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Modelling cellularmetabolism is a strategic factor in investigatingmicrobial behaviour and interactions, especial-
ly for bio-technological processes. A key factor for modelling microbial activity is the calculation of nutrient
amounts and products generated as a result of the microbial metabolism. Representing metabolic pathways
through balanced reactions is a complex and time-consuming task for biologists, ecologists, modellers and engi-
neers. A newcomputational tool to representmicrobial pathways throughmicrobialmetabolic reactions (MMRs)
using the approach of the Thermodynamic Electron Equivalents Model has been designed and implemented in
the open-access frameworkNetLogo. This computational tool, calledMbT-Tool (Metabolismbased onThermody-
namics) can write MMRs for different microbial functional groups, such as aerobic heterotrophs, nitrifiers, deni-
trifiers, methanogens, sulphate reducers, sulphide oxidizers and fermenters. The MbT-Tool's code contains
eighteen organic and twenty inorganic reduction-half-reactions, fourN-sources (NH4

+, NO3
−, NO2

−, N2) to biomass
synthesis and twenty-fourmicrobial empirical formulas, one ofwhich can be determined by theuser (CnHaObNc).
MbT-Tool is an open-source program capable of writing MMRs based on thermodynamic concepts, which are
applicable in a wide range of academic research interested in designing, optimizing and modelling microbial
activity without any extensive chemical, microbiological and programing experience.

© 2016 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

For the construction and development ofmodels of living organisms,
it is necessary to describe their physical constants, physiological
reactions, interactions and responses to the environment. A robust
model of any living system must include chemicals and conservation
principles, and relate stoichiometric mass balance with the laws of
conservation of energy. Most biochemical processes that involve
energy transduction close to the balance can be studied using a non-
equilibrium thermodynamic approach. Intuitively, a complete model
has a number of sub-models that take into account the compartmental-
ized structure of living organisms; and specifically the metabolic sub-
model should include descriptions of different parts and functions of
their developmental stages [1–3].

The use of microbial metabolic reactions (MMRs) that include the
microbial bio-mass as a product or as a reactant is a relevant task for
.ec (P. Araujo Granda),

. Ginovart).

. on behalf of Research Network of C
modelling microbial activity. An MMR is the written version of a
biochemical process. The stoichiometry is a part of the chemistry that
permits the writing of balanced equations because it studies the molar
relation between the reactants and the products in a chemical reaction.
There are several reasons to suggest that the presence of micro-
organisms in a biochemical process complicates the stoichiometry.
First, biochemical reactions often involve oxidation and reduction of
more than one chemical species. Second, the micro-organisms have
two different roles: they perform the reaction and also they are the
final products of it. Third, the micro-organisms produce several chemi-
cal reactions in order to capture part of the liberated energy for cell
synthesis [4,5]. The overall procedure for representing these reactions
in balanced equations is a considerable and sometimes complex task
for biologists, ecologists, modellers, and engineers, among others.

The cellular metabolism has been studied, investigated and de-
scribed at many levels ranging from traditional enrichment tools, mo-
lecular and genetics tools, mathematical modelling of micro-biological
multispecies systems, to non-equilibrium thermodynamics [4,6]. In
the field of non-equilibrium thermodynamics, several approaches
have been reported to develop a rigorous thermodynamic description
omputational and Structural Biotechnology. This is an open access article under the CC BY
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for biomass yield prediction based on the energy-transfer-efficiency (ε)
between catabolism and anabolism [4,5,7–14], while other thermody-
namic approaches correlate the biomass yield calculations with the
Gibbs energy dissipations [6,15–21]. In brief, the thermodynamic ap-
proaches explain how catabolic and anabolic reactions are coupled to
predict the biomass yield in terms of standard Gibbs energy. Consider-
ing these diverse approaches in the bio-thermodynamics field, this
study takes into consideration the one that is based on ε, because it in-
cludes: i) the standard Gibbs energy for cell synthesis from different
carbon-sources and nitrogen-sources, ii) the energy available from
substrate transformation, and iii) the ε to the overall metabolic process.
In addition, choosing the thermodynamic approach allows the predic-
tion of full stoichiometric relationships for biological reactions in the
absence of experimental yield values [5,12].

One powerful tool that is currently revolutionizing the study of
microbial biotechnology is the mathematical and computing modelling
that explicitly takes into account the microbial diversity and the
exchanges of nutrients and materials within the micro-organism
community and its surrounding environment [22,23]. Models such as
individual-based models (IBMs) [24–27], metabolic energy-based
modelling (EBMs) [28], reaction-centric models (RCMs) [29], and
even, deterministic-population models (DPMs) [30] can obtain useful
information from a MMR. The reason is that these reactions, or the
stoichiometry between chemical species described in the metabolic
sub-model, can help in understanding how the microbial interactions
happen and why microbial systems behave as they do.

Environmental microbiologists could take advantage of the knowl-
edge of metabolic reactions because usually the chemical resources for
the micro-organisms are the pollutants that technicians must control
[4]. In addition, the information provided by MMRs could be of impor-
tance in other engineering fields because they provide information
about the quantities of chemicals required to satisfy microbial require-
ments as well as the quantities of the generated end products [5].

In this context, the principal aim of this contribution is to develop
a computational tool to write MMRs for processes driven by a range of
microbes based on the Thermodynamic Electron Equivalents Model
(TEEM), a methodology proposed by Perry L. McCarty [4,7–9,11],
which is the baseline of many current bio-technological studies
[4,27,31].

The specific objectives are: (i) to implement the tool on the open-
access platform NetLogo to distribute the source-code among the
scientific community, (ii) to promote its use and to encourage future
extensions and adaptations; and (iii) to test the computational tool by
writing of some MMRs.

This manuscript presents the following structure: Section 2
describes the TEEM thermodynamic approach, the basic concepts
about the empirical chemical composition used to represent the
microorganisms and the open-access software used to implement the
computational tool; Section 3 describes the design, performance and
application of the computational tool and presents some MMRs for
diverse metabolic functional groups of micro-organisms; and finally
Section 4 presents some final remarks and possible future applications
for this work.

2. Materials and Methods

2.1. TEEM: the thermodynamic approach

The Thermodynamic Electron Equivalents Model (TEEM) is de-
signed to study the stoichiometry and kinetics of a wide variety of
biological treatments of wastewaters. TEEM writes a stoichiometric
reaction to describe the overall cellular metabolism from reduction-
half-reactions for: the electron-donor (Rd), electron-acceptor (Ra) and
cell synthesis (Rc). TEEM is based on terms of the standard Gibbs free
energy involved in these reactions and in how the energy between
catabolism and anabolism is coupled [4,7–11].
For the use of TEEM, no specific and detailed knowledge of metabo-
lism is required. First, we have to identify the electron donor(s) (eD)
and the electron acceptor(s) (eA) and write reduction-half-reactions
for each one of them. Second, it is necessary to establish the N-source
for biomass synthesis, and third, it is essential to determine the
empirical chemical formula that will represent the microbial cells.

TEEM has two versions, the first one, TEEM1 [4], considers a realistic
formulation of the anabolic reaction taking into account different N-
sources such as ammonium (NH4

+), nitrate (NO3
−), nitrite (NO2

−) and
di-nitrogen (N2), and a complete explanation of ε between catabolism
and anabolism. The second version, TEEM2 [11], complements TEEM1
because it considers oxygenase reactions involved and the aerobic
heterotrophic oxidation of C1 organic compounds.

According to TEEM, themetabolic energy is obtained from the redox
reaction between an eD with an eA. The electrons are obtained from eD
and transferred to intra-cellular intermediates. In TEEM1 the intermedi-
ate is the pyruvate with its half-reaction standard Gibbs free energy
equal to 35.09 kJ/eeq, and in TEEM2 the intermediate is acetyl-CoA
with its half-reaction standard Gibbs free energy equal to 30.9 kJ/eeq.
The intermediate compounds bring the electrons towards the eA,
which is being reduced causing the initial carrier regeneration [11].

TEEM calculates microbial yield (Yc/c) using a relation between the
standard Gibbs free energy of the catabolic and anabolic reactions and
an appropriate ε value. The microbial catabolism is represented by the
energy reaction (Re). To write it we have to combine Rd with Ra. Once
Re is known, it is necessary to represent the microbial anabolism by
writing the reaction for microbial biomass synthesis (Rs), and to do
this we have to combine Rd with Rc.

Rc is a hypothetical half-reaction, which considers as reactants the
N-source (NH4

+, NO3
−, NO2

− or N2), carbon dioxide (CO2) and bicarbon-
ate (HCO3

−), and as products water and the microbial biomass repre-
sented by an empirical chemical formula of cells (CnHaObNc). This
empirical chemical formula considers the molar relationships only for
four basic elements: Carbon (n), Hydrogen (a), Oxygen (b) andNitrogen
(c). To establish the adequacy of this formula, researchers compared
theoretical thermodynamic calculations using the cell's empirical
chemical formula with the thermodynamics of growth of the same
micro-organism on several substrates using batch cultures growing in
the exponential phase at μmax [32–35]. If the formula only considers
four elements, the fitness is close to 95%, but if we include two more
elements, e.g. phosphorous and sulphur, the fitness increase its value
to around 98–99% [36,37].

To estimate the standard Gibbs free energy of Rc (ΔGpc), TEEM
proposes a value of 3.33 KJ per gram cells [4,9,11], which is related to
one generic microbial cell composition C5H7O2N when NH4

+ serves as
the N-source for cell synthesis. The ΔGpc value is valid in the context
inwhich TEEMwas developed. This does notmake a great deal of differ-
ence in calculated microbial yields, but is felt to be an acceptable
theoretical choice [11]. In other research fields, e.g. bio-geochemical
processes in marine environments, and taking into account different
pressure, temperature, pH and N-sources for cell synthesis the reported
ΔGpc value is 302 J per gram cells [3,37,38]. Moreover, TEEM considers
in its internal structure the possibility of using four different N-sources
to write Rc [4]. The theoretical explanation is thatmicro-organisms pre-
fer to use ammonium as an inorganic nitrogen source for cell synthesis,
because it is already in the (-III) oxidation state, the status of organic ni-
trogen within the cell. However, when ammonium is not available for
cell synthesis, many prokaryotic cells could use oxidized forms of
nitrogen as alternatives. Therefore, nitrate (NO3

−), nitrite (NO2
−) and

di-nitrogen (N2) are included as nitrogen sources. When an oxidized
form of nitrogen is used, micro-organisms must reduce it to the (-III)
oxidation state of ammonium, a process that requires electrons and
energy, thus reducing their availability for synthesis. Therefore, differ-
ent N-sources will obtain different results in the microbial yield [4,11].

To couple the energy from catabolism to anabolism, TEEM considers
a relation between the electrons involved. The electrons that come from
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the eD will be divided into two portions. The first portion (feo) is trans-
ferred to the eA to generate energy (catabolism) and the other portion
of electrons (fso) is transferred to the N-source for cell synthesis (anab-
olism). TEEM calculates the relationship between feo and fso using:
(i) standard Gibbs free energy of Rd, Ra and Rc, (ii) standard Gibbs
free energy of the intracellular intermediates compounds, and (iii) an
appropriate ε value. This term is included because TEEM considers
that a fraction of the thermodynamic free energy involved is lost at
each energy transfer between catabolism and anabolism [13,14].

With this information, an MMR (R= feoRa+ fsoRc− Rd) is written.
This reaction represents the full stoichiometric relationships for a
biological process without the experimental yield values commonly re-
quired to obtain it [12]. For a detailed description of this thermodynamic
approach the reader can refer to McCarty (2007) and Rittmann and
McCarty (2001).

2.2. The NetLogo platform

The computational tool is implemented in the widely used, free and
open source program NetLogo, a multi-agent programmable modelling
environment [39]. NetLogo is licensed under GPL (GNU General Public
Licence) and it was chosen mainly for the way this platform is
organized: the source-code is very well documented, open and easy to
read, giving the option to share this developed tool with other
researchers without difficulty. This straightforward interaction, in the
near future, will facilitate the upgrading of the computational tool by
the scientific community interested in writing and using metabolic
reactions for microbial processes.

3. The developed computational tool: MbT-Tool

We have named the computational tool as MbT-Tool, standing for
Metabolism based on Thermodynamics. MbT-Tool is the interactive
Fig. 1.MbT-Tool is a computational tool to represent themicrobial metabolism through amicro
energy-transfer-efficiency between catabolic and anabolic processes.
tool developed to study and model microbial metabolism based on
two versions of TEEM: TEEM1 [4] and TEEM2 [11]. With the MbT-Tool
it is possible to write MMRs conducted by microbes. Moreover, using
the MbT-Tool it is possible to predict the microbial yield in standard
thermodynamic conditions, e.g. P = 1 bar, temperature = 25 °C and
pH = 7.0.

The MbT-Tool user interface displays all variables and parameters
regarding the composition of the microbial biomass and the substrates
that can be selected to describe the metabolic processes, avoiding the
complex and tedious calculations of the implemented thermodynamic
model by the user. The composition of the microbial biomass, which is
represented by CnHaObNc, seems to be related to the substrates where
the micro-organism grows and it can be slightly different depending
on the C-sources and N-sources [14]. However, Battley (2013) asserts
that the empirical composition of the same cells metabolizing any
given substrate is expected to be the same. Therefore, theMbT-Tool con-
siders Battley's hypothesis as valid and allows use of the same microbial
biomass formula and writing MMR using different growing substrates.

Fig. 1 shows the schematic description of how theMbT-Tool is based
on TEEMwith a brief explanation of TEEM conceptswhich are helpful in
understanding the main terms involved in it, especially how energy
from catabolism is coupled to anabolism and as a result of these
combinations a MMR is obtained. Fig. 2 shows the schematic program-
ming structure ofMbT-Tool using a flow diagram. Fig. 3 shows a screen-
print of the MbT-Tool, which includes: interface, info and code tabs. The
interface tab is where the reader can obtain the outputs. It also has
inputs-options that can be used to set up the MbT-Tool. The info tab
provides an introduction to theMbT-Tool. It explains how itwas created
and how to use it. The code tab is where the code is stored. The reader
can find the lists of organic and inorganic reactions, TEEM equations
with theoretical half-reactions of biomass formation taking into account
different N-sources, and other programmed details of the MbT-Tool in
the supplementary material.
bial metabolic reaction (R) using TEEM as thermodynamic approachwhich is based on the
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3.1. How to use MbT-Tool

To use the developed computational tool, it is necessary to install
NetLogo (at least NetLogo 5.0) (https://ccl.northwestern.edu/netlogo/
download.shtml), and download the MbT-Tool (http://mosimbio.upc.
edu/en/publications/publications-by-year/years-2010-now). It runs on
any computer that supports JAVA with an operating system (OS):
Windows, Mac OS X and Linux [22,39,40].

On opening MbT-Tool, the interface window appears (Fig. 3).
On the first screen the user has to select: one or two electron
donor(s) and one electron acceptor from the organic (in supplementary
material, Table S1) or inorganic (in supplementary material, Table S2)
reduction-half-reactions, and the empirical chemical formula of the
cells (in supplementary material, Table S3) or can introduce the
molar relationship between the four main elements (C, H, O and N),
the N-source to the cell synthesis half-reaction. It is possible to choose
between four sources, NH4

+, NO3
−, NO2

− or N2 (please refer to the
supplementary material, Table S4).

With this setup information, the user has to select the thermody-
namic approach TEEM1 or TEEM2 (in supplementary material,
Table S5) to write the MMRs. If the user chooses TEEM2 it is necessary
to define the number of oxygenase reactions per mole of substrate, in-
troducing an integer number in the “q” parameter. Finally, the user
has to fix the ε value for the process. With all this data, the MbT-Tool
displays the following outputs: the Rd, Ra and Rc half-reactions, the en-
ergy reaction (Re), the synthesis reaction (Rs), feo, fso, ε, the MMR
(R) and the calculated microbial yield (Fig. 3). This MMR is the reaction
thatMcCarty defines as global reaction, which arises from the combina-
tion between: the catabolic reaction with the anabolic reaction and the
value of ε [11]. The user could also download these outputs in an archive
with a “.txt” extension. The file name is written with the information of
the Rd, Ra, Rc, N-source and the thermodynamic approach used (TEEM1
or TEEM2).

To avoid potential errors when using the MbT-Tool, we recommend
not selecting the same chemical species to the eD and to the eA; they
must be different. If eD and eA are the same, the result of the calcula-
tions using their standard Gibbs free energy could provoke an inconsis-
tent value on the fraction of electrons destined for cellular synthesis or
electrons destined for energy. An inconsistent value will be obtained
when these fractions of electrons are greater than one or below zero.
If this numerical inconsistency occurs, the MbT-Tool stops and shows
an alert message to the user.

Regarding the decision of using TEEM1 or TEEM2, it all depends on:
(i) the growth substrate, (ii) the microorganism(s) involved, and (iii)
the metabolic pathway that will be represented using the MbT-Tool.
For instance, if the growth substrate is a C1 compound, it is better to
use TEEM2 over TEEM1. If one of the intermediates metabolic com-
pounds in the pathway is pyruvate, it is better to use TEEM1 over
TEEM2, If Acetyl-CoA is an intermediate compound in the pathway, it
is better to use TEEM2 over TEEM1. Finally, if oxygenase reactions
are involved, it is better to use TEEM2 over TEEM1. Basically, micro-
organisms utilize the oxygenase reactions to createmore biodegradable
forms of substrates. Some examples are:when alkanes are hydroxylated
[41], alkenes are converted into the corresponding epoxides [42], car-
bon monoxide is oxidized to carbon dioxide [43], ammonia is oxidized
to hydroxylamine [44], and some aromatic compounds and cyclic
alkanes are hydroxylated [45]. To determine the “q” value, the user
must establish if the reaction is mono-oxygenase-catalyzed or di-
oxygenase-catalyzed. But in the most common cases, the “q” value
ranges from 0 to 4. For a detailed description of this procedure the
reader can refer to Xiao and VanBriesen (2006, 2008) [13,14].

3.2. Case-studies

Some different microbial processes have been selected to demon-
strate the potential and versatility of the MbT-Tool showing the output

https://ccl.northwestern.edu/netlogo/download.shtml
https://ccl.northwestern.edu/netlogo/download.shtml
http://mosimbio.upc.edu/en/publications/publications-by-year/years-2010-now
http://mosimbio.upc.edu/en/publications/publications-by-year/years-2010-now
Image of Fig. 2


Fig. 3. Screenshot of the MbT-Tool's user interface.
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of the simulator, which is a set of MMRs with the corresponding yield
prediction value.

In the experiments carried out by Battley (2013, 2007, 1995)
[32,35,36] related to the Saccharomyces cerevisiae, he has established
C6.33H10.21O3.53N as the empirical chemical formula for this yeast.
Considering this information, using the MbT-Tool it is possible to
represent twometabolic pathways: the biomass synthesis fromglucose,
and the biomass synthesis from pyruvate to ethanol. Before executing
the MbT-Tool, it is necessary to determine some parameters. We used
TEEM1 because we consider that there is no oxygenase reaction in-
volved and the c-source is not a C1 compound. We used NH4

+ because
this chemical species is the universal N-source to biomass synthesis,
and for ε we used a value that allows us to obtain the reported cell
yield growing on glucose of the 0.098 mol Ccells/mol Cdonor [36].
Using the MbT-Tool with the established inputs, theoretical consider-
ations and TEEM1 with ε value of 0.57 for the first pathway and ε
value of 0.84 for the second one, the MMRs and the yields are:

Biomass synthesis from glucose:

C6H12O6 + 0.094 NH4
+ + 2.25 HCO3

− → 0.094 C6.33H10.21O3.53N + 2.16
CH3COCOO− + 1.17 CO2 + 3.59 H2O with an Yc/c = 0.099 mol
Ccells/mol Cdonor.

Biomass synthesis from pyruvate to ethanol:

CH3COCOO− + 0.047 NH4
+ + 1.325 H2O → 0.047 C6.33H10.21O3.53N +

0.734 CH3CH2OH + 0.283 CO2 + 0.953 HCO3
− with an Yc/c =

0.098 mol Ccells/mol Cdonor.

In the published research carried out by H.W. van Verseveld [46–48]
related to the growth of Paracoccus denitrificans, and considering
succinate as electron donor and various final electron acceptors, the
reported formula for this denitrifying bacterium was established as
C3H5.4O1.45N0.75. To write MMRs, we considered succinate as C-source,
NH4

+ as N-source for biomass synthesis and themain electron acceptors
involved in the de-nitrification pathway. Taking into account this
information we used the MbT-Tool with TEEM2 and different ε values
to represent a sequence of four reduction reactions (NO3

− → NO2
− →

NO → N2O → N2) using MMRs for this denitrifying bacterium.

First reaction (NO3
− → NO2

−): (C4H4O4)2− + 0.30 NH4
+ + 4.55 NO3

− →
0.40 C3H5.4O1.45N0.75 + 4.55 NO2

− + 1.10 CO2 + 1.70 HCO3
− +0.67

H2O. (ε = 0.41).

Second reaction (NO2
− → NO): (C4H4O4)2− + 0.58 NH4

+ + 4.55 NO2
− +

4.55 H+ → 0.77 C3H5.4O1.45N0.75 + 4.55 NO + 0.26 CO2 + 1.42 HCO3
− +

2.64 H2O. (ε= 0.84).
Third reaction (NO → N2O): (C4H4O4)2− + 0.58 NH4
+ + 4.55 NO →

0.77 C3H5.4O1.45N0.75 + 2.28 N2O + 0.26 CO2 + 1.42 HCO3
− + 0.36

H2O (ε = 0.56).
Final reaction (N2O → N2): (C4H4O4)2− + 0.58 NH4
+ + 2.28 N2O →

0.77 C3H5.4O1.45N0.75 + 2.28 N2 + 0.26 CO2 + 1.42 HCO3
− + 0.36

H2O. (ε = 0.53).

Using these MMRs we created an IBM called INDISIM-Paracoccus
[27,31,48,49], which is designed to study the de-nitrification process
carried out by the bacteria P. denitrificans in order to explore the conse-
quence of different priorities in the individual use of electron-acceptors
on the denitrification pathway [27].

Battley (1987) [33] established C3.85H6.69O1.78N as the empirical
chemical formula for Escherichia coli. Considering this information,
using the MbT-Tool it is possible to represent its diauxic growth on
glucose and lactose. With the obtained MMR, it is possible to begin
a modelling project related to the quantitative determination of

Image of Fig. 3
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metabolic fluxes during co-utilization of two C-sources [49] or a model-
ling project related to the organization of metabolic reaction networks
[50]. We used TEEM2 because we consider that at least one mono-
oxygenase-catalyzed reaction is involved (q = 1) [13,14]. We used
NH4

+ as N-source to biomass synthesis. We used two eDs (glucose and
lactate) and one eA (oxygen), and for ε we used a 0.37 value [11].
Using the MbT-Tool with the established inputs, the MMRs and the
yields are:

C6H12O6 + CH3CHOHCOO− + 5.05 O2 + 1.018 NH4
+ + 0.018 HCO3

− →
1.018 C3.85H6.69O1.78N + 5.097 CO2 + 7.133 H2O.

Bacterial yield: Yg/m = 97.139 (gramscells/moldonor); Yc/m =
3.917 (molCcells/moldonor) and Yc/c = 0.435 (molCcell/molCdonor).

In the MbT-Tool, we selected a gram-negative bacterium with
the empirical formula of C5H7O2N [5]. This bacterium degrades
nitrilotriacetic acid (NTA) in the absence of molecular oxygen. To
write the metabolic equation using nitrate as eA, NTA is used as the
eD, and TEEM1 is used as the thermodynamic approach with an ε
value of 0.33 [4,8,9,11,13,14]. Wanner et al. [51], reported a cell yield
growing on NTA equal to 50.760 g cells/mol NTA for this microbial pro-
cess, while the bacterial yield prediction obtained with the MbT-Tool is
51.311 g cells/mol NTA. All outputs are presented in Fig. 4.
4. Final remarks

Themain purpose of this contribution is to present the development
of the MbT-Tool and make it available to a wide spectrum of readers,
showing how this tool could be used in different research frameworks.
This tool is a tangible way of achieving the compression of a thermody-
namic application connected with microbial metabolism, therefore, it
transfers a theoretical knowledge to a diverse range of applications of
interest.

The MbT-Tool is, as far as we know, the only open-access and open-
source software, that allows the writing of MMRs based on thermody-
namic concepts. To use theMbT-Tool, non-expert knowledge about mi-
crobial metabolism is necessary, and only the most basic organic and
inorganic chemistry is enough. TheMbT-Tool by itself does not simulate
any microbiological, ecological or biotechnological process, but the
Fig. 4.General outputs of MbT-Tool for the calculations related to the degradation of nitrilotriac
negative bacterium.
results obtained from the MbT-Tool allow the user to start with the cal-
culations or the simulations for the study of any of these research fields.

In addition, the two strongest key points of this tool include: i) that
the user doesn't have to pay for using theMbT-Tool, and ii) that the user
is able to modify the source-code to extend the scope of the MbT-Tool
into their specific research field and expertise.

Moreover, the scope of theMbT-Tool is not limited to the number of
the pre-programmed half-reactions included in this version. With the
combination of these half-reactions, it is possible to write MMRs for
diversemicrobial functional groups, such as aerobic heterotrophs, nitri-
fiers, denitrifiers, methanogens, sulphate reducers, sulphide oxidizers
and fermenters (in supplementary material, Table S6). Also, the power
and scope of theMbT-Tool increases if we take into account thepossibil-
ity of changing the molar relationship between the main four elements
to define the empirical chemical formula that represents the microbial
biomass.

We consider that results obtained through the MbT-Tool could be
the starting point to deal with a modelling project in the framework of
microbial ecology or bio-technological processes. The non-expert user
achieves an MMR in which one of the products is the chemical compo-
sition of themicro-organism involved in the process and some values of
its bacterial yield. With these reactions, the user can i) start to construct
a model, ii) incorporate the information into an existing model or
iii) start the calculations of the mass balance for a bioreactor.

However, this tool has a limitation: it is not possible to compare the
MbT-Tool's outputs directly with experimental results. We consider
that only after the construction of a model with the MbT-Tool's results
would the non-expert user be able to interpret its results. A non-
expert user is considered here as a person whose expertise is not in
the field of non-equilibrium thermodynamics, and therefore, to develop
and apply all the conceptual elements involved in this thermodynamic
approach for the construction of living models could be a time-
consuming task. In contrast, a person with experience in these MMRs
could have enough criteria to use and interpret the output reactions
from MbT-Tool in his academic or research context.

In the research field on IBMs, using the INDISIM methodology as a
core model, for instance [24–26,52–54], we realized that is essential to
know the metabolic reactions carried out by the micro-organisms to
increase or decrease their own biomass. These metabolic reactions
could be used to design the individual metabolism model as well as to
etic acid in the absence ofmolecular oxygen (using nitrate as electron acceptor) by a gram-

Image of Fig. 4
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parameterize the IBM models. In this sense, we think that the MbT-
Tool's outputs are a convenient means to advance with this type of
model [27,31,55].

Finally, we consider that the user could take advantage of theMMRs
provided by the MbT-Tool in a wide range of academic or research
fields, such as, for example: i) as a source to design processes that take
advantage of the microbial system [4], and (ii) as the bedrock to make
a connection between the microbial biomass and the substrates used
by the micro-organism for pollution control [10,56]. Additionally, the
NetLogo's rather flat learning curve and comprehensive documentation
[57] make this a user-friendly tool, easily accessible to chemists, biolo-
gists, ecologists, engineers and modellers, among others. Users without
extensive programming experience can modify the code, introducing
new chemical species to write new reduction-half-reactions, as well as
other options for investigating alternative metabolic pathways or
adapting certain processes according to specific studies.

In conclusion, the description of the cellularmetabolism bymeans of
thermodynamic concepts is strategic for investigatingmicrobial activity
and modelling bio-technological processes. We are convinced that the
MbT-Tool will facilitate users to think about the biochemistry of
metabolism due to its simplicity of use, and its results could be an inter-
esting starting point for a microbial modelling approach.
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