
Int. J. Mol. Sci. 2011, 12, 6312-6319; doi:10.3390/ijms12096312 

 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Communication 

Improving Protein Crystal Quality by the Without-Oil  
Microbatch Method: Crystallization and Preliminary X-ray 
Diffraction Analysis of Glutathione Synthetase from 
Pseudoalteromonas haloplanktis  

Antonello Merlino 1,2, Irene Russo Krauss 1, Antonella Albino 3, Andrea Pica 1,  

Alessandro Vergara 1,2, Mariorosario Masullo 3,4, Emmanuele De Vendittis 3 and  

Filomena Sica 1,2,* 

1 Dipartimento di Chimica “Paolo Corradini”, Università di Napoli Federico II, Complesso 

Universitario di Monte Sant’Angelo, Via Cinthia, Naples I-80126, Italy;  

E-Mails: antonello.merlino@unina.it (A.M.); irene.russokrauss@unina.it (I.R.K.); 

andrea.pica@unina.it (A.P.); alessandro.vergara@unina.it (A.V.) 
2 Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Naples I-80134, Italy 
3 Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 

5, Naples I-80131, Italy; E-Mails: antonella.albino@unina.it (A.A.); 

mario.masullo@uniparthenope.it (M.M.); devendittis@dbbm.unina.it (E.V.) 
4 Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Università di Napoli “Parthenope”, 

Via Medina 40, Naples I-80133, Italy 

* Author to whom correspondence should be addressed; E-Mail: filosica@unina.it;  

Tel.: +39-081-674-479; Fax: +39-081-674-090.  

Received: 26 July 2011; in revised form: 5 September 2011 / Accepted: 14 September 2011 /  

Published: 23 September 2011 

 

Abstract: Glutathione synthetases catalyze the ATP-dependent synthesis of glutathione 

from L-γ-glutamyl-L-cysteine and glycine. Although these enzymes have been sequenced 

and characterized from a variety of biological sources, their exact catalytic mechanism is 

not fully understood and nothing is known about their adaptation at extremophilic 

environments. Glutathione synthetase from the Antarctic eubacterium Pseudoalteromonas 

haloplanktis (PhGshB) has been expressed, purified and successfully crystallized. An 

overall improvement of the crystal quality has been obtained by adapting the crystal 

growth conditions found with vapor diffusion experiments to the without-oil microbatch 

method. The best crystals of PhGshB diffract to 2.34 Å resolution and belong to space 
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group P212121, with unit-cell parameters a = 83.28 Å, b = 119.88 Å, c = 159.82 Å. 

Refinement of the model, obtained using phases derived from the structure of the same 

enzyme from Escherichia coli by molecular replacement, is in progress. The structural 

determination will provide the first structural characterization of a psychrophilic 

glutathione synthetase reported to date.  

Keywords: crystal quality; without-oil microbatch; glutathione synthetase; psychrophile; 

X-ray crystallography 

 

1. Introduction  

The tripeptide glutathione (GSH) is the most abundant antioxidant molecule in cells and has 

multiple biological functions. Besides its protective role in counteracting oxidative free radical species 

and in the removal of toxic metals, GSH is involved in redox homeostasis, amino acid transport and 

metabolism of therapeutic drugs, mutagenesis and carcinogenesis; in addition, GSH is also involved in 

cell cycle regulation, cell signaling, and apoptosis [1–3]. The synthesis of GSH from its constituent 

amino acids L-glutamic acid, L-cysteine and glycine involves two ATP-requiring enzymatic steps 

catalyzed by glutamate cysteine ligase (GshA) and glutathione synthetase (GshB), respectively.  

In particular, glutathione synthetase catalyzes the synthesis of GSH from the γ-L-glutamyl-L-cysteine 

and glycine in the presence of ATP and magnesium ion [4]. This process involves the formation of  

an acyl phosphate on the cysteinyl moiety in L-γ-glutamyl-L-cysteine, followed by the attack of the 

glycine and formation of an enzyme-product complex, which finally dissociates with the release of 

GSH, ADP and phosphate (1). 

L-γ-glutamyl-L-cysteine + glycine + ATP → GSH + ADP + Pi (1) 

Glutathione synthetase has been purified, sequenced and characterized from different sources, 

including yeast [5], human [6,7], rat [8] and Escherichia coli [9]. The comparison of human enzyme 

with other eukaryotic proteins reveals a high sequence variability, with identity ranging from 18% to 

69% [10]. To date, glutathione biosynthesis has never been studied in a psychrophilic source, even 

though it is known that some antioxidant proteins are covalently modified and likely regulated by 

cellular thiols (see for example [11–13]). 

Pseudoalteromonas haloplanktis, a psychrophilic Gram-negative bacterium collected from 

Antarctic seawater (growth temperature interval, 4–20 °C), produces a glutathione synthetase 

(PhGshB), whose polypeptide chain is made up of 315 residues, corresponding to a molecular mass of 

36 kDa. Sequence alignments show a significant similarity of PhGshB with its mesophilic counterpart 

from E. coli (69% sequence identity), whose structure has been already determined [14,15]. With the 

aim of gaining insights on the mechanism of cold adaptation of glutathione synthetases and to shed 

light on the exact mechanism of catalytic action of these enzymes, we have undertaken the structural 

and functional characterization of PhGshB. In this article, we describe the expression, purification, 

crystallization and preliminary X-ray diffraction studies of the protein. We found that the adaptation of 
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crystallization conditions found using vapor diffusion experiments to a modified microbatch method 

significantly improves the size and the diffracting power of PhGshB crystals. 

2. Results and Discussion  

2.1. Crystallization of PhGshB 

A recombinant form of PhGshB (rPhGshB) with the C-terminal lysine replaced by the extrapeptide 

Leu-Glu-His6-tag, LE(H)6, has been successfully expressed, purified and crystallized using  

vapor-diffusion and small-scale batch (microbatch) methods. The purified rPhGshB showed a single 

band of approximately 36 kDa on SDS-PAGE, which is in good agreement with the theoretical 

molecular mass predicted by the amino acid sequence. Initial screenings using commercially available 

solutions (Crystal Screen kits I and II, and Index kit from Hampton Research, Laguna Niguel, USA, 

www.hamptonreaserch.com) revealed several promising conditions for the crystallization of rPhGshB. 

All favorable conditions were characterized by the presence of polyethylene glycol as precipitating 

agent. In particular, cubic and rod-like crystals appeared within 2–5 days using a 20 mg mL−1 protein 

concentration in the hanging-drop method from crystallization conditions with the reservoir  

solution containing 30% w/v MPEG 2K, 0.1 M potassium thiocyanate, and 25% w/v PEG 3350,  

0.1 M HEPES pH 7.5, respectively. At this stage, maximum size of cubic crystals (Figure 1a) was  

0.05 mm × 0.05 mm × 0.04 mm, whereas that for rod-like crystals was 0.1 mm × 0.1 mm × 0.2 mm. 

The quality of the crystals was improved by fine-tuning the concentration of protein  

(10.0–30.0 mg mL−1) and precipitants and evaluating the effect of several salts, like ammonium 

sulfate, sodium malonate, sodium potassium tartrate and tacsimate. The best crystals (rod-like,  

Figure 1b) were obtained from a crystallization solution containing 10% w/v PEG 20K, 5% v/v 

tacsimate and 0.1 M HEPES pH 7.5 and rPhGshB at 20.0 mg mL−1. 

Figure 1. Image of typical cubic (a) and rod-like (b) rPhGshB crystals grown by vapor 

diffusion; (c) crystals grown by without-oil microbatch technique. 

   

(a) (b) (c) 

Preliminary X-ray diffraction data showed that cubic crystals are intrinsically disordered and that 

the largest rod-like crystals obtained by vapor diffusion diffract at most at 3.5 Å resolution, they 

belong to the space group P212121, with unit-cell parameters a = 82.81 Å, b = 119.94 Å, c = 159.32 Å. 

Further optimization of the crystallization conditions to grow larger and thicker crystals suitable for 

diffraction data collection at high resolution were performed using the microbatch method. This 

procedure consists of slowly and thoroughly mixing the precipitant with the protein and then placing 
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the mixture in a well-sealed container. Usually the drop is incubated under silicon oil to prevent too 

rapid dehydration [16]. The benefits of microbatch have been well documented [16,17]. In the present 

case, a modified microbatch method, that we define without-oil microbatch, has been used: the drop is 

stored in the presence of a reservoir with the same precipitant concentration, to avoid drop evaporation [18]. 

A similar microbatch technique, which does not utilize oil (Small-Scale Batch without Oil) has been 

developed at the University of Wisconsin [19], and has been successfully used for many years, though 

no claim is made for its originality. As reported in other cases [18,19], we found that crystallization 

occurred using 60%–80% of the concentration of the precipitant required in the hanging drop 

experiment. The best crystals of rPhGshB (maximum size of 0.2 mm × 0.3 mm × 0.4 mm) were 

obtained by mixing a solution containing 14% w/v PEG 20K, 0.2 M HEPES pH 7.5, 10% v/v 

tacsimate with an equal volume of protein solution at 40 mg mL−1 (Figure 1c). These crystals diffract 

to 2.34 Å resolution and are isomorphous to those obtained by hanging drop experiments, with  

unit-cell parameters a = 83.28 Å, b = 119.88 Å, c = 159.82 Å (Table 1). Matthews coefficient 

calculations suggested the presence of four chains of rPhGshB (VM = 2.79 Å3 Da−1, 56% solvent 

content [20]) in the asymmetric unit. The application of the molecular replacement, as detailed in the 

Experimental Section, allowed the identification of orientation and position of the four chains in the 

asymmetric unit that gave a satisfactory fit of the experimental data. Rebuilding and refinement of the 

whole structure is in progress. Calculated preliminary (Fo-Fc) and (2Fo-Fc) difference Fourier maps are 

of excellent quality. 

Table 1. X-ray diffraction data collection statistics. 

 rPhGshB 

Space group P212121 

Cell parameters:  
a (Å) 83.28 

b (Å) 119.88 
c (Å) 159.82 

Resolution limits (Å) 50.00–2.34 
Highest resolution shell (Å) 2.45–2.34 

No. of observations 337677 
No. of unique reflections 66744 

Completeness (%) 97.1 (85.0) 
I/ (I) 20.5 (2.6) 

Average multiplicity 5.1 (2.5) 
Rmerge (%) 11.5 (40.5) 

Rpim 5.0 (27.5) 
Rrim 12.7 (49.6) 

Mosaicity 0.3 

Note: Values in parentheses correspond to the highest resolution shells. 
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3. Experimental Section 

3.1. Expression and Purification of rPhGshB 

The putative gene encoding GshB in P. haloplanktis (PhgshB; ID 3708001) [21] was  

amplified by PCR using specific oligonucleotides allowing its cloning in the pET-28a(+) vector.  

The forward and reverse primers used were 5′d–A–12AGGCACAGCCC•ATG•GCA•ATT9–3′ and  

5′d–A960AC•GCT•AAC•CTC•GAG•AGC•GAG•TCG•T936–3′, respectively. Numbering in primers 

begins from starting codon (italics), whereas underlined letters indicate mismatches introduced to 

create the NcoI and XhoI restriction sites. The amplified segment was digested with NcoI and XhoI and 

cloned in pET-28a(+) previously digested with the same endonucleases. The new construct was 

controlled by nucleotide sequencing and used to transform the E. coli BL21(DE3) strain. A culture of 

this transformant was grown at 37 °C up to 0.6 OD600 and the heterologous expression was induced for 

2 h upon the addition of 0.1 mg mL−1 isopropyl--thiogalactopyranoside. Bacterial cells were collected 

by centrifugation, resuspended in 20 mM Tris-HCl buffer pH 7.8, and then lysed by a French Press 

(Aminco, USA) to obtain a cell homogenate. This sample was then centrifuged at 30,000 × g for 1 h 

and the supernatant was used as starting material for the purification by affinity chromatography on 

Ni-NTA agarose of rPhGshB, which had the C-terminal lysine replaced by the extrapeptide LE(H)6. 

To this aim, the supernatant was added in batch to the Ni-NTA Agarose resin, equilibrated in 20 mM 

Tris-HCl buffer pH 7.8. After incubation overnight at 4 °C, the slurry was poured in a column, which 

was extensively washed with the same buffer supplemented with 10 mM imidazole-HCl. The bound 

rPhGshB was then eluted with 20 mM Tris-HCl buffer pH 7.8 supplemented with 50 mM imidazole-HCl 

and pure protein fractions, as analysed by SDS-polyacrylamide gel elecrophoresis, were pooled 

together, concentrated by ultrafiltration, and stored at −20 °C in 20 mM Tris-HCl buffer pH 7.8 

supplemented with 50% (v/v) glycerol. Nearly 20 mg of pure rPhGshB were obtained from a 1 L 

culture of the transformant. 

3.2. Crystallization of rPhGshB 

Purified rPhGshB was concentrated to 40 mg mL−1 in 20 mM Tris-HCl pH 7.8. Crystallization was 

performed at 20 °C by the hanging-drop vapor-diffusion method with 0.2 µL of protein and 0.2 µL of 

reservoir. The following commercially available screens were used: Crystal Screen kits I and II, and 

Index kit from Hampton Research. 

Optimization of the crystallization conditions was performed by fine-tuning the protein and 

precipitant concentrations using a drop consisting of 0.5 µL protein solution and 0.5 µL precipitant 

solution and a reservoir volume of 500 µL. 

Cubic crystals were obtained within 2–5 days from drops containing rPhGshB (20 mg mL−1 in  

10 mM Tris-HCl pH 7.8) 30% w/v MPEG 2K and 0.1 M potassium thiocyanate, whereas rod-like 

crystals were obtained using the same protein solution and a precipitant solution containing 25% w/v 

PEG 3350 and 0.1 M HEPES pH 7.5. An improvement in the quality of crystals was obtained using 

different salts and precipitant agents. In particular, well-shaped crystals were grown using 10% w/v 

PEG 20K, 5% v/v tacsimate, 0.1 M HEPES pH 7.5 as a precipitant solution. However, these crystals 

only diffract at 3.5 Å resolution. A further improvement was obtained adopting the without-oil 
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microbatch method. In this technique, a solution of 40 mg mL−1 protein in 20 mM Tris-HCl pH 7.8 

was directly mixed with an equal amount of precipitating solution (final concentration: 7% w/v 

PEG20K, 5% v/v tacsimate, 0.1 M HEPES pH 7.5). In all the experiments, standard 24-well linbro 

plates (Hampton Research, Laguna Niguel, USA, www.hamptonreaserch.com) have been used.  

3.3. Data collection and Processing 

Preliminary diffraction data (3.5 Å resolution) on the rod-like crystals obtained by vapor diffusion 

were collected at the Institute of Biostructures and Bioimages (Naples, Italy), at 100 K using a Rigaku 

MicroMax-007 HF generator producing Cu Kα radiation and equipped with a Saturn944 CCD detector. 

Higher resolution data (2.34 Å) were collected at 100 K on the crystals obtained by without-oil 

microbatch at the synchrotron beamline XRD1 of Elettra (Trieste, Italy). Cryoprotection of the crystals 

was achieved by rapid soaking (1–2 s) in a solution consisting of 12% w/v PEG 20K, 0.1 M HEPES 

buffer pH 7.5, 5% v/v tacsimate, 30% v/v glycerol. An oscillation range of 0.5° and an X-ray dose 

corresponding to about 5 s exposure were adopted for all experiments. The data sets were indexed, 

processed and scaled using the HKL-2000 program package (Table 1) [22]. The precision-indicating 

merging R-factors (Rpim and Rrim) were calculated using the program RMERGE [23,24]. 

3.4. Structure Determination 

The structure of the enzyme was solved by molecular replacement techniques using the program 

Phaser [25] and the single chain structure of GshB from E. coli as search model (PDB code 1GSA [14]). 

To avoid bias, ligands and water molecules were removed from the model prior to structure factors and 

phases calculation. The solution had an R-factor of 0.39. 

4. Conclusions 

In the current study, the glutathione synthetase from the Antarctic eubacterium Pseudoalteromonas 

haloplanktis was crystallized, X-ray diffraction data collected and the phase problem solved. 

An overall improvement of the crystal quality was obtained by adapting the crystal growth 

conditions found with vapor diffusion experiments to the without-oil microbatch method. In general, 

the more stable the system in the crystallization process, the higher is the quality of the crystals. These 

conditions are better realized in the microbatch method, where the crystallization components are 

mixed to their final concentration at the beginning of the experiment. A significant drawback of the 

under-oil microbatch method is the slow evaporation of water from the crystallization drops resulting 

sometimes in the formation of salt deposits that interfere with protein crystal growth. Our results, 

together with recent literature data [18,19], suggest that the adaptation of crystallization conditions to 

without-oil microbatch method could be a general strategy to convert poorly diffracting crystals into 

diffraction-quality ones, but further studies are needed to test the validity of this hypothesis. 
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