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ABSTRACT Human respiratory syncytial virus (HRSV) is a negative-stranded RNA vi-
rus that causes a globally prevalent respiratory infection, which can cause life-
threatening illness, particularly in the young, elderly, and immunocompromised.
HRSV multiplication depends on replication and transcription of the HRSV genes by
the virus-encoded RNA-dependent RNA polymerase (RdRp). For replication, this com-
plex comprises the phosphoprotein (P) and the large protein (L), whereas for tran-
scription, the M2-1 protein is also required. M2-1 is recruited to the RdRp by interac-
tion with P and also interacts with RNA at overlapping binding sites on the M2-1
surface, such that binding of these partners is mutually exclusive. The molecular ba-
sis for the transcriptional requirement of M2-1 is unclear, as is the consequence of
competition between P and RNA for M2-1 binding, which is likely a critical step in
the transcription mechanism. Here, we report the crystal structure at 2.4 Å of M2-1
bound to the P interaction domain, which comprises P residues 90 to 110. The P90 –
110 peptide is alpha helical, and its position on the surface of M2-1 defines the ori-
entation of the three transcriptase components within the complex. The M2-1/P in-
terface includes ionic, hydrophobic, and hydrogen bond interactions, and the critical
contribution of these contacts to complex formation was assessed using a minig-
enome assay. The affinity of M2-1 for RNA and P ligands was quantified using fluo-
rescence anisotropy, which showed high-affinity RNAs could outcompete P. This has
important implications for the mechanism of transcription, particularly the events
surrounding transcription termination and synthesis of poly(A) sequences.

IMPORTANCE Human respiratory syncytial virus (HRSV) is a leading cause of respira-
tory illness, particularly in the young, elderly, and immunocompromised, and has
also been linked to the development of asthma. HRSV replication depends on P and
L, whereas transcription also requires M2-1. M2-1 interacts with P and RNA at over-
lapping binding sites; while these interactions are necessary for transcriptional activ-
ity, the mechanism of M2-1 action is unclear. To better understand HRSV transcrip-
tion, we solved the crystal structure of M2-1 in complex with the minimal P
interaction domain, revealing molecular details of the M2-1/P interface and defining
the orientation of M2-1 within the tripartite complex. The M2-1/P interaction is rela-
tively weak, suggesting high-affinity RNAs may displace M2-1 from the complex, pro-
viding the basis for a new model describing the role of M2-1 in transcription. Re-
cently, the small molecules quercetin and cyclopamine have been used to validate
M2-1 as a drug target.
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Human respiratory syncytial virus (HRSV) is the leading cause of serious respiratory
tract infections in infants and poses a serious health threat to many other at-risk

populations, such as the elderly and immunocompromised, causing an estimated
199,000 fatalities each year (1–3). There is currently no approved HRSV vaccine, and the
only option to prevent HRSV-mediated disease is immunotherapy, which is expensive
and incompletely protective.

HRSV is a pneumovirus classified within the Mononegavirales order and possesses a
15-kb genome comprising a single strand of negative-sense RNA, tightly wrapped with
a virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex
(4). The viral RNA (vRNA) genome contains 10 genes that are each flanked by tran-
scription start and stop signals. These signals modulate the activity of the viral RNA-
dependent RNA polymerase (RdRp) to generate a single 5= capped and 3= polyadenyl-
ated mRNA from each transcriptional unit. The RdRp must also replicate the vRNA
genome, during which the transcription start and stop signals are ignored, resulting in
the generation of a full-length complementary copy, known as the antigenome or
cRNA (5).

The events that dictate whether the HRSV RdRp either transcribes or replicates are
unclear, although the components of a replicating RdRp and a transcribing RdRp are
different; the replicase requires the phosphoprotein (P), along with the large catalytic
component (L), whereas the transcriptase additionally requires the M2-1 protein (6).

M2-1 is a multifunctional protein, which has been variously described as a transcrip-
tion factor (7, 8), an antiterminator (9), a structural protein forming an RNP-associated
layer within the virion (10, 11), and recently in a posttranscriptional function in which
M2-1 associates with viral mRNAs (12), perhaps to influence translation. Of these, the
best-characterized role is that of a transcription factor, in which M2-1 is thought to
enhance polymerase processivity by suppressing transcription termination both intra-
genically (8, 13, 14) and intergenically (15, 16). In the case of intragenic transcription
termination, M2-1 is thought to permit the generation of abundant full-length mRNAs
rather than prematurely terminated products. In the case of intergenic antitermination,
M2-1 is proposed to mask the gene end transcription termination signal and thus lead
to the synthesis of abundant readthrough RNAs, which represent transcripts copied
from two or more transcriptional units. By ignoring gene end termination signals, the
RdRp may access more 3= distal genes, as the transcription attenuation steps that occur
at gene junctions will be bypassed. Recombinant HRSV in which the M2-1 gene has
been deleted cannot be rescued, suggesting M2-1 is an essential protein for one or
more of these activities (7, 8).

M2-1 is 194 amino acids in length (17), binds zinc atoms (9), and exists in solution
as a tetramer (18). It is also dynamically phosphorylated at serine residues S58 and S61
to modulate its processivity function (19). The cellular phosphatase PP1 dephosphory-
lates these residues and specifically interacts with P at a critical RVxF motif (20), thus
playing a critical role in cyclical interchange of the phosphorylated and dephosphory-
lated forms of M2-1 with P. M2-1 associates with the HRSV matrix protein (M) within
assembled virions (21) and also infected cells (22), where they colocalize at sites of RNA
synthesis inside punctate structures known as inclusion bodies (IBs) (23). In addition,
M2-1 interacts with both viral RNA (19, 24) and P (25). This ability of M2-1 to interact
with RNA and P is required for productive transcription, and each monomer within the
tetramer can potentially interact with both an RNA molecule and P at an overlapping
binding site (26, 27), suggesting that binding of these ligands at each binding site is
mutually exclusive. M2-1 preferentially binds poly(A)-rich RNAs (26, 27), and its RNA
binding activity correlates with the processivity function.

The overall fold of the M2-1 globular core (residues 58 to 177) was revealed by the
nuclear magnetic resonance (NMR) solution structure (26), which also identified M2-1
residues involved in interactions with RNA and P through analysis of NMR spectral
perturbations following ligand binding. The subsequently solved crystal structure of
full-length M2-1 in its native tetrameric form (27) revealed atomic details of this
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globular core, as well as the oligomerization domain, the zinc-binding domain (ZBD),
and also the reversible phosphorylation sites at S58 and S61.

The mechanism of M2-1-mediated processivity remains unclear. Current models
postulate that that M2-1 interacts with nascent mRNAs cotranscriptionally, to stabilize
the transcriptase complex, which ultimately leads to increased transcription of full-
length mRNAs. In order to improve this model, a better structural characterization of
the functional transcriptase complex is required. Here, we expressed and purified the
M2-1 binding domain of HRSV P, subsequently allowing the formation of M2-1/P
complex. We present the crystal structure of M2-1 in complex with the P interaction
domain, at a resolution of 2.4 Å, which defines the orientation of the M2-1 and P
moieties in the heteromultimeric complex. Functional dissection of residues that
comprise the M2-1/P binding site using minigenome analysis confirmed the critical
nature of the M2-1/P interaction. Lastly, after analysis of the relative binding affinities
of the M2-1 ligands, we present an updated model of the role of M2-1 in transcription.

RESULTS
Delineation of the HRSV M2-1 interaction domain within P. NMR analysis and

secondary structure prediction indicate that HRSV P comprises largely unstructured N-
and C-terminal sequences flanking short ordered regions involved in homo- and
heterotypic interactions, including an oligomerization domain (residues 126 to 163),
M2-1, and N and L interaction sites, as well as a distinct site that interacts with N in
assembled RNPs (28–37). Previous work by others using minigenome analysis has
identified P residues important for M2-1 interactions, comprising residues 100 to 120
(25). More recently residues 90 to 112 were implicated in M2-1 binding using NMR,
whereas residues 93 to 110 were defined as being sufficient for M2-1 binding using a
glutathione S-transferase (GST)-pulldown assay (20). Here we sought to confirm inde-
pendently the identity of P residues involved in the M2-1 interaction, prior to embark-
ing on further biochemical and structural studies.

Various full-length and truncated P constructs (Fig. 1A) were expressed as GST fusion
proteins in bacterial cells, bound to glutathione resin, and incubated with full-length
native tetrameric M2-1. The resulting complexes were analyzed by SDS-PAGE (Fig. 1B).
Efficient M2-1 binding and subsequent pulldown were retained for constructs P1–241,
P90 –160, and P90 –110, whereas no binding was evident for N-terminal construct 1– 89.
These results are in close agreement with previous findings, and show that P residues
90 to 110 are sufficient to bind M2-1.

Crystal structure of HRSV M2-1 bound to P90 –110. Following biochemical
characterization of M2-1/P binding, we next sought to understand the molecular basis
for this interaction by obtaining high-resolution structural data of the M2-1/P complex
using X-ray crystallography. Native M2-1 was purified as tetramers and incubated with
P90 –110 in a 1:1 molar ratio prior to concentration and crystallization trials. The
resulting crystals exhibited a needle morphology, in contrast to the plate-like crystals
previously described for M2-1 alone, and X-ray diffraction data were collected with a
maximum resolution of 2.4 Å (Table 1). The data set was processed and the structure of
the complex solved by molecular replacement with one monomer of M2-1 (PDB no.
4C3B) as the reference search model. The electron density difference maps revealed a
continuous area of density not accounted for by M2-1 and which appeared to be a
peptide that exhibited helical secondary structure. The peptide density was confirmed
by calculating an omit map. The P90 –110 peptide was manually built into this density,
with side chains modeled after several rounds of refinement.

The cocrystal structure of M2-1/P90 –110 was solved in the P21 21 2 space group,
with a single tetramer in the asymmetric unit comprising four copies of M2-1, each
bound to a single molecule of P90 –110 with 1:1 stoichiometry (Fig. 2A). Residues 97 to
109 of the P90 –110 peptide were reliably discernible in the density difference maps,
and all four P90 –110 molecules were orientated with equivalent pose on the surface of
the respective M2-1 monomers. The orientation of the four P90 –110 molecules on the
M2-1 tetramer defines the relative orientation of M2-1 and P in the heterotypic
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complex. On the basis of this model, we propose that, in the absence of RNA, each M2-1
tetramer associates with a single P tetramer, with all four P binding sites of M2-1 being
occupied.

The P90 –110 peptide forms a single alpha helix that lies along a cleft formed by
three alpha helices (�7, �8, and �9) of M2-1 that build up one face of its globular core
(Fig. 2B). The P90 –110 peptide binds to this face in a position that includes residues
previously identified as important for binding P and also binding RNA. Here, we reveal
the atomic details of interactions that drive these associations. The M2-1/P interface
involves ionic, hydrophobic, and hydrogen bond interactions (Fig. 3), and of the 16
residues of M2-1 that lie within 4 Å and interact with P90 –110, 15 of these are
conserved across the various respiratory syncytial orthopneumoviruses within the
Pneumoviridae family (see Fig. S1 and S2 in the supplemental material). P90 –110 is
orientated such that hydrophilic side chains of K100, K103, E104, and E107 are facing
mostly toward the solvent, whereas hydrophobic residues P97, F98, L101, and I106 are
mostly facing toward the cleft within the M2-1 core (see Fig. S3 in the supplemental
material).

R126 of M2-1 interacts with P90 –110 residues E104, E107, and T108 by a combina-
tion of ionic and hydrogen bond interactions. M2-1 residue T130 interacts with T108 of
P90 –110, whereas Y134 interacts with T105. There is a total of 10 plausible hydrogen
bonds, with R126 making what appear to be important salt bridges to E104 and E107
(Fig. 3). There are a multitude of hydrophobic interactions along the length of the P
peptide, highlighted by L148 of M2-1 packing against L101 and Y102 of the P peptide.

There are no major changes to the backbone positions of M2-1 upon binding of the
P peptide when comparing the P bound complex (PDB no. 6G0Y) with M2-1 alone (PDB
no. 4C3B). The root mean square deviation (RMSD) on superposition of 158 carbon
alphas is only 1.097 Å, suggesting very little structural rearrangement on P binding. The

FIG 1 Expression of GST-tagged P proteins, and their interactions with HRSV M2-1. (A) Schematic of GST
fusion constructs, with P moieties shown as yellow rectangles, GST as a black circle and M2-1 as a cartoon
representation of the tetramer atomic model. (B) SDS-PAGE analysis of lysates and pulldowns, with lanes
labeled to correspond with the schematic above. Proteins were visualized by Coomassie staining. Lanes
1 to 6 contain protein expression lysates. Lanes 7 to 11 show analysis of GST pulldowns, in which GST-P
constructs were incubated with full-length M2-1, and eluted bound proteins were analyzed and
visualized by SDS-PAGE, followed by Coomassie staining.
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M2-1 side chains of R126 and Y134 move to satisfy the hydrogen bonds, as described
in Fig. 3, but other than that, there is little movement of side chains required to
accommodate the P peptide. The loop on M2-1 containing S58 and S61 (19), which are
dynamically phosphorylated in HRSV-infected cells, appears to be slightly more ordered
(the electron density for this region is clearer) in the complex crystal structure. However,
whether this is because the loop is ordered upon P binding or otherwise results from
crystal packing is currently unknown.

Testing the importance of residues within the M2-1/P interface for mRNA
transcription. The crystal structure of the M2-1/P90 –110 complex revealed molecular
details of the M2-1 and P interface, defining the contacts that drive this interaction. We
next tested the relevance of these contacts using an HRSV minigenome system that
provides a quantitative measure of the functionality of the HRSV polymerase complex.
In this system, mammalian cells are transfected with cDNAs expressing the protein
components of the HRSV polymerase complex, namely N, P, L, and M2-1, along with a
cDNA expressing a minigenome. The minigenome is bicistronic, with two transcription
units separated by an authentic HRSV gene junction, with the downstream gene
encoding green fluorescent protein (GFP) as a reporter protein. Expression of enhanced
GFP (eGFP) in this system is entirely dependent on functionality of the polymerase

TABLE 1 Crystallographic data

Parametera

Result for
parameter shownb

Wavelength (Å) 0.98
Space group P21212
Unit cell dimensions a, b, c (Å) 96.55, 116.52, 72.63
� � � � � (°) 90
No. of total reflections 402,467 (29,942)
No. of unique reflections 32,012 (2,309)

Resolution shells (Å)
Low 74.35–2.42
High 2.48–2.42

I/��I� 9.5 (2.2)
Rmerge (%) 15 (95)
Rpim (%) 6.4 (39)
Rmeas (%) 16.6 (0.96)
Solvent content (%) 47
Vm (Å3/Da) 2.32
No. of molecules/AU 4 monomers
Completeness (%) 100 (98.6)
Multiplicity 12.6
Rwork (%) 22
Rfree (%) 28
No. of atoms used in refinement 6,022
No. of water molecules 229
Mean B values (Å2) 57

RMSD
Bond lengths (Å) 0.1
Bond angle (°) 1.7

Ramachandran plot (%)
Preferred region 95.81
Allowed region 3.47
Outlier 0.72

MolProbity score
Clashscore for all atoms 7.5
Score for protein geometry 2.6

aShown are HRSV M2-1/P90 –110 complex data represented by PDB code 6G0Y. Rpim, precision-indicating
Rmerge; Vm, specific volume (Matthews coefficient); AU, asymmetric unit.

bValues in parentheses represent the highest-resolution shell.
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complex, including the M2-1/P interaction, and is detected and quantified by real-time
analysis of eGFP fluorescence in living cells.

On the basis of the crystal structure of the M2-1/P90 –110 complex, the cDNAs
expressing M2-1 and P proteins were altered in order to mutate selected amino acids
at the interaction interface. M2-1 mutants comprised R126A, R126E, T130A, Y134A, and
L148A, whereas the P mutants were F98A, Y102A, E104A, and T105A. These altered
cDNAs were substituted for the corresponding wild-type (WT) cDNAs in minigenome
experiments, and in addition, selected pairings of cDNAs expressing mutant M2-1 and
P proteins were also transfected to examine the combined effect of simultaneously
altering interacting residues from both components of the M2-1/P complex (Fig. 4).

Of the M2-1 mutants, only R126E and L148A resulted in significant disruption of
minigenome activity, with eGFP fluorescence values reduced to approximately 30%
that of WT M2-1. The reduction in activity of the R126E mutant is consistent with the
role of R126 in forming electrostatic interactions with multiple P residues, including
E104 and E107 (Fig. 3). In particular, disruption of the interaction between R126 and
E107 likely contributes in major part to loss of minigenome activity due to the close

FIG 2 Crystal structure of the M2-1/P complex. (A) The M2-1 monomer in the M2-1/P complex is shown
with alpha helices numbered sequentially from N- to C termini. The N-terminal zinc-binding domain is
shown with a coordinated zinc ion (red sphere), the oligomerization helix is shown in pink, the core
domain is shown in blue, and the P90 –110 peptide is shown in orange. (B) The M2-1/P complex with
M2-1 in its tetramer state, color coded as in panel A. Models were constructed using PyMol.

FIG 3 Details of M2-1/P electrostatic interactions as revealed by the M2-1/P90 –110 cocrystal structure.
M2-1 residues are labeled in blue, and P peptide residues are labeled in orange. Hydrophobic residues
mutated in replicon experiments are also highlighted. The figure was generated using PyMol (PyMOL
Molecular Graphics System, version 1.7.2.3; Schrödinger, LLC.).
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proximity of these interacting groups (2.59 Å). The significant reduction in minigenome
activity exhibited by the L148A substitution is consistent with the observed hydropho-
bic interaction of this residue with L101 from P90 –110.

Of the P mutants, alanine substitutions at residues F98, Y102, and T105 resulted in
significantly reduced minigenome activity, consistent with these residues playing
important roles in mediating the M2-1/P interaction. Interestingly, the E104A substitu-
tion had no significant effect on polymerase function. We suggest here that alternative
residues located on the M2-1 surface can still make other interactions to keep P in
place. The simultaneous incorporation of altered M2-1 and P proteins had an additive
effect on minigenome activity (Fig. 4), with most reduced activity exhibited by com-
bining mutants R126E and F98A, which reduced eGFP expression to that of the minus
M2-1 control. Taken together, the results from the minigenome analysis validate the
structural analysis of the M2-1/P interface, confirming that multiple interacting residues,
as described above, are important for maintaining the integrity of the complex.

Quantification of the M2-1/P90 –110 interaction using fluorescence anisotropy.
The results of the previous section showed binding of P90 –110 involves residues of
M2-1 previously identified as interacting with RNA (26, 27), further establishing that
RNA and P occupy overlapping binding sites on the M2-1 surface. Therefore, we next
wanted to quantify and compare the relative affinities of M2-1 for both P90 –110 and
RNA, to establish whether one ligand may outcompete the other, which would have
functional consequences during the HRSV life cycle.

Previously, we determined that native tetrameric M2-1 exhibited various affinities
for RNAs, depending on both their size and sequence (27); positive-sense gene end
sequences (A-rich) exhibited affinities with dissociation constant (Kd) values ranging
between 46.5 and 263 nM, whereas negative-sense gene end sequences (U-rich) ex-
hibited significantly reduced affinities, with Kd values between 860 and �10,000 nM.
The highest recorded affinity was for poly(A) RNA oligomers 13 nucleotides in length
(A13; Kd �19 nM) (27).

The affinity of P90 –110 binding to M2-1 was examined by fluorescence anisotropy
(FA) using tetrameric M2-1 and a fluorescein-labeled P90 –110 peptide (Fig. 5A). This
peptide bound weakly to M2-1, with an apparent Kd of 7.5 �M, which was nearly 3
orders of magnitude lower than that previously determined for A13 and lower than
those for almost all other RNAs previously tested (27). On the basis of this finding, we

FIG 4 Examination of the role of M2-1 and P residues in forming a functional M2-1/P complex active for
HRSV gene expression. Critical residues that comprise the M2-1/P interface were altered, and the
corresponding M2-1 and P proteins were used to reconstitute the HRSV transcriptase complex, along
with unaltered N and L proteins, using a minigenome system. The ability of M2-1 mutants (green bars),
P mutants (red bars), or double M2-1/P mutants (blue bars) to form a functional complex able to support
transcription of a GFP reporter gene from the supplied minigenome was quantified by counting the
intensity of GFP expression in minigenome-harboring cells. The histogram shows relative GFP intensity,
normalized to GFP expression from cells transfected with wild-type minigenome components. Signifi-
cance values: ****, P � 0.0001; ***, P � 0.001; **, P � 0.01; * P � 0.05.
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next examined whether various RNA sequences were able to outcompete M2-1/P
binding. This was achieved by measuring FA of M2-1 bound to fluorescein-labeled
P90 –110 in the presence of increasing concentrations of unlabeled RNA ligand, which
revealed P90 –110 was outcompeted by A13 with a 50% inhibitory concentration (IC50)
of 1.7 �M (Fig. 5B). In contrast, none of the RNAs tested could be outcompeted by
P90 –110 (data not shown). These findings suggest for each binding site, the binding of
P or RNA is mutually exclusive and that binding of an RNA sequence that exhibits high
affinity, such as an A-rich gene end or poly(A) tail, would likely displace a monomer of
P from the M2-1 surface.

DISCUSSION

The elucidation of the relative orientation of the M2-1 and P monomers now allows
us to add further detail to the model that describes the architecture of the HRSV RdRp
transcriptase complex and the molecular basis for M2-1 function. Our data show that
P90 –110 orientates within a cleft on the surface of M2-1 such that its N terminus faces
the N-terminal surface of M2-1, adjacent to the zinc-binding domain (ZBD). The
M2-1/P90 –110 cocrystal structure identifies amino acid side chains within the M2-1/P
interface that drive the formation of this complex. This orientation of P was previously
proposed, based on mutagenesis and NMR interaction data (20), and here this orien-
tation is explicitly defined. If the various interacting domains of P are arranged in a
linear fashion, this would also dictate that the N terminus of M2-1 would face away
from both the RdRp and the RNP template, which is consistent with the RNP binding
site at the P C terminus (Fig. 6). Consequently, as the RNA and P binding sites overlap,
this would also define the orientation of the RNA binding surface relative to the
polymerase active site and RNA exit channel. This coincides with the orientation of the
short deoxyoligonucleotide that was cocrystallized with M2-1 from HMPV, for which
the 5= end was in contact with the N-terminal face of M2-1 alongside the ZBD, with the
RNA 3= end in contact with the opposing C-terminal face (38). Our model proposes that

FIG 5 Fluorescence anisotropy measurements of M2-1/P interactions. (A) Direct binding of M2-1 with
fluorescein-labeled P90 –110. Data points are from experiments performed in triplicate, with a P90 –110
concentration of 10 nM. (B) FA competition assay in which fluorescein-labeled P90 –110 was outcom-
peted for M2-1 binding by unlabeled poly(A) RNA 13-mer.
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the RNA binding surface of M2-1 is positioned such that it would be able to interact
with a nascent RNA as it emerged from the RdRp (Fig. 6).

The higher affinity of M2-1 for almost all tested RNAs over P90 –110 (as much as
1,000-fold higher) suggests that nascent RNAs will likely displace P from the shared
binding site, provided the RNA sequence is A-rich. As each RdRp only transcribes one
RNA molecule at a time, it is likely that only one P monomer will be displaced from the
RNA/P binding site, allowing M2-1 to associate with both P and RNA simultaneously in
a 4:3:1 stoichiometry, as suggested in Fig. 6. However, we cannot formally rule out the
possibility that the nascent RNA adopts a folded state that can either interact with more
than one RNA binding site on M2-1 or otherwise disrupt P binding by steric hindrance.

Determining the fate of this tripartite M2-1/P/mRNA complex will be critical in
understanding the mechanism of action of M2-1. The ability of M2-1 to bind most
tightly to A-rich sequences, such as those found at the 3= end of the mRNA [e.g., at the
gene end or the poly(A) tail itself] leads us to speculate that M2-1 acts following the
emergence of these high-affinity sequences from the RdRp active site, which is neces-
sarily during transcription termination. Therefore, one possibility is that the nascent and
newly terminated mRNA could bind to M2-1 to form the tripartite M2-1/P/RNA com-
plex, and on account of the high affinity of M2-1 for these A-rich 3= sequences, the
released mRNA could displace M2-1 from the P/L RdRp complex. The likelihood of this
displacement will depend on the relative affinities of M2-1 for the single strand of
nascent RNA in relation to three remaining molecules of P. In view of this, it is important
to acknowledge that our FA competition assay measures the assembly and disassembly
of the M2-1/P complex in which M2-1 is in its native tetramer form, whereas P90 –110
exists as a monomer rather than the native tetramer form of P. In the context of a
tetramer/tetramer M2-1/P interaction, it is likely that M2-1/P affinities are influenced by
avidity and that the overall affinity of M2-1 for P tetramers will be significantly higher

FIG 6 Schematic representation of the interaction between M2-1 and P in the context of the transcribing
HRSV polymerase complex. The orange helix represents RNP. L (red) and P (blue) form the complex that
generates mRNA. M2-1 (gray) is recruited to the complex via P. The P90 –110 peptide is displaced from
one of the P binding sites on M2-1 by A-rich RNA.
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than for the monomeric P peptide, a topic that has recently been explored by others
(39).

An important clue to the fate of terminated HRSV mRNAs was recently revealed, in
which M2-1 was identified in association with polyadenylated mRNAs within specialized
compartments termed inclusion body-associated granules (IBAGs) (12). IBAGs are as-
sociated with inclusion bodies that are the putative sites of HRSV RNA synthesis. Here,
M2-1 is proposed to play a posttranscriptional role in the expression of the HRSV
mRNAs, possibly in stabilizing (or protecting) mRNAs, helping their export to the
cytosol, and/or enhancing their translation. Importantly, within the IBAGs, M2-1/mRNA
complexes are not associated with P, and this is consistent with the above scenario,
where following transcription termination, the released mRNA displaces M2-1 from P.
This would also exclude the ribonucleoprotein from the IBAG, as is observed.

While this possibility is attractive and explains the colocalization of M2-1 with
mRNAs, one particular aspect of this model presents a major incongruity that we
cannot currently reconcile: this relates to M2-1 abundance. Critically, for each mRNA to
dissociate from the RdRp along with a bound M2-1 tetramer, the abundance of M2-1
would need to exceed that of all mRNAs combined by 4-fold. According to the long
established dogma that describes the Mononegavirales transcription gradient (40), M2-1
gene expression is expected to be relatively low, and examination of HRSV transcript
abundance by next-generation sequencing would appear to back this up (41). One
possible explanation for this apparent discord is that M2-1 is rather stable and may also
be recycled by the dynamic phosphorylation, allowing M2-1 in IBAGs to return to the
site of transcription to associate with further mRNAs.

A deficit in M2-1 abundance would be particularly evident during the process of
primary transcription, if the RdRp bound to the infecting vRNA is the only source of
M2-1 in the newly infected cell. Once the first (NS1) mRNA was transcribed, dissociation
of M2-1 from the resident RdRp would prevent further productive transcription, as no
more M2-1 would be available as a replacement. However, if M2-1 is also associated
with the matrix in the virion, as proposed (10), then the virion may bring sufficient M2-1
to an infected cell to start effective transcription.

An alternative outcome of M2-1/RNA binding is that the terminated mRNA may be
released in an unbound form, such that the association of the M2-1/P complex
alongside the L protein remains intact. In this scenario, it is interesting to speculate why
M2-1 might associate with 3= mRNA or poly(A) sequences and how this may relate to
the functions of M2-1 in processivity, antitermination, or translation. One possibility is
that M2-1 plays a stimulatory role in mRNA polyadenylation. Perhaps the 3= end of a
nascent transcript interacts with M2-1, which in turn induces the P/L RdRp complex to
switch from a processive templated polymerization mode into a reiterative polymer-
ization mode, in which the short gene end U-tract is repeatedly copied to generate the
3= poly(A) tail.

Such a role would be consistent with previous reports of truncated mRNAs detected
in the absence of M2-1, as tail-less RNAs would be rapidly degraded. In addition,
stimulation of polyadenylation would also be consistent with the translation role of
M2-1 within IBAGs, with the poly(A) tail facilitating translation through mRNA circular-
ization. Further structural, biochemical, and cellular investigations of M2-1 and its
binding partners will aid in resolving these critical questions surrounding the role of
M2-1 in HRSV gene expression.

MATERIALS AND METHODS
GST-tagged HRSV P expression and purification. A cDNA of the P gene (A2 strain) was cloned into

the pGEX-6P-2 plasmid to allow expression in Escherichia coli BL21(DE3) of full-length and truncated P
sequences fused at their N terminus to the GST affinity tag. PCR was used to engineer all truncations
within the P open reading frame (ORF), leaving the GST tag unaffected. Bacteria were transformed with
pGEX-6P-2-derived plasmids, grown to an optical density at 600 nm (OD600) of 0.8, at which time
expression was induced by the addition 0.1 mM IPTG (isopropyl-�-D-thiogalactopyranoside) followed by
further incubation at 37°C for 18 h. Cells were pelleted by centrifugation and stored at �80°C.

GST pulldown assay. GST protein and GST-P fusion proteins were expressed as described above. Cell
pellets from 10-ml bacterial cultures were suspended in 1 ml pulldown buffer (25 mM Tris/HCl [pH 7.4],
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150 mM NaCl, 1 mM dithiothreitol [DTT]) and sonicated for 2 min on ice. Lysates were clarified by
centrifugation.

Glutathione Sepharose 4B (GE Healthcare) was prepared by adding 200 �l to microcentrifuge tubes.
The resin was washed with water and equilibrated with pulldown buffer using the batch method.
Clarified lysates of GST or GST-P were added to the resin and incubated at room temperature for 5 min.
The lysates were then removed, and the resin was washed three times with pulldown buffer. Purified
M2-1 protein (1 mg) was added to the resin-bound GST-P proteins and incubated at room temperature
for 5 min. The resin was washed extensively, and the resin slurry was mixed with SDS loading dye, boiled,
and analyzed by SDS-PAGE.

HRSV M2-1 protein expression and purification. A cDNA representing the M2-1 ORF (strain A2)
was inserted into plasmid pGEX-6P-2 to allow expression of M2-1 fused at its N terminus to GST. M2-1
was separated by the PreScission protease cleavage sequence to allow removal of the GST moiety, as
described previously (27). Starter cultures of transformed E. coli BL21(DE3) Gold cells were grown at 37°C
until an OD600 of 0.8 was reached, after which expression was induced by the addition of 0.5 mM IPTG,
and cultures were supplemented with 50 nM ZnSO4. Cells were maintained at 18°C for 16 h and pelleted
by centrifugation. The cells were then resuspended in lysis buffer (25 mM Tris-HCl [pH 7.4], 1 M NaCl,
1 mM DTT, 5% glycerol, 0.1% Triton X-100, protease inhibitor tablet [Roche]) and subjected to 4 cycles
of freezing/thawing followed by the addition of 1 �g/ml RNase/DNase. Lysates were clarified by
centrifugation, and the supernatant was applied to glutathione Sepharose 4B resin by gravity flow.
Following extensive washes using lysis buffer and cleavage buffer (25 mM Tris-HCl [pH 7.4], 150 mM NaCl,
1 mM DTT, 5% glycerol), the fusion protein was cleaved on the column using PreScission protease,
followed by elution with 2 column volumes (CVs) of cleavage buffer. Eluted protein was subjected to
ion-exchange chromatography using SP Sepharose resin in low-salt buffer (25 mM Tris-Cl [pH 7.4], 50 mM
NaCl, 5% glycerol, 1 mM DTT). Following washes with 5 CVs of low-salt buffer, proteins were eluted in a
mixture of 25 mM Tris-Cl (pH 7.4), 600 mM NaCl, 5% glycerol, and 1 mM DTT. Fractions containing purified
M2-1 protein were concentrated using a 10-kDa Vivaspin concentrator (GE Healthcare) and flash frozen
in liquid nitrogen.

Crystallization of the M2-1/P90 –110 complex. M2-1 was further purified for crystallization exper-
iments by size exclusion chromatography. The protein sample was applied to a Superdex 75 column
equilibrated in a mixture of 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, and 1 mM DTT. Collected fractions
were concentrated using 10-kDa molecular weight cutoff filters to be used in downstream experiments.

Residues 90 to 110 of the HRSV P (strain A2) were synthesized by ProteoGenix in an unlabeled form,
and resuspended in a mixture of 25 mM Tris-HCl (pH 7.4) and 150 mM NaCl. Purified M2-1 was mixed with
P90 –110 in a 1:1 molar ratio and subsequently concentrated to 8 mg/ml. Crystallization trials were
performed using a Formulatrix NT8 liquid handling robot to set up sparse matrix screens in an MRC
96-well plate robot using the sitting drop vapor diffusion method at 18°C. Crystallization conditions were
screened for crystal formation using the Formulatrix Rockimager 1000. Crystals exhibiting both the
previously reported plate morphology as well as an alternative needle morphology were obtained.
Optimization was focused on the needle-like crystal conditions, which were optimized for polyethylene
glycol (PEG) concentration to 0.2 M trimethylamine N-oxide dihydrate, 0.1 M Tris-HCl (pH 8.5), and 2%
PEG MME 2000. Crystals were picked with appropriately sized nylon loops (Hampton Research) and
cryo-cooled in mother liquor substituted with 5% glycerol, 5% PEG 400, 5% 2-MPD (2-methyl-2,4-
pentandediol), and 5% ethylene glycol.

Data collection and structure solution. Data for all M2-1/P crystals was collected at the Diamond
Light Source, beamline I02, to a maximum resolution of 2.4 Å, and all X-ray data were integrated into
space group P21212. All crystallographic calculations and refinement were performed using CCP4 suite
(42), and the structure was solved by molecular replacement.

Mutagenesis and minigenome assay. The ability of the HRSV M2-1 and P proteins to functionally
interact was measured using the previously described HRSV minigenome assay (26). Briefly, BSRT7 cells
in 6-well plates were transfected using Lipofectamine 2000 (Thermo Fisher) in Opti-MEM (Thermo Fisher)
with plasmids expressing HRSV N, P, L and M2-1 proteins, along with a plasmid expressing an RNA
minigenome. This RNA template possessed intact HRSV promoter regions and the M/SH gene junction
separating two transcriptional units. Expression of eGFP from the downstream gene was dependent on
expression of M2-1 and P, as well as their ability to interact, and was measured in live cells after 24 h
using an Incucyte Zoom (Essen Bioscience). Levels of eGFP expression were used to quantify the total
number of eGFP-expressing cells in each well, which was normalized to complete transfections with
unaltered HRSV plasmids.

RNA binding and competition studies. The ability of P90 –110 and various RNA sequences to bind
to M2-1 either individually or in competition was examined using fluorescence anisotropy (FA). Oligo-
ribonucleotides of various sequences were synthesized with a 3= fluorescein label, all in the 2= ACE
protected form (Dharmacon) whereas peptide P90 –110 was synthesized by ProteoGenix with a fluores-
cein labeled at its N terminus. FA assays were carried out in 384-well format, in RNA binding buffer
(20 mM Tris-Cl [pH 7.5], 150 mM NaCl, 0.01% Triton X-100). Direct binding of either P90 –110 or RNA
oligomers to M2-1 was assessed using 10 nM fluorescein-labeled ligand and increasing concentrations
of M2-1 protein (0.1 nM to 300 �M). Following a 30-min incubation at room temperature, polarization
was measured using a EnVision 2,103 multilabel plate reader (Perkin Elmer) equipped with a 480-nm
excitation filter and 530-nm S- and P-channel emission filters. Experiments were performed in triplicate,
and data were expressed as the fraction of RNA bound, plotted against protein concentration and fitted
by standard logistic regression using OriginPro 8.6 (Origin Lab), as previously described. Dissociation
constants (Kds) were averaged from the Kd calculated from each triplicate data set. Competition studies
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were performed by incubating 1 �M M2-1 and 10 nM fluorescein-labeled P90 –110 at room temperature
for 10 min, after which serial dilutions of unlabeled RNA competitor was added, and the plate was
incubated for a further 30 min at room temperature, prior to analysis as described above.

Accession number(s). The X-ray structure of the M2-1:P protein complex has been submitted to the
PDB database under accession no. 6G0Y.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01554-18.
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