two-linked mutations: one that causes male-sterility and another
female-sterility. Recombination within this region can result in offspring that are either
hermaphroditic or sterile. Thus, selection is strong to suppress recombination in the region
containing these two mutations, forming a sex chromosome pair. For dioecious species
that express gametic sex in the diploid stage, like in seed plants, the sex chromosomes are
referred to as XY or ZW depending on which is the karyotypically heterogametic sex [13,14].
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In haploid-dominant plants, like bryophytes, dioecious species with genetic sex determi-
nation have UV sex chromosomes, with the inheritance of a U correlating with female
gametic sex expression and a V with male [13,15]. Though some species have multiple
sex chromosomes (e.g., XY1Y2 or U1U2V) [8,16–18], which can occur through structural
changes like chromosomal fusions and fissions or through polyploidy. These differences in
heterogamety and ploidy of sex chromosomes found across land plants are powerful for
contrasting the evolutionary processes that impact these genomic regions, especially as the
mechanisms of sex determination on sex chromosomes have now expanded beyond the
classic two-locus model [19].

Here we review the recent advances in sex chromosome evolution across land plants.
We start by covering a brief history of identifying dioecy and sex chromosomes, and the
advances in genome sequencing that have made new discoveries possible. We next broadly
review new findings in plant sex chromosomes, particularly focusing on how the sex-
determining region (SDR) evolves, both with the diversity of genes that are involved in sex
determination and other processes that shape these complex regions of the genome. We
conclude with future directions in plant sex chromosome evolution research.

2. The History of Identifying Plant Sex Chromosomes

Analyses of dioecy and sex chromosomes start with the remarkable works of natural-
ists who, with a careful eye, characterize reproductive structures throughout development.
Categorizing plants as dioecious can be traced back to Linnaeus’ Systema Naturae (1735),
where angiosperms were classified by their floral characteristics, such as number of stamens
and pistils, or by sexual condition [20]. Darwin even discussed the curiosities of dioecy in
The Different Forms of Flowers of the Same Species (1877) [21]. In some species dioecy is easily
observable. One example is hops, where female inflorescences develop the characteristic
“cones” used in beer production, while males have a completely different floral architec-
ture [22]. Another example is found in the classic dioecy model white campion (Silene
latifolia), studied intensively since the 19th century [23], where a suite of sexually dimorphic
traits is obvious at early stages of flower development. However, in other species dioecy
can be more subtle. In garden asparagus, both sexes phenotypically appear similar in
early stages of floral development, but ultimately the stamens degenerate in females and
the ovary is non-functional in males [24]. In some species, like Solanum appendiculatum or
kiwifruit, dioecy is even more cryptic, where females even produce pollen grains, but they
are non-viable [25,26]. In non-flowering groups, like the mosses, early naturalists searched
for the “hidden flowers” (reviewed in [27]), which are called antheridia and archegonia
(male and female gametangia, respectively) to identify dioecious species. Antheridia are
easily visible during their development, however, archegonia are more challenging to
locate because they are largely enclosed in modified leaves [28,29]. It is also common in
mosses to not develop gametangia [30–32] and disentangling individual (i.e., genetically
distinct) plants from their densely grown patches can be challenging. As such, some of
the first confirmations of dioecy in species like Ceratodon purpureus and Bryum argenteum
were done by growing individuals from spores [30]. It is unequivocal that these kinds of
taxonomic observations form the critical basis of our understanding of dioecy, in addition
to other sexual systems (for databases in angiosperms see [5,33]).

Uncovering the genetic basis for sex determination began with early cytological
analyses (reviewed in [34]). Dr. Nettie Stevens first discovered the correlation between
the inheritance of a smaller chromosome in a meiotic pair (which we now know as the
Y chromosome) with male gametic sex expression in mealworms [35]. Indeed, this clear
heteromorphy between sex chromosomes was critical to their identification in further
cytological studies. The first plant sex chromosomes were identified in the liverwort
Sphaerocarpos donellii [36] and subsequently many other heteromorphic pairs were found in
Humulus, Rumex, and Silene [16,37,38], among others [14]. However, in many plants the
sex chromosomes are cytologically homomorphic, or nearly so, making identifying them
through classical microscopy a challenge.
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Dioecious species with sex chromosomes played a pivotal role in the modern synthesis,
in particular with regard to the inheritance of sex. In the early 1900s, after the re-discovery
of Mendel’s foundational work on pea plants [39,40], dioecious flowering plant Silene
latifolia (formerly Melandrium album) became a cornerstone for understanding the genetic
basis of sex and sex-linked traits. This is partly because it has such obvious flowers and a
particularly large Y chromosome that is nearly 1.5 times the size of the X [41]. In fact, the
first sex-linked gene in plants was discovered in S. latifolia (and the related species Silene
dioica); the X-linked recessive lethal angustifolia mutation produced narrow leaves that
were only found in XY male plants and never led to viable XX females [42–44]. Decades
of irradiation studies in S. latifolia have been elegantly used to map deletions that lead to
sex mutants [45–47]. Such large-scale sex chromosome irradiation experiments are still
immensely useful today, and have been leveraged to map sex-determining genes on the Y
chromosome in S. latifolia [48] and in garden asparagus [49,50].

Genomic approaches have unlocked other previously intractable analyses of plant
sex chromosomes. Some of the first genome references for dioecious species include the
liverwort Marchantia polymorpha [51], grape [52], papaya [53,54], and poplar [55], pub-
lished only a few years after the first plant genome (Arabidopsis thaliana [56]). More than
two decades later, reference genomes for over 50 dioecious species have been published
(Table 1). Though there are many characteristics about sex chromosomes that have made
them challenging to assemble. Due to suppressed recombination, natural selection is less ef-
fective in these regions [57,58] and they often accumulate repeats [59]. This makes assembly
of large contigs using short reads improbable [60] because reads often do not span the entire
repeat, causing these regions to collapse [61,62]. Linkage maps, which use recombination
rates across the genome, can help pull low-contiguity assemblies into linkage groups [63],
but very small sex-determining regions (SDR) (e.g., ~59 kilobases (Kb) in Morella rubra [64])
are hard to reliably identify and very large SDRs (e.g., >100 megabases (Mb) in Ceratodon
purpureus [65]) are hard to put in linear order due to the inherent lack of recombination.
The use of Bacterial Artificial Chromosomes (BACs) has helped to resolve some sex chromo-
some assemblies [66,67], but like linkage maps, this approach is labor intensive. Adding to
assembly issues, sequencing the heterogametic sex in diploids can result in chimeric contigs
that contain a mixture of the X and the Y (or Z and W), especially if there is low divergence
between homologous regions, as is expected if suppressed recombination has recently
evolved [68,69]. These issues with assembling sex chromosomes are compounded by the
fact that plant genomes are overall inherently complex, with many species having high
heterozygosity and abundant repeats genome-wide, in addition to frequent polyploidy [70].
Despite these complications, through much tenacity, a lot of headway has been made on
plant sex chromosomes using these short-read assembly approaches.

Table 1. Published dioecious nuclear genomes. The species listed here are dioecious, though for many others, closely related
hermaphroditic or monoecious references may be available.

Lineage Family Species Sex Chromosome Type Citation

Moss Ditrichaceae Ceratodon purpureus UV [65]
Moss Pottiaceae Syntrichia princeps UV [71]
Moss Fontinalaceae Fontinalis antipyretica UV [72]
Moss Hylocomiaceae Pleurozium schreberi UV [73]

Liverwort Marchantiaceae Marchantia polymorpha UV [74,75]
Liverwort Marchantiaceae Marchantia inflexa UV [76]

Gymnosperm Ginkgoaceae Ginkgo biloba XY [77,78]
Gymnosperm Gnetaceae Gnetum montanum Possibly XY [79]
Angiosperm Amborellaceae Amborella trichopoda ZW [80]
Angiosperm Dioscoreaceae Dioscorea alata XY [81]
Angiosperm Dioscoreaceae Dioscorea rotundata ZW [82]
Angiosperm Asparagaceae Asparagus officinalis XY [49,50]
Angiosperm Arecaceae Phoenix dactylifera XY [83]
Angiosperm Vitaceae Vitis arizonica XY [84]
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Table 1. Cont.

Lineage Family Species Sex Chromosome Type Citation

Angiosperm Vitaceae Vitis amurensis XY [85]
Angiosperm Vitaceae Vitis riparia XY [86]
Angiosperm Vitaceae Vitis vinifera sylvestris XY [84]
Angiosperm Vitaceae Muscadinia rotundifolia XY [84]
Angiosperm Euphorbiaceae Mercurialis annua XY [87]
Angiosperm Salicaceae Populus alba ZW [88]
Angiosperm Salicaceae Populus deltoides XY [88]
Angiosperm Salicaceae Populus euphratica XY [89]
Angiosperm Salicaceae Populus ilicifolia XY [90]
Angiosperm Salicaceae Populus tremula XY [88]
Angiosperm Salicaceae Populus trichocarpa XY [91]
Angiosperm Salicaceae Salix brachista Possibly ZW [92]
Angiosperm Salicaceae Salix matsudana Possibly ZW [93]
Angiosperm Salicaceae Salix purpurea ZW [94]
Angiosperm Salicaceae Salix suchowensis ZW [95]
Angiosperm Salicaceae Salix viminalis ZW [69]
Angiosperm Rosaceae Fragaria x ananassa ZW [96]
Angiosperm Moraceae Ficus carica XY [97]
Angiosperm Moraceae Ficus erecta Possibly XY [98]
Angiosperm Moraceae Ficus hispida XY [99]
Angiosperm Cannabaceae Cannabis sativa XY [100]
Angiosperm Cannabaceae Humulus lupulus XY [101]
Angiosperm Myricaceae Morella rubra ZW [64]
Angiosperm Myricaceae Morus alba XY [102]
Angiosperm Myricaceae Morus notabilis Possibly XY [103]
Angiosperm Anacardiaceae Pistacia vera ZW [104]
Angiosperm Caricaceae Carica papaya XY [54,105]
Angiosperm Polygonaceae Rumex hastatulus XY [106]
Angiosperm Amaranthaceae Amaranthus palmeri XY [107,108]
Angiosperm Amaranthaceae Amaranthus tuberculatus XY [108]
Angiosperm Amaranthaceae Spinacia oleracea XY [109]
Angiosperm Simmondsiaceae Simmondsia chinensis XY [110]
Angiosperm Ebenaceae Diospyros lotus XY [111]
Angiosperm Actinidiaceae Actinidia chinensis XY [112]
Angiosperm Actinidiaceae Actinidia eriantha XY [113]
Angiosperm Solanaceae Solanum appendiculatum XY [114]

More recently, long-read technologies, like PacBio (Menlo Park, CA, USA) and Ox-
ford Nanopore (Oxford Science Park, Oxford, UK), have made phenomenal strides for
assembling complex regions, like sex chromosomes. As the reads are on average 10–15 Kb,
as opposed to 100–300 base pairs with short reads, they are better at spanning repeat
regions [70,115]. Not to mention longer reads mean fewer pieces of the genomic puzzle
need to be put together. Although depending on the size and complexity of the genome,
even with long reads, the assembly may not be pulled into pseudomolecules and may still
contain misjoins. However, in these cases, with the addition of chromatin conformation
data, like Hi-C, which does not rely on linkage, genomes can now readily be assembled
to chromosome-scale, including the sex chromosomes [116–118]. Indeed, the telomere-to-
telomere, gapless assembly of a human X chromosome, including the centromeres, [119]
represents the future (or really the present) for genome assembly.

The most-recent improvements in long-read technologies (e.g., PacBio HiFi), including
the lower error rates, and novel computational tools for assembling these data (e.g., HiCanu
and HiFiAsm [120,121]), mean phasing the sex chromosomes in the heterogametic sex may
now be possible. Though there are also downsides to long-read technologies, the foremost
is the requisite high-molecular weight DNA, which ideally comes from fresh, young, flash-
frozen tissue. This inherently precludes the incredible taxonomic resources maintained in
herbaria, as well as any other avenues that could cause DNA degradation. As such, one of
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the biggest bottlenecks for genomic studies of most taxa today is identifying viable (and
properly permitted) tissue that can be used for the genome reference, gene annotation, and
maintained for future studies.

Critical for analyses in sex chromosomes, is identifying the non-recombining SDR. Cur-
rently, a combination of both long and short-read technologies is best suited for high-quality
assemblies that include the sex chromosome pair. Long reads are ideal for assembling
genomes into fewer contigs, while short reads are still valuable for genome polishing (even
with lower error rates in long reads; e.g., with Racon [122]), Hi-C data for additional genome
scaffolding (e.g., with JUICER [117]), genome annotation (e.g., with BRAKER2 [123]), and
identifying the SDR (reviewed in [124]), in addition to gene expression analyses [70]. In
fact, genes annotated to the SDR that have sex-specific expression are strong candidates for
being involved in sex determination.

3. Advances in Sex-Determination Gene Identification
3.1. Yam

Most species in the genus Dioscorea (Dioscoreaceae) are dioecious [125] and have XY
sex chromosomes [81,126,127], suggesting dioecy may have evolved ~80 million years ago
(MYA) [128]. In D. alata a recent genetic map uncovered a ~10 Mb male-specific region of
the Y (MSY) [81]. However, in D. rotundata, data support a ZW system with a small SDR
(~161 Kb) [82], suggesting a recent turnover in this species. A candidate list of floral genes
has been developed in D. rotundata [129], but more in-depth analyses are needed to identify
those involved in sex determination.

3.2. Asparagus

Several species of Asparagus (Asparagaceae) are dioecious including garden asparagus
(A. officinalis) [130]. Asparagus officinalis has XY sex chromosomes, with a ~1 Mb MSY [49]
that contains 13 genes with no homologs on the X (and only one X-specific gene), suggesting
suppressed recombination is through a deletion on the X [49,50]. Two of the Y-linked genes
have functionally been shown to be involved in the development of the sexes through
gamma ray and Ethyl methanesulfonate (EMS) mutagenesis in XY males (Figure 1) [50].
Knockouts of Suppressor of Female Function (SOFF), which contains a DUF247 domain,
develop hermaphroditic flowers with both functional anthers and ovules [50]. Knockouts of
Tapetal Development and Function 1 (TDF1), an R2R3-MYB, make sterile individuals where
neither functional carpels nor stamens develop [50]. Furthermore, knockouts of both SOFF
and TDF1 develop functional ovaries, but non-functional anthers [50]. Together these results
show that SOFF and TDF1 are the female and male-sterility genes, respectively, in A. officinalis.
Further comparative analyses will uncover whether this sex-determination mechanism is
shared across the other dioecious species in Asparagus or if other genes are involved.

3.3. Date Palm

In the genus Phoenix (Arecaceae), phylogenetic analyses of a MYB1 gene suggest the
XY sex chromosomes may have an ancient origin, prior to the diversification of the species
in this genus [131,132]. In the date palm, P. dactylifera, the MSY is ~13 Mb [133,134]. Compar-
ative analyses across all 14 species of the genus identified three potential sex-determining
genes [83]. Y-linked Cytochrome P450 (CYP703) and glycerol-3-phosphate acyltransferase
6-like (GPAT3) genes are expressed only in male flowers and are likely critical for pollen
and/or anther development (Figure 1) [83]. The third gene, a Y-linked, Lonely Guy-like
gene (LOG-like), which is involved in the activation of cytokinins, is also largely expressed
in male flowers, and may have a role in suppressing carpel development [83]. While these
genes seem like ideal candidates for sex determination, functional follow ups are necessary
to validate these putative roles in Phoenix.



Genes 2021, 12, 381 6 of 20
Genes 2021, 12, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 1. Recently discovered angiosperm sex-determination genes. Sex-determining genes re-
cently identified that are involved with carpel development (a) include SyGl, SOFF, and LOG-like. 
When these genes are expressed (+) in males, it suppresses the function or development of the 
carpel. However, the lack of expression (-) in females allows for functional carpel development. In 
grapes, it is not yet known whether VviYABBY3 or VviAPT3 is the female-sterility gene. Several 
genes have also been identified for promoting stamen function (b). FrBy and TDF1 both promote 
tapetum development (in blue) and VviINP1 promotes pollen development (in red). It is unknown 
yet whether CYP703 or GPAT3 is the male-determining gene in date palm, but both are involved 
in pollen and/or anther development. In persimmon and poplar, a single gene is involved in sex 
determination (OGI and ARR17, respectively). When MeGI is expressed, flowers develop func-
tional carpels, but not stamens. However, when the Y-linked OGI is expressed, it represses MeGI, 
resulting in functional stamens. Similarly, in poplars, ARR17 expression results in carpel produc-
tion, but the lack of expression results in functional stamens. 
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model of sex determination (Figure 1). The gene inaperaturate pollen1 (VviINP1) likely 
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Figure 1. Recently discovered angiosperm sex-determination genes. Sex-determining genes recently
identified that are involved with carpel development (a) include SyGl, SOFF, and LOG-like. When
these genes are expressed (+) in males, it suppresses the function or development of the carpel.
However, the lack of expression (-) in females allows for functional carpel development. In grapes, it
is not yet known whether VviYABBY3 or VviAPT3 is the female-sterility gene. Several genes have
also been identified for promoting stamen function (b). FrBy and TDF1 both promote tapetum
development (in blue) and VviINP1 promotes pollen development (in red). It is unknown yet
whether CYP703 or GPAT3 is the male-determining gene in date palm, but both are involved in
pollen and/or anther development. In persimmon and poplar, a single gene is involved in sex
determination (OGI and ARR17, respectively). When MeGI is expressed, flowers develop functional
carpels, but not stamens. However, when the Y-linked OGI is expressed, it represses MeGI, resulting
in functional stamens. Similarly, in poplars, ARR17 expression results in carpel production, but the
lack of expression results in functional stamens.

3.4. Grape

All wild species of Vitis (Vitaceae) are dioecious. However, like papaya (described
below) domestic grapes have transitioned back to hermaphroditism [135,136]. Males are
the heterogametic sex in Vitis and in V. vinifera sylvestris the MSY is small at ~150 Kb
and contains 20 genes [137,138]. More recent analyses show grapes also support a two-
gene model of sex determination (Figure 1). The gene inaperaturate pollen1 (VviINP1)
likely plays a role in pollen aperture formation [139] and thus male fertility. Two strong
candidates for the female-sterility gene are a YABBY3 gene (VviYABBY3) and an adenine
phosphoribosyltransferase (APT) gene (VviAPT3) [84,140]. YABBY3 genes have been shown
to play a role in flower and lateral organ development [141] and APT genes are involved in
the cytokinin pathway and may be involved in suppressing carpel development [140,142].
However, functional follow-ups are necessary to confirm these roles in grapes.

3.5. Poplar

Nearly all species in Populus (Salicaceae) are dioecious [143,144] and across the genera,
both XY (P. deltoides, P. euphratica, and P. tremula) and ZW (P. alba) sex chromosomes have
been identified, suggesting at least one turnover event has occurred [145]. In P. tremula the
MSY is ~1.5 Mb and contains a type-A cytokinin response regulator (RR), homologous
to Arabidopsis RR 17 (ARR17), that is found in inverted repeats [88]. CRISPR knockouts
of ARR17 in karyotypic females developed functional stamens and mostly did not de-
velop carpels, whereas in karyotypic males, ARR17 knockouts showed no difference in
development [88] (Figure 1). Some evidence suggests gene silencing of ARR17 in males
is through RNA-directed DNA methylation, but this has not formally been tested [88].
In P. alba, the W also contains ARR17 that is lacking from the Z. This intriguing result
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highlights how a single gene can determine sex on both diploid sex chromosome types.
Although, interestingly, within the same genus, there is recent evidence of two genes
involved in sex determination. In P. deltoides one of the sex-determining genes is also re-
lated to ARR17, though they call it female-specifically expressed RESPONSE REGULATOR
(FERR) [146]. The ~300 Kb MSY has a duplication of FERR that represses it (FERR-R),
inhibiting carpel development. The second gene, a male-specific lncRNA (MSL), is likely
involved in promoting male function [146].

3.6. Willow

The genus Salix is sister to poplars in the Salicaceae family and most species are also
dioecious [144]. Salix purpurea and S. viminalis both have a ZW sex-determination system
that share an evolutionary origin having arisen ~8.6 MYA [69,94]. The S. purpurea female-
specific region of the W (FSW) is ~6.8 Mb and interestingly contains palindromic repeats,
similar to those found in humans [94,147]. Within these repeats are five genes that may be
associated with sex determination. The cytokinin RR is particularly of interest as this gene
is homologous with the sex-determining ARR17 gene in poplar [88,94]. The S. viminalis FSW
(~3.1 Mb) also contains ARR17, further supporting the putative role of this cytokinin-related
gene in sex determination in willows and poplars, although this has not yet been confirmed
with functional analyses in Salix [69]. Interestingly, >100 additional genes are found on
the S. viminalis FSW, which show evidence of two strata. However, there is no evidence
of chromosomal inversions involved in their capture into the SDR, suggesting instead
the buildup of transposable elements may be involved in suppressing recombination [69].
Salix nigra, contrastingly, has XY sex chromosomes with a ~2 Mb MSY on a different
chromosome than in the other Salix species examined, suggesting a translocation of the
SDR (i.e., turnover) [148]. Though with current analyses it is unclear if RR is also sex-linked
in this species [148]. Given the many turnovers and changes in heterogamety found in
Salicaceae, often involving the same RR gene, a general model has been developed to
explain this pattern [145]. Consistent with results described in Müller [88], in species with
ZW sex chromosomes, RR acts as a dominant female promotor, but in XY systems RR
duplicates target and repress RR by RNA-directed DNA methylation [145].

3.7. Strawberry

In Fragaria (Rosaceae) several species are dioecious, octoploids that are nested within
a diploid, hermaphroditic clade [149], highlighting the role polyploidy can play in the
evolution of dioecy [150]. Strawberries have ZW sex chromosomes that arose ~1 MYA [151].
In F. chiloensis the FSW is small at ~280 Kb [152], though in other Fragaria there is evidence
the SDR is in different locations, suggesting either independent evolutions or transloca-
tions [153]. Recent evidence supports the latter, where the FSW has translocated at least
twice among homeologous chromosomes, each time capturing more DNA into the region
of suppressed recombination [154]. In F. virginiana ssp. virginiana, which has the smallest
SDR, there are two genes, a GDP-mannose 3,5 epimerase 2 gene and a 60S ribosomal
protein P0 [154]. These two genes are also located in the F. virginiana ssp. platypetala and
F. chiloensis SDRs [154], although functional analyses will highlight whether they play a
role in sex determination across these species.

3.8. Red Bayberry

In the genus Morella (Myricaceae), most species are dioecious, including M. rubra, the
red bayberry [155]. Recent genome sequencing found M. rubra has ZW sex chromosomes
with a ~59 Kb FSW that contains seven genes. Three of these have putative roles in flower
development (MrCKA2, MrASP2, MrFT2) and two are related to hormones (MrCPS2,
MrSAUR2; [64]). More functional work will help uncover which are involved in sex
determination. All genes in the FSW have a paralogous copy on the same chromosome,
suggesting gene duplication may have also played a role in the evolution of the sex
chromosomes in this species [64].
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3.9. Papaya

Papaya (Carica papaya) is the sole species in the genus Carica (Caricaceae) [156]. Across
Caricaceae, 32 species are dioecious, two are trioecious, and one is monoecious [14]. Mul-
tiple lines of evidence suggested that sex chromosomes have evolved multiple times
independently in Caricaceae, and sex chromosomes in Carica and Vasconcellea may have
originated from the same ancestral autosomes after the divergence of these two gen-
era [157,158]. Papaya is one of the two trioecious species, and sex determination of papaya
is controlled by an XY system with two slightly different Y chromosomes, a MSY and
a hermaphrodite-specific Yh [159]. The papaya MSY is 8.1 Mb [67,160] and two large
inversions in the Y-linked region caused recombination suppression with the X and ini-
tiated sex chromosome evolution [67]. No hermaphrodite papayas have been found in
wild populations and the Yh chromosome exhibits lower nucleotide diversity than the Y,
suggesting that hermaphrodite papaya is likely a product of human domestication [136].
Several candidate genes showing functional and/or structural association with sex types
were identified based on sequence comparison and gene expression analysis [161,162].
Further functional validation of candidate genes is still needed, although several inde-
pendent studies point towards SVP (SHORT VEGETATIVE PHASE) as being involved in
male flower development [163,164], though this putative gene does not have a sex-related
function in other species.

3.10. Palmer Amaranth

Most species are monoecious in the genus Amaranthus (Amaranthaceae), however,
dioecy is thought to have evolved multiple times independently [165]. The recent genome
sequences of A. palmerii identified an XY sex chromosome system with a ~1.3–2 Mb
MSY containing 121 gene models [107,108,166]. Amaranthus tuberculatus has a larger MSY
(~4.6 Mb) with 147 genes [108]. Despite being in separate dioecious clades [165], two genes
are found in the MSY of both species (Disintegrin and metalloproteinase domain-containing
protein 9, ADAM9, and FLOWERING LOCUS T, FT) [108], making them candidates for sex
determination or male-specific development.

3.11. Spinach

All three species of Spinacia (Amaranthaceae) are dioecious, and though S. oleracea
and S. tetrandra diverged ~5.7 MYA, analyses of sex-linked homologs suggest suppressed
recombination occurred after their divergence [167]. Recent analyses in S. oleracea have
found the SDR to be between 10–19 Mb, with a 10 Mb MSY that has 210 genes [109,168].
These genes have been captured into the region of suppressed recombination through
chromosomal inversions, making two strata of divergence between the X and the Y [109].
The 12 MSY genes with putative floral functions [109] and additional transcriptomic
analyses of female and male flowers [169] have narrowed in potential sex-determining
genes, though none so far are clear candidates.

3.12. Persimmon

Most species in Ebenaceae are dioecious including Diospyros [170]. Diospyros lotus has
XY sex chromosomes with a ~1.3 Mb MSY [111]. Expression of an autosomal HD-Zip1
family gene, Male Growth Inhibitor (MeGI), results in the development of female flowers,
with functional carpels, but not functional stamens. However, a Y-linked pseudogene,
Oppressor of MeGI (OGI), encodes a small RNA that suppresses MeGI, resulting in male
flowers [171] (Figure 1). Moreover, the male-determining role of OGI is stable in the
hexaploid persimmon, D. kaki, which has both monoecious and female flowers [172,173].
These data, like in poplar, support that a single gene is involved in sex-determination
in persimmons. This sex-determination system evolved through a recent whole-genome
duplication, making two copies of MeGI. Functional analyses of these genes in tobacco
suggests SiMeGI (sister copy of MeGI) may have maintained the original gene function,
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while MeGI neofunctionalized as a repressor of anther development [111]. A second
duplication of MeGI resulted in the Y-linked OGI.

3.13. Kiwifruit

Most species in Actinidia (Actinidiaceae) are dioecious [174] and the sex chromosomes
arose ~20 MYA [175]. Although kiwifruit is in a different family than persimmons, they
are in the same order (Ericales), representing at least two independent origins of sex
chromosomes. Actinidia chinensis var. chinensis have XY sex chromosomes and the MSY is
~0.8 Mb, containing 30 genes [176]. Two of these have been identified as sex determining,
additionally supporting the two-locus model for the evolution of dioecy. One gene, a type-C
cytokinin RR, suppresses ovary formation (SyGl), and the other has a fasciclin domain that
contributes to tapetum degradation resulting in male fertility (FrBy) [175,176] (Figure 1).
The function of these genes was validated through several approaches [176]. First, analyses
of the genome of the hermaphroditic species, A. deliciosa, showed no evidence of a copy
of SyGl, but did have FrBy [176]. This suggests either the loss of SyGl or the gain of FrBy
caused the transition to hermaphroditism [176]. Moreover, knock-ins of FrBy into an XX
female were hermaphroditic, with both functional carpels and stamens that produced
fertile seeds after self-pollination [176]. Current work is in progress to also functionally
validate SyGl [177].

3.14. Solanum

Dioecy evolved at least four times across the genus Solanum (Solanaceae) [178]. In
S. appendiculatum, the XY system arose <4 MYA [179] and the MSY contains at least
20 genes [114]. Consistent with female flowers producing inaperturate pollen, many
sex-biased and Y-linked genes are involved in pectin development [114], though more
analyses will undoubtedly uncover genes involved in sex determination.

3.15. Amborella

Amborella trichopoda is a monotypic species in Amborellaceae that is sister to the rest
of flowering plants [80,180]. Although the Amborella lineage diverged from the rest of
angiosperms ~200 MYA [181], the ZW sex chromosomes are estimated to have diverged 9.5
to 14.5 MYA [182]. This recent origin of A. trichopoda sex chromosomes is consistent with
the ancestral flower of all angiosperms being reconstructed as hermaphroditic [183]. The
FSW is ~4 Mb and has ~150 genes [182], though which are involved in sex determination
is unknown.

3.16. Maidenhair Tree

The dioecious gymnosperm Ginkgo biloba (Ginkgoaceae) [184] is a monotypic species.
Two recent genomes suggest Ginkgo has an XY system [77,78] that arose ~14 MYA [77].
The MSY is ~27 Mb, with 241 genes, including 4 MADs-box genes expressed in staminate
(male) cones [78]. Given the clear role MADs-box genes play in flower development in
angiosperms [185], these genes are interesting candidates for sex-determination in Ginkgo
as well.

3.17. Fire Moss

The moss Ceratodon purpureus (Ditrichaceae) UV sex chromosomes provide an in-
teresting contrast to the XY/ZW systems in seed plants. The C. purpureus U and V are
large with each >100 Mb and have >3400 annotated genes, totaling ~30% of the 360 Mb
genome and ~12% of the gene content [65]. The moss sex chromosomes evolved at least
300 MYA in the ancestor to ~95% of extant mosses, making them among the oldest known
sex chromosomes across Eukarya [65]. Compared to angiosperms, much less is known
about the functions of genes in bryophytes, so narrowing in on candidate sex determiners
is a challenge. However, some genes have been identified that are potentially of interest in
sex-specific development. For example, the C. purpureus female-specific U chromosome
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contains an RWP-RK transcription factor [65], which are involved in egg cell formation
across land plants [186,187] and in the same gene family as the MID mating-type loci in
green algae [188]. Other notable genes on the C. purpureus U and V [65] are orthologs
to the cis-acting sexual dimorphism switch found in Marchantia polymorpha (described
below; [189]).

3.18. Common Liverwort

The liverwort M. polymorpha (Marchantiaceae) also has a UV sex-determination system
with an ancestral origin [65,74]. The male-specific V is ~7.5 Mb and the female-specific
U ~4.3 Mb, with 247 and 74 genes annotated, respectively [74,108], though the U has
not been fully assembled, which may explain some of the difference in size. Like C.
purpureus, it is unclear which genes on the U or V are involved in sex determination in M.
polymorpha. However, intriguingly, an autosomal MYB transcription factor has a clear role
in sex-specific development. Expression of FEMALE GAMETOPHYTE MYB (MpFGMYB)
results in archegonia development, whereas expression of its cis-acting antisense gene
suppresses MpFGMYB resulting in antheridia development and sperm production, though
the sperm lack motility [189]. Several other dioecious bryophyte genomes have recently
been published or are in progress [71,73,76,190], commencing an era for comparative
analyses to uncover sex determination and further insights on sex chromosomes in this
predominantly dioecious clade.

4. The Diversity of Proposed Mechanisms of Sex Determination

The plant sex chromosomes analyzed to date vary in age, size, and overall gene
content, but what may be most striking is how many different genes have evolved to
be the sex-determiners (Figure 1). This stands in contrast to animal systems where the
same gene(s) have been shown to be involved in sex determination across many taxa (e.g.,
SRY/SOX3; DRMT1 [191]). For the genes identified in plants, some necessary similarities
exist: they must be involved at some stage of sex-specific structure development (e.g.,
anther or carpel). Whether certain genes in these developmental pathways are more likely
to evolve sex determination than others is unknown. Genes with broad-expression patterns
seem to be unlikely candidates, as sex-linkage, and any subsequent molecular evolutionary
consequences like protein evolution, may be deleterious to other functions. Although,
duplications, whether by doubling of the whole genome or single genes, free genes from
such constraints, allowing for neofunctionalization [150]. In fact a common theme in recent
studies has been that duplications play a role in sex-determining genes (e.g., Asparagus,
strawberry, persimmon, red bayberry, date palm, and kiwifruit [49,64,83,111,154,175])
or subsequent translocations to the SDR (e.g., Ceratodon [65]). Though not all the sex-
determining genes in these systems show evidence of a recent duplication (e.g., Asparagus
TDF1 [49]). In these latter cases, genes with tissue-specific or narrower expression may be
more likely to evolve a sex-determining role.

Although several different genes have evolved to be sex-determining, in other dioe-
cious species where they remain autosomal, they often instead show sex-biased expres-
sion, suggesting they play a conserved, sex-specific role or may be regulated by the
sex-determining (or other sex-linked) genes [192]. For example, in kiwifruit, FrBy is the
Y-linked, male-fertility gene, but TDF1 also shows male-biased expression [176], which
makes sense given its role in tapetum development [50,193,194]. One pattern shared across
many of these systems is the role many of these genes play in the cytokinin pathway
(e.g., poplar, willow, date palm, and kiwifruit [69,83,88,175]), which is involved in floral
development, particularly in the carpel and female gametophyte (reviewed in [195]). As
we characterize the SDRs of more independent evolutions of dioecy, we will gain more
insight on what genes are more likely to be involved, if any.

Another notable pattern emerging is the empirical support for the two-gene model for
dioecy. In asparagus, kiwifruit, date palm, and grape [50,83,84,176], the SDRs have two
genes involved in female and in male sterility (Figure 1). In-depth analyses in asparagus
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and kiwifruit have verified the Y-linked genes TDF1 and FrBy, respectively, promote male
development and SOFF and SyGl, respectively, suppress female development [50,176,177].
In date palm, LOG-like is a strong candidate for being the female-sterility gene and both
CYP703 and GPAT3 are candidates for promoting male development, whereas in grapes,
VviYABBY3 and VviAPT3 are both candidates for female-sterility genes and VviINP1 for
promoting male development. Though interestingly, in grapes, recombination between the
tightly linked SDR on the X and the Y caused the transition back to hermaphroditism seen in
domestic grapes [84]. The copy of VviYABBY3 found in hermaphroditic individuals more-
closely resembles the female haplotype, rather than the male Y-linked copy, adding some
additional weight to VviYABBY3 being the female-sterility gene [84]. It will be interesting
if similar patterns of occasional recombination are involved in other transitions back to
hermaphroditism (e.g., papaya) or if other processes like whole-genome duplications are
involved [150]. In other systems, a single gene has been shown to be a sex-determining
switch, like ARR17 in poplar and OGI in persimmon [88,171]. Though this result does not
dispute the two-gene model, as the putatively ancestral hermaphroditic population had to
first transition to gyno- or androdioecious [146,196].

Recent genome assemblies in dioecious plants have revealed more than sex-determining
genes. Some studies have uncovered similar patterns in the evolution of the SDR that have
been found in animal systems. The ancestral origins of sex chromosomes in the bryophytes
more-closely resemble that of mammalian, bird, and some insect lineages [65,197–199],
where the evolution happened early in the clade and remains shared among most taxa.
This contrasts with most angiosperm sex chromosomes, which have more recent and inde-
pendent origins (see examples above), though once they evolve many are also stable (e.g.,
Phoenix [83]). In other genera there is clear evidence of turnovers [82,88,145,154], where
the sex-determining gene translocates to a new autosome, similar to what has been found
in frogs and some fishes [200]. Neo-sex chromosomes have also been found [65,106,201],
which can involve either part or an entire autosomal chromosome fusing to one or both sex
chromosomes. Some theories have been developed on why some sex chromosomes are
conserved while others turnover (reviewed in [200]) and closer examinations across plants
may provide new insights.

Other similar patterns of gene gain to the sex chromosomes have been found between
plant and animal sex chromosomes. Key to the movement of genes from the pseudoau-
tosomal region to the SDR is suppressed recombination, a classic signature of which is
evolutionary strata [202]. These strata occur when suites of genes are added to the region
of suppressed recombination at the same time, causing them to have similar levels of
divergence between gametologs (measured in synonymous substitutions, Ks). Multiple
recombination-suppression events thus show a stepwise pattern of Ks along the SDR, with
lower Ks for more-recent captures and higher Ks for older-captured genes. Indeed, evidence
of evolutionary strata has been found in several plant species [69,87,109], suggesting plants
may experience similar selective pressures that drive gene gain as animals [203]. The
structural changes that cause suppressed recombination have classically been shown to be
chromosomal inversions and several recent papers have found evidence in plants to also
support this [109,204]. Some other striking convergent patterns, like palindromes, have
been found in animal and plant sex chromosomes [94,147]. These palindromes consist of
large inverted repeats and genes within these regions can undergo conversion [94,147].
Together, these results highlight that there are many dynamic patterns in sex chromosomes
that are shared across these kingdoms.

However, there are just as many differences as there are similarities that have been
found. Most often seen to date are differences in how suppressed recombination occurs.
In some species, suppressed recombination can evolve before the SDR [106] with several
evolving in close proximity to centromeres [53,66]. In other systems hemizygosity between
the SDR caused by a deletion on the X suppresses recombination, rather than other struc-
tural changes like inversions [50,83,146]. In others suppressed recombination can occur
without any structural changes at all, likely through the build-up of transposable elements
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(TEs) [69]. This latter result contradicts the often-thought pattern that TEs will build up
after recombination has been suppressed on the SDR. Indeed, other characteristic patterns
of degeneration and gene loss thought to affect sex-specific chromosomes, or at the very
least the tempo of these processes, are questioned in several recent analyses [65,87,203].
Much of this is likely due to haploid gene expression [205], which occurs in gametophyte
stages in plants and exposes genes to purifying selection. Together these results beg the
question of whether the proposed linear model for the stages of sex chromosome evolu-
tion is overall applicable to plants or if these systems represent interesting exceptions to
otherwise encompassing rules (see also [206]).

5. The Future of Plant Sex Chromosome Research

Combined, plants provide many independent tests for the evolution of sex chromo-
somes. While here we have focused on land plants, algae also provide other exciting,
independent evolutions [15,207]. Although, despite the many recent publications, we
have only just begun to uncover what plant sex chromosomes can illuminate. Assuming
5% of the 300,000 species of angiosperms are dioecious (using conservative numbers),
only ~0.3% of these species have had their genomes sequenced to date, with an order of
magnitude fewer in the other major clades (Table 1). Thus, one clear path moving forward
is to increase the number and phylogenetic breadth of high-quality genome assemblies and
annotations of dioecious species. While this has traditionally meant assembling a single
exemplar genome for a species, the future of sex chromosome genomics should encompass
pangenomes [208] that incorporate within-species variation, as well as closely-related,
non-dioecious sister taxa that serve as outgroups. As sequencing technologies continue to
improve, and the costs decrease, this becomes more tractable. Adding gene co-expression
analyses will uncover downstream regulatory pathways [173,209] and whether these are
more conserved than the sex-determining genes [192]. In addition to gene annotations, we
should move to consistently annotate non-coding sequences, like small RNAs, [88,171,210]
and uncover their targets to better understand their role in sex-specific development and
sex determination. Moreover, as technologies like CRISPR improve, and protocols are
established for more species, functional validations of these results will likely become
standard [211]. These discoveries are all valuable for breeding programs of dioecious
and closely related hermaphroditic crops. In fact, most of the species described in this
review are economically important. There are also applications for controlling invasive
species, like in palmer amaranth [108]. Additionally, from a conservation perspective,
focusing on dioecious species is especially pressing, as the sexes often respond to stressors
differently, meaning that due to climate change these species may be especially at risk
for extinction [212].

In addition to comparative and functional genomics, a lot more interdisciplinary work
in dioecy and sex chromosome research awaits. We need to focus on many classic (albeit
also constantly improving) analyses rather than just the so-called “cutting-edge”. We
need to fund more field work to identify new, potentially dioecious species and common-
garden analyses to characterize development (e.g., [213]). We need better-supported,
species-level phylogenies to infer the number of evolutions of dioecy, for example using
Angiosperm353 [214] and GoFlag (Genealogy of Flagellate plants) [215] probe sets. We
need more cytological analyses, to uncover how these chromosomes behave in the cell
(e.g., [216,217]) or verifying in what tissues genes are expressed (e.g., [50]). Together,
through these many approaches, we can discover a wealth of untapped knowledge to
better understand the rules at play in these complex and dynamic regions of the genome
in plants [15].
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