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ABSTRACT
SARS-CoV-2 tropism for the ACE2 receptor, along with the multifaceted inflammatory reaction, is likely 
to drive the generalized hypercoagulable and thrombotic state seen in patients with COVID-19. Using 
the original bioinformatic workflow and network medicine approaches we reanalysed four coronavirus- 
related expression datasets and performed co-expression analysis focused on thrombosis and ACE2 
related genes. We identified microRNAs (miRNAs) which play role in ACE2-related thrombosis in 
coronavirus infection and further, we validated the expressions of precisely selected miRNAs-related 
to thrombosis (miR-16-5p, miR-27a-3p, let-7b-5p and miR-155-5p) in 79 hospitalized COVID-19 patients 
and 32 healthy volunteers by qRT-PCR. Consequently, we aimed to unravel whether bioinformatic 
prioritization could guide selection of miRNAs with a potential of diagnostic and prognostic biomarkers 
associated with disease severity in patients hospitalized for COVID-19. In bioinformatic analysis, we 
identified EGFR, HSP90AA1, APP, TP53, PTEN, UBC, FN1, ELAVL1 and CALM1 as regulatory genes which 
could play a pivotal role in COVID-19 related thrombosis. We also found miR-16-5p, miR-27a-3p, let-7b- 
5p and miR-155-5p as regulators in the coagulation and thrombosis process. In silico predictions were 
further confirmed in patients hospitalized for COVID-19. The expression levels of miR-16-5p and let-7b in 
COVID-19 patients were lower at baseline, 7-days and 21-day after admission compared to the healthy 
controls (p < 0.0001 for all time points for both miRNAs). The expression levels of miR-27a-3p and miR- 
155-5p in COVID-19 patients were higher at day 21 compared to the healthy controls (p = 0.007 and 
p < 0.001, respectively). A low baseline miR-16-5p expression presents predictive utility in assessment of 
the hospital length of stay or death in follow-up as a composite endpoint (AUC:0.810, 95% CI, 0.71–0.91, 
p < 0.0001) and low baseline expression of miR-16-5p and diabetes mellitus are independent predictors 
of increased length of stay or death according to a multivariate analysis (OR: 9.417; 95% CI, 2.647–33.506; 
p = 0.0005 and OR: 6.257; 95% CI, 1.049–37.316; p = 0.044, respectively). This study enabled us to better 
characterize changes in gene expression and signalling pathways related to hypercoagulable and 
thrombotic conditions in COVID-19. In this study we identified and validated miRNAs which could 
serve as novel, thrombosis-related predictive biomarkers of the COVID-19 complications, and can be 
used for early stratification of patients and prediction of severity of infection development in an 
individual.  
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1. Introduction

Coronavirus disease 2019 (COVID-19) is caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
and is associated with increased risk of mortality and adverse 
cardiovascular (CV) events especially among patients with 
underlying cardiovascular diseases (CVD) [1,2].

Key mechanisms which may drive the pathophysiology of 
multi-organ injury secondary to infection with SARS-CoV-2 
include direct viral toxicity, thrombosis and inflammation, leading 
to thromboinflammation which is simultaneous and co-localized 
activation of thrombotic and inflammatory response [3,4]. 
Thromboinflammation is associated with dysregulation of normal 
anti-thrombotic and anti-inflammatory functions of endothelial 
cells and negatively influences haemostasis, which is especially 
dangerous in microvasculature, where microthrombi deposition 
can occur [5,6]. In line, patients with severe COVID-19 present 
with microvascular thrombosis and haemorrhage. This was asso
ciated with lung pathology presenting as extensive alveolar and 
interstitial inflammation which could be suggestive for the assess
ment of the case fatality [7]. Autopsy studies have revealed the 
presence of thromboinflammation within the pulmonary capillary 
vasculature. Moreover, it should be noted that patients with 
COVID-19 are more prone to develop pulmonary embolism, 
deep vein thrombosis, arterial thrombosis and intracatheter 
thrombosis, which is also negative for survival prognosis [8,9].

Early in the pandemic, hospitalized patients with COVID-19 
were often observed to have changes in the levels of coagulant 
biomarkers, including fibrinogen, D-dimer and activated partial 
thromboplastin time (aPTT), and routine measurement of these 
biomarkers was recommended [10–12]. However, a number of 
other markers of coagulation have emerged that have helped to 
refine our understanding of the thrombotic signature of COVID- 
19 [13]. Currently there is a need for identification of biomarkers 
which would allow early identification of patients in risk of throm
bosis. MicroRNAs (miRNAs, miRs) are a class of small, endogen
ous, non-coding RNA (ncRNA) molecules that have such 

a potential. They play an important role in many biological pro
cesses and regulate the expression of approximately 60% of the 
mammalian protein coding genes [14]. MiRNAs act primarily by 
binding to complementary regions of messenger RNA (mRNA), 
leading to repression of its translation or even induction of its 
degradation [15]. Various miRNAs, as well as their target genes are 
implicated in the complex pathophysiology of coagulation and 
CVDs [16]. Thus, they may be useful for diagnosis, prognosis 
and as a potential therapeutic strategy in multiple pathologies 
[1,15,17–25]. There is also growing evidence from epidemiological 
studies and animal models suggesting that the expression level of 
miRNAs not only regulates coagulation and haemostatic factors 
but is dysregulated in venous thromboembolism (VTE) [26]. One 
of the case-control studies identified 9 differentially expressed 
(DE) miRNAs (hsa-miR-4451, hsa-miR-942-3p, hsa-miR-8063, 
hsa-miR-3132, hsa-miR-3118, hsa-miR-105-5p, hsa-miR-891a- 
5p, hsa-miR-200a-5p, and hsa-miR-6832-3p) in the blood of col
orectal cancer patients who developed VTE compared to controls 
in this pilot study [27]. Other diagnostic biomarkers for PE include 
miR-134 [28], miR-1233 [29] and miR-28-3p [30]; while diagnos
tic biomarkers for DVT include miR-582, miR-195, miR-532 [31], 
miR-424-5p, miR-136–5p [32], and miR-320a, miR-320b [33]. 
Taken together, due to their stability and regulation of a high 
number of disease-related genes miRNAs may be relevant not 
only as biomarkers for different kinds of thrombosis but could 
also be involved in the pathogenesis of thrombosis and, therefore, 
be potential therapeutic targets.

Implementation of bioinformatics tools can reveal interactions 
between genes and their non-coding regulators, i.e. miRNAs, 
which may help to understand the pathomechanisms of disease 
development [1,34]. A biggest advantage of network medicine and 
systems biology approach is the ability to identify novel, key 
regulators of the pathological processes including investigation 
of the COVID-19 related changes in coagulation processes. 
Barabási et al. summarized a series of hypotheses and principles 
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(Network Medicine Hypotheses) which link topological properties 
of Protein-Protein Interaction (PPI) networks to biological pro
cesses [35]. Those hypotheses are often used to prioritize candidate 
genes associated with the analysed disease. We highlight three 
hypotheses (i) disease module hypothesis: gene products asso
ciated with the same disease phenotype tend to form a cluster in 
the PPI network; (ii) network parsimony: disease pathways often 
coincide with shortest paths between known disease genes; (iii) 
local hypothesis: gene products associated with similar diseases are 
likely to strongly interact with each other [35]. In this way, we used 
an innovative NERI algorithm [36] which integrates the interac
tome data with co-expression networks, enabling us to focus on 
the signalling cascade between ACE2 and genes associated with 
thrombosis and coagulation-related processes. By assuming some 
Network Medicine hypothesis (such as: network parsimony and 
disease modularity), the method explored the neighbourhood of 
a gene set (seeds) by choosing the smallest paths possessing more 
coexpressed genes with the seeds. As output, the method returns 
two subnetworks (modules): control and disease subnetworks, for 
which the method ranks genes and interactions (edges) according 
to their topological importances in both subnetworks (score X) or 
to their topological alterations between the subnetworks (score Δ’, 
also called S internally by the algorithm implementation). This 
approach enabled us to discover a cluster of party hub genes 
[37,38], also called ‘bottleneck regulators’, with corroborating 
signals across transcript expression and protein-protein interac
tion data, causing to pathological alterations in coagulation pro
cesses even when such regulators show little or no changes in 
expression between control and disease conditions.

MiRNAs have been studied as diagnostic and prognostic bio
markers for many diseases including myocardial infarction, liver 
failure, sepsis, or ischaemic stroke [39,40]. Whilst protein-based 
biomarkers for COVID-19 have been highly studied [41,42], 
however, limited number of studies aimed to analyse preselected 
circulating miRNAs in COVID-19 patients thus far [43–45]. 
Lately, the strong association of cardiometabolic miRNAs with 
COVID-19 severity and mortality has been shown and combina
tions of miRNAs improved classification performance of estab
lished markers for severity and mortality of COVID-19 [45].

In line with previous publications, in the current study, we have 
precisely selected analysed miRNAs based on bioinformatic ana
lysis including the top thrombosis and coagulation-related 
miRNA (miR-16, let-7b, miR-27a, miR-155) and aimed to unravel 
whether bioinformatic prioritization could guide selection of 
miRNAs with a potential as diagnostic and prognostic biomarkers 
associated with disease severity in patients hospitalized for 
COVID-19.

2. Methods

2.1. Bioinformatics analysis: miRNA targets prediction, 
data filtering, and visualization as interaction networks

2.1.1. Gene lists selection
We downloaded the following lists of genes: 98 genes associated 
with thrombosis term from Disgenet database (https://www.disge 
net.org/browser/0/1/0/C0040053/); 62 genes associated with 
thrombosis term from Malacards database; 224 genes related to 
coagulation and 341 genes related to platelet activity extracted by 

BiomartR R package from Gene Ontology database. The 68 genes 
involved in the ACE2 network were obtained from a previous 
publication [1]. The gene symbols were unified using the NCBI 
annotation file.

2.1.2. Tissue specific expression
In order to identify genes with expression in the CV system, we 
mined Tissues 2.0 database [46]. For further PPI interactions 
analyses leading to seed gene selection we selected genes with 
expression confidence cut-off at least 2 in Blood, Heart, Pericyte 
or CV system. For pre-selection of miRNAs we also used the ones 
expressed with high confidence in blood and above mentioned 
tissues.

2.1.3. Interactome analysis and visualization
All visualizations of the networks were done using Cytoscape 
v3.8.2 [47]. Protein-protein interactions (PPI) between ana
lysed genes were obtained from StringApp v 1.7.0, using 
default confidence cut-off (≥0.4) [48].

2.1.4. Expression datasets analysis
We downloaded three expression datasets from the Gene 
Expression Omnibus (GEO) database: 1) Peripheral blood mono
nuclear cells (PBMCs) isolated from SARS patients and controls 
(GSE1739) [49]; 2) Human induced pluripotent stem cell-derived 
cardiomyocytes (hiPSC-CMs) infected with SARS-CoV2 vs con
trol cultures (GSE150392)[50]; 3) Autopsies of SARS-CoV-2 
infected tissues from which we selected datasets related to Lungs, 
Hearts and control samples (GSE150316)[51]. We performed 
differential expression analysis for each dataset using a linear 
regression model (GSE1739, GSE150316) or Mann Whitney test 
(GSE150392). As a differentially expressed (DE) gene we selected 
those which had FDR adjusted p-value <0.05.

2.1.5. PPI network analysis with NERI method
To identify top genes which could play a role in COVID-19- 
related thrombosis but are not necessarily DE we performed 
co-expression analysis using network-medicine based integra
tive approach (NERI) algorithm [36] and three sets of seed 
genes. The selection of the seeds is described in the results 
section (Selection of the ACE-2 related coagulation seed 
genes). The NERI method returns a subnetwork representing 
the neighbourhood of a gene set by selecting the shortest 
paths between all pairs of seeds with the most coexpressed 
genes along the paths. This method is independently applied 
for two conditions (control and disease), thus obtaining the 
control and disease subnetworks (modules). The method out
puts two scores X and Δ’ (S) regarding the topological analysis 
of the two resulting subnetworks (control and disease). The 
first one (X) prioritizes genes with party hub features [37,38] 
in both modules, possessing high topological centrality and, at 
the same time, high co-expression relative to the seed genes. 
The second one (Δ’) prioritizes the most topologically altered 
genes and edges between the two conditions [36]. Each ana
lysis provided 100 best nodes and 500 best edges. In further 
steps for constructing the visualization of the interaction net
works: i) we selected genes connected by best edges and best 
edges associated with best nodes; ii) genes which appeared in 
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at least 5 out of 8 analysed datasets using coagulation related 
seeds.

2.1.6. Selection of the top genes based on co-expression 
network analysis using NERI
In order to identify the top genes which could serve as 
signalling ‘bottleneck’ in COVID-19 we performed interac
tion analysis using four different expression datasets: PBMC 
from COVID-19 patients, hiPSC-CMs infected with SARS- 
CoV2, heart and lung tissues from deceased COVID-19 
patients. Each dataset was analysed using NERI algorithm 
[36], which integrated protein-protein interactome data with 
expression data using so-called seed-genes, enabling us to 
focus on the part of the network related to: (i) ACE2 inter
actome, (ii) interaction of ACE2-related genes with coagula
tion-related genes, (iii) coagulation related genes with high 
proximity to ACE2 interactome. The algorithm ranked 
genes based on their role as hub genes connecting multiple 
signalling pathways and disease-related changes of expres
sion in neighbouring genes with correlated expression 
changes. In a further step, we overlapped all 12 outputs (4 
expression datasets, 3 seeds each) to identify clusters of the 
top genes and interactions regulated by coronaviruses. For 
further analyses we used only results for the following sets of 
seeds: (i) interaction of ACE2-related genes connected coa
gulation-related genes; (ii) coagulation related genes with 
high proximity to ACE2 interactome. Simultaneously, we 
performed enrichment analysis to verify whether coagula
tion-related processes were also affected by this virus and 
ACE2 signalling. We also performed visualization of the 
interaction network between top genes. In the final step, we 
identified the top microRNAs (miRNA) which targeted the 
highest number of the top genes as well as the highest 
number of DE genes (affected by the disease) across analysed 
datasets.

2.1.7 miRNA target prediction:
On all steps of bioinformatic analyses we used the R package 
‘wizbionet’ https://github.com/wizbionet/wizbionet/blob/mas 
ter/doc/vignette_wizbionet.md [52]. To identify miRNAs reg
ulating DE genes we used a topmiRNA_toptarget function 
based on the multiMiR R package [53]. We looked for the 
−3p and −5p mature version of each miRNA identified by 
multiMiR and their targets among DE genes and coagulation/ 
thrombosis related genes. Then we searched the top 10% hits 
among all conserved and non-conserved target sites in 14 
target prediction databases.

2.1.8. Enrichment analysis
Enrichment analysis is a computational method for increasing 
the likelihood to identify the most significant biological pro
cesses related to the study. Enrichment analysis of the net
works was done using StringApp and EnrichR database[54], 
using the Hypergeometric test with Benjamini and Hochberg 
correction, while the reference was the human genome. For all 
enrichment analyses, the significance cut-off was set to BH 
adjusted p-value ≤0.05.

2.2 Ethics statement

The study was conducted with the Declaration of Helsinki 
[55]. The study protocol was approved by an ethical commit
tee. Written informed consent form was obtained from all 
participants, or their legal representatives.

2.3. Study group

This was an observational study which included 79 COVID- 
19 patients admitted to the Clinic of Internal Medicine, 
Pneumonology, Allergology and Clinical Immunology at 
the Military Institute of Medicine in Warsaw. Patients 
aged 18 years or older with a positive nasopharyngeal 
swab PCR test for SARS-CoV-2 were recruited during the 
third pandemic wave in Poland (January-May 2021), who 
were admitted to the hospital based on clinical presentation 
including severe dyspnoea requiring oxygen therapy and 
monitoring on intensive care unit (ICU) for at least 
24 hours. Blood samples of COVID-19 patients were col
lected at three different time points, including the day of 
admission, 7-days and 21-days after admission. The patients 
were divided according to the hospitalization length of stay 
(>21 days) and/or death in follow-up as a composite end
point. Thirty two age and sex matched SARS-CoV-2 infec
tion-free participants were sampled in out-patients clinic.

Comprehensive demographic, clinical, pharmacological 
and laboratory data were abstracted manually from the elec
tronic medical records. All blood samples were collected as 
whole blood by using Tempus™ Blood RNA Tube (Applied 
Biosystems). All specimens were immediately aliquoted, fro
zen and stored at −80°C. Frozen sample was thawed once only 
to prevent repeated freeze-thaw cycles.

2.4. RNA preparation, detection, and quantification of 
miRNAs by quantitative PCR

Total RNA was extracted using Tempus™ Spin RNA Isolation 
Kit (Invitrogen) from 9 ml whole blood. Subsequently, the 
obtained RNA template was subjected to a reverse transcrip
tion reaction using the TaqMan miRNA Reverse 
Transcription kit (ABI, California, USA) according to guide
lines provided by the manufacturer. Afterwards, miRNA 
expressions were detected by quantitative polymerase chain 
reaction (qPCR) using TaqMan miRNA Advanced Assay kits 
(ABI, California, USA, catalogue number A25576, assay ID; 
477860_mir; 478576_mir; 478384_mir; 477927_mir) for the 
corresponding miRNAs on a CFX384 Touch Real-Time PCR 
Detection System (BioRad Inc. Hercules, California, USA). 
During the RNA extraction phase cel-miR-39 was spiked-in 
as an exogenous control and all qRT-PCRs were normalized 
to their corresponding cel-miR-39. Mean values of all reac
tions – performed in triplicate – were used in statistical 
analysis as previously described [56,57]. MiRNA expressions 
were expressed as 2-ΔCT [miRNA expression – cel-miR-39 
expression] [56,58–60], then log-10 transformed for statistical 
analysis.
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2.5 Statistical analysis

All results for categorical variables were presented as 
a number and percentage. Continuous variables were 
expressed as mean ± standard deviation (SD) or median 
and interquartile range (IQR), depending on the normality 
of distribution assessed by means of a Shapiro–Wilk test. 
The Student t-test or the Mann-Whitney test for unpaired 
samples, and Wilcoxon test for paired samples, were applied 
depending on the normality of the distribution. One-way 
Anova or Kruskal-Wallis tests were used for more than two 
groups comparison based on the distribution of the data. 
Receiver operating characteristic (ROC) analysis was per
formed to assess the predictive value of miR-16-5p for 
increased hospital length of stay or death in follow-up as 
a composite endpoint. To determine independent variables 
affecting increased hospital length of stay or death we 
applied multivariate logistic regression analysis. For this 
purpose, we included the following variables: low miR-16- 
5p (>6.1 expression based on Log-transformed data), age 
(years), male sex, BMI >30, hypertension, diabetes mellitus, 
smoking and coronary vascular disease. All tests were two- 
sided with the significance level of p < 0.05. Calculations 
were performed using SPSS version 22.0 (IBM Corporation, 
Chicago, USA). Based on a 76% increased hospitalization in 
the low baseline miR-16-5p group as compared to 24% 
increased hospitalization in the high baseline miR-16-5p 
group, we calculated that with 79 patients, our analysis 
had 99% power with a two-sided alpha value of < 0.05.

3. Results

3.1. Bioinformatic analysis results

In this study we aimed to, based on co-expression analysis 
using NERI algorithm and set seed genes, to identify clus
ters of hub genes [37,38]. Those genes, also called ‘bottle
neck regulators’ through corroborating signals across 
transcript expression and protein-protein interaction data, 
would lead to pathological changes in coagulation processes 
even when such regulators show little or no changes in 
expression between control and disease conditions. Then 
based on those results we identified top non-coding regula
tors of the interaction between ACE2 interaction networks 
which could be affected by SARS-CoV-2 infection and coa
gulation process. Identified in this study miRNAs were 
shared regulators of ACE2 network and coagulation- 
related genes between PBMCs, heart, lungs and cardiomyo
cytes infected with coronaviruses. The workflow of the ana
lysis is shown on the (Fig. 1A,B).

3.1.1. Identification of the ACE2 related coagulation seed 
genes
In order to select the best seed genes for further co- 
expression analysis using NERI we used 69 genes identi
fied in our previous study as involved in ACE2 interaction 
network [1] and further extended it for genes related to 
thrombosis and coagulation. For each gene we calculated 
the so-called coagulation score based on its expression in 
the CV system, presence in expression datasets, and 

presence in disease-related gene lists (thrombosis term in 
Malacards/DisgeNet); and finally its connection with the 
ACE2 network. For further analyses we selected three 
genesets: i) ACE2- 68 genes interacting with ACE2; ii) 
ACE2 and coagulation- 53 genes with high coagulation 
score and high connectivity with ACE2 network; iii) 
Coagulation- 40 genes with high coagulation score (≥7) 
with high proximity to ACE2 interactome. All genes used 
in seed selection analysis are shown in the Supplementary 
Figure 1 and are available as a Cytoscape network file 
(Supplementary file 1).

3.1.2. Top coagulation-related genes affected by 
coronavirus infections
Coexpression analysis using NERI across all analysed datasets 
and seeds, allowed us to found several top genes which could 
play a pivotal role in COVID-19 related thrombosis, such as 
EGFR, HSP90AA1, APP, TP53, PTEN, UBC, FN1, ELAVL1 
and CALM1 (Fig. 2) (Abbreviations: EGFR, Epithelial growth 
factor receptor; HSP90AA1, Heat Shock Protein 90 Alpha 
Family Class A Member 1; APP, Amyloid Beta Precursor 
Protein; TP53, Tumour protein P53; PTEN, phosphatase and 
tensin homolog; UBC, Ubiquitin C; FN1, Fibronectin 1; 
ELAVL1, ELAV Like RNA Binding Protein 1; CALM1, 
Calmodulin 1 gene).

The detailed workflow of top genes selection is described in 
the Methods section. Among the top genes identified by 
enrichment analysis as playing a key role in signalling path
ways associated with coagulation-related interaction networks 
in COVID-19, we identified CALM1 and enhancement of its 
connection with PTEN and UBC (Fig. 3A,B).

3.1.3 Pathway enrichment analysis identified CALM1 as 
the most potent regulatory gene
In order to identify thrombosis-related pathways affected 
by coronavirus infection we performed enrichment analy
sis of the top genes. This analysis revealed that the highest 
number of the top genes was associated with pathways 
related to immune system and platelet activation signal
ling and aggregation. We also observed a strong enrich
ment of disease, signalling by interleukins and cytokines 
(Fig. 3A). CALM1 was identified in this analysis as a gene 
connected to the highest number of significantly overre
presented pathways. Closer analysis of its interaction net
work showed that PTEN and its interaction with CALM1 
was stronger in control samples than in coronavirus sam
ples, while interactions with ELAVL1, EGFR and UBC 
were stronger in the disease (Fig. 3B).

3.1.4. Identification of the miRNAs regulating ACE2 and 
coagulation related interaction networks and DE genes 
affected in COVID-19
In order to identify miRNAs which play a role in ACE2- 
related thrombosis in SARS-CoV2 infection we screened 
four lists of DE genes (SARS, cardiomyocytes, heart and 
lungs), as well as DE coagulation genes from those datasets. 
Next, we looked for miRNAs regulating the highest number of 
top NERI nodes and top NERI targets associated with 
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coagulation. Top miRNAs were defined as regulating the top 
30% of genes within each category (all DE genes, coagulation 
DE genes, top NERI nodes, top NERI nodes associated with 
ACE2 related coagulation). We performed target predictions 
for the 1416 miRNAs showing any expression confidence in 
the cardiovascular system according to the Tissues 2.0 data
base. In this analysis we identified 34 pre-miRNAs which 
targeted the highest number of ‘bottleneck regulators’ asso
ciated with coagulation shared across four COVID-19 related 
datasets, and the highest number of DE genes in those data
sets (Table 1). Additionally in this table we listed which 
coagulation-related genes with high scores in NERI analysis, 
including 13 coagulation genes from Fig. 1, are regulated by 
the top miRNAs. Among the identified miRNAs that regu
lated ACE2-coagulation related interaction networks, we have 
found 8 pre-miRNAs, namely miR-16, miR-27a, miR-34a, let- 
7b, miR-155, miR-23b, miR-374a and miR-128, that shared 
the highest number of the top genes identified using NERI 
and DE genes related to coronavirus infection. In our 

previous in silico prediction analysis we found miR-16-5p 
and miR-27a-3p as miRNAs regulating ACE2 networks [1]. 
Moreover another in silico analysis by Jafarinejad-Farsangi 
et al. [61] found miR-16-5p and let-7b as targeting SARS- 
CoV-2 induced differentially expressed genes and miR-155 
was predicted related to SARS-CoV-2-induced cytokine 
storm [62]. Therefore, out of eight miRNAs that were found 
in the current analysis, we selected particularly four the most 
promising miRNAs (i.e. miR-27a, miR-16, let-7b and miR- 
155), and further validated their expression by qRT-PCR in 
patients hospitalized due to COVID-19.

3.2. Participants

Patient characteristics are presented in Tables 2,3. 
Cardiovascular disease includes coronary artery disease, myo
cardial infarction and atrial fibrillation. We did not observe 
any differences between healthy individuals and COVID-19 

Figure 1. A) Bioinformatic workflow of the ACE2 and thrombosis-related seed genes selection for the integration of PPI interactome data with co- 
expression networks by NERI algorithm. This analysis enabled us to focus on a specific part of the network in this case: gradual signalling cascade between ACE2 
and genes associated with coagulation-related processes. Seed genes are marked in green. Nodes outside of the ACE2 network were sorted using group circular layout 
based on the number of occurrences on four thrombosis and coagulation- related gene lists. Node colours were related to so-called ‘coagulation score’ calculated 
based on the occurrences on four gene lists and expression in four cardiovascular-system related tissues. B) Bioinformatic workflow leading to the identification 
of the miRNAs regulating the coagulation process in coronavirus infection.
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patients with regard to basic demographic data including sex, 
age and body mass index (BMI) (p = 0.254, p = 0.707, 
p = 0.421, respectively). Among the 79 patients included, 9 
(11.4%) patients, who were admitted to intensive care unit 
(ICU), died within the median of 11 days.

Patients’ laboratory data at 3 different time-points are 
presented in Table 3. There was a significant difference in 
WBC count (p = 0.028), increase in lymphocyte count and 
iron levels (p = 0.015, p = 0.001 respectively), and 
a decrease in CRP levels (p < 0.001) over time.

3.3. Alteration of circulating thrombosis-related miRNAs 
expressions

Fig. 4 shows the comparison of circulating miRNAs rela
tive expression between healthy individuals and COVID- 
19 patients at 3 different timepoints (at admission, 7-days 
after admission, and 21-days after admission). The expres
sion levels of miR-16-5p and let-7b in COVID-19 patients 
were lower at baseline, 7-days and 21-day after admission 
compared to the healthy controls (p < 0.0001 for all time 
points for both miRNAs). The expression levels of miR- 

27a-3p and miR-155-5p in COVID-19 patients were 
higher at day 21 compared to the healthy controls 
(p = 0.007 and p < 0.001, respectively). In COVID-19 
patients, miR-27a-3p and miR-155-5p expressions 
increased over time. MiR-155-5p expression levels differed 
between healthy individuals and COVID-19 patients 
(p = 0.009).

3.4. Low baseline expression of miR-16-5p in patients 
with COVID-19 is associated with an increased hospital 
length of stay

Patients hospitalized over a duration of 21 days had signifi
cantly lower expression levels of miR-16-5p when compared 
to those hospitalized under 21 days (p < 0.0001) (Fig. 5A,C). 
According to the ROC curve analysis, a low baseline miR-16- 
5p expression presents predictive utility in assessment of the 
hospital length of stay (AUC:0.815, p < 0.0001) (Fig. 5B). 
Similar results were found for the comparison of hospital 
length of stay or death in follow-up as a composite endpoint 
(AUC:0.810, 95% CI, 0.71–0.91, p < 0.0001) (Fig. 5D). No 
significant findings were observed according to other miRNAs 

Figure 2. Top nodes identified by NERI algorithm as associated with coagulation networks in SARS and SARS-CoV-2 infections. The edge size is related to 
the number of occurrences in the top 30% of strongest regulated edges across analysed datasets (SARS, cardiomyocytes, lungs, heart) and two types of seeds ‘ACE2 
and coagulation’ and ‘coagulation’ (8 gene lists in total). The node and edge sizes are associated with the importance in signal flow within the network for the 
analysed expression datasets (12 in total), which does not necessarily relate to upregulation in expression. If node/edge was enhanced according to NERI in higher 
number of disease-related datasets, it has red colour and has high importance in disease, if in control-related dataset, it is green and has decreased importance in 
disease. Grey colour means disease or control rate was the same in all datasets. The node size is associated with the sum of Δ’ (S) scores obtained from NERI. The 
higher the S score, the more important the role of a given gene in the analysed network. To show the tissue-specific expression level of each gene we added bars on 
each node reflecting their expression confidence (0–5) using the data obtained from the Tissues 2.0 database. EGFR, ELAVL1 and APP were identified across all 12 
analysed gene lists (including three sets of seeds) as the top regulators of the thrombosis-related networks. DE genes in expression datasets have blue borders.
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whose expression levels were measured in our cohort (miR- 
27a-3p, let-7b-5p and miR-155-5p) (Supplementary 
Figure 2).

The COVID-19 patients group was divided into two sub
groups by using ROC curve analysis (based on hospital length 
of stay >21 days and/or death) for miR-16-5p, i.e. low- or high 
value (Fig. 5 and Table 4). The cut-off value of ≤ 6.1 was 
labelled as low miR-16-5p level (39% of the population). The 
sensitivity and specificity was 78% and 73% respectively for 
the cut off value. Similar results were found for ROC analysis 
based on a single endpoint of length of hospital stay > 21 days 
(Supplementary Table 1). All the other analysed miRNAs 
(let-7b-5p, miR-27a-3p, miR-155-5p) did not present statisti
cally significant predictive utility for increased hospitalization 
based on ROC curve analysis (data not shown).

According to the multivariate logistic regression model, 
a low baseline miR-16-5p expression, together with diabetes 
mellitus (DM), were independent predictors of hospital length 
of stay >21 days or death (OR: 9.417; 95% CI, 2.647–33.506; 
p = 0.0005 and OR: 6.257; 95% CI, 1.049–37.316; p = 0.044, 
respectively) (Table 5). Similarly, a high baseline miR-16-5p 
expression was the only independent predictor of hospitaliza
tion time > 21 days (OR: 7.728; 95% CI, 2.253–26.508; 
p = 0.0012) (Supplementary Table 2). Patients with high 
miR-16-5p expression levels at admission had approximately 
9-fold and patients with DM 6-fold higher risk of longer 
hospitalization or death (Table 5).

4. Discussion

The aim of our study was to elucidate the expression pattern 
of circulating miRNAs associated with COVID-19 related 
thrombosis based on a bioinformatic analysis. We also 

compared the expressions of selected miRNAs between 
COVID-19 patients and healthy volunteers and monitored 
circulating miRNA expression patterns during the acute 
phase of COVID-19 disease, as well as the prognostic poten
tial of these miRNAs as biomarkers. Among the possible 
strategies to select miRNAs for validation studies, we per
formed in silico bioinformatic analysis incorporating network 
medicine approaches. Such an approach allows us to summar
ize all available evidence regarding analysed biological pro
cesses and genes to generate predictions of specific targets and 
their molecular interactions.

The main findings of our study are: (i) based on in silico 
bioinformatic analysis the top miRNAs targeting thrombosis- 
related DE genes in response to SARS-CoV-2 infection were 
miR-16-5p, miR-27a-3p, let-7b-5p and miR-155-5p; (ii) the 
expression of miR-16-5p, miR-27a-3p and miR-155-5p 
increased during observation, compared to the baseline mea
surement; (iii) early expression changes were observed only 
for miR-155-5p, let-7b-5p and miR-16-5p when comparing to 
healthy controls; (iv) lower baseline expression of miR-16-5p 
and DM were independent predictors of increased length of 
stay or death according to a multivariate analysis.

4.1. Identification of the top genes related to thrombotic 
events associated with COVID-19

Analysis of ACE2 and coagulation interaction networks using 
NERI algorithm in four coronavirus infection-related expres
sion datasets obtained from GEO database discovered multi
ple hub genes with corrupted signalling which can be 
responsible for thrombosis in COVID-19 patients. The most 
affected genes were EGFR, APP, HSP90AA1, TP53, PTEN, 
UBC, FN1, ELAVL1 and CALM1 (Figs. 2,3). Among the top 

Figure 3. A) Top 25 enriched pathways associated with top nodes identified by NERI algorithm as important in coagulation networks in SARS and SARS- 
CoV-2 infections. Grey dots indicate whether a gene is present within significantly enriched signalling pathways. It is worth noticing that CALM1 was present in the 
highest number of signalling pathways as an important ACE2 interactor. The top interactors with highest number of associated pathways were ordered in decreasing 
manner from left to right. B) Alterations between CALM1 interactors in COVID-19. Green colour is associated with loss of importance in disease which can lead to 
switching the signalling onto neighbouring nodes. Red colour is associated with increased importance of the node/edge in disease, leading to increase of signalling 
in a given part of the network.
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genes playing a role in coagulation-related interaction net
works in COVID-19, we identified CALM1 and enhancement 
of its connection with PTEN and UBC (Fig. 3). As we showed 
before, CALM1, APP, EGFR and ELAVL1 are crucial compo
nents of the ACE2 interaction network affected by SARS- 
Cov2 infection in pluripotent stem cell-derived cardiomyo
cytes (hiPSC-CMs) [1].

EGFR production has been linked to thrombosis risk and 
inflammatory markers, and it was previously shown that viral 
infections may induce EGFR signalling and promote a pro- 
inflammatory and pro-angiogenic response [63,64]. 
Overactive EGFR signalling also leads to increased fibrosis 
after SARS coronavirus infection [65]. APP (amyloid-β pre
cursor protein gene), is a gene encoding APP protein, 
a precursor for amyloid beta (Aβ) peptide. Platelets, a main 
source of Aβ in circulation, can be activated via various 
factors, i.e. inflammation and viral antigens. Our recent 
bioinformatic analysis pointed to APP and PTEN as the top 
genes involved in platelet activity and most susceptible for 
noncoding regulation by platelet-related miRNAs [66]. Upon 
their activation, platelets release APP and Aβ into the circula
tion. Moreover, APP is cleaved by endothelial cells, creating 
Aβ. Aβ promotes the activation of the coagulation factor XII, 
which results in stimulation of thrombin generation, possibly 
creating a prothrombotic state [67,68]. It was shown that Aβ 

may play a role not only in haemostasis but also in inflam
mation [67,69,70]. This makes it an important finding for 
elucidating the COVID-19-related thrombosis but also poten
tially COVID-19 related neurodegeneration due to its asso
ciation with Alzheimer’s disease. Another DE gene from our 
network is HSP90AA1, which codes heat shock protein 90α 
(Hsp90α), inducing inflammation through activation of the 
NF-kB and STAT3 pathways, while NF-kB also induces the 
expression of Hsp90α [71]. In human cell lines infected with 
SARS-CoV and SARS-CoV-2, HSP90 inhibition resulted in 
reduction of viral replication, which suggests its involvement 
in infection []. Taking into account recent studies pointing 
out HSP90 as a potential target in COVID-19 treatment 

[72,73,74,75], this finding especially supports the value of 
presented here results.

Another top gene identified in this study was ELAVL1, 
which encodes HuR protein, playing a critical role in post- 
transcriptional regulation, splicing and suppression of throm
bomodulin synthesis in interleukin-1β (IL-1β) treatment and 
sepsis [76]. Thrombomodulin is a critical factor to activate 
protein C (aPC) in mediating the anticoagulation and anti- 
inflammation effects. Additionally, a recent study showed that 
there is a significant positive correlation between ELAVL1 
and ACE2 in chronic obstructive pulmonary disease 
(COPD) cells [77]. This result especially points out the direct 
link between thrombosis and SARS-Cov-2 receptor ACE.

CALM1, which encodes a highly conservative protein, a key 
calcium sensor – calmodulin (CaM), represents another inter
esting candidate in our study. CaM interacts with viral proteins 
and positively influences the propagation of rotavirus infection 
[78]. CaM also regulates the activation of GPVI and GPIb-IX-V 
platelet receptors and NOS activation, which means that it has 
influence on platelet and endothelial homoeostasis [79,80]. 
Moreover, CALM1 is also an important ACE2 interactor, and 
is playing a role in viral pathogenesis [77,81,82]. In our analysis 
we observed alteration by coronaviruses and its connection with 
PTEN, EGFR, FLNA, ELAVL1 and NXF involved in regulation 
of the platelet activity and inflammatory processes. This suggests 

Table 2. Participant’s characteristics.

Characteristics

COVID-19 
patients 
(N = 79)

Healthy individuals 
(N = 32) P-value

Sex (male) (%) 44 (55.7%) 14 (44%) 0.254
Age (years) 59.7 ± 14.6 58.47 ± 16.59 0.707
BMI 29.7 ± 6.58 28.6 ± 6.3 0.421
Hypertension (%) 35 (44.3%) 16 (50%) 0.585
DM (%) 17 (21.5%) 6 (17%) 0.525
Current smoking (%) 5 (6.3%) 4 (10%) 0.543
Asthma/COPD (%) 6 (7.6%) 3 (6.3%) 0.756
CVD (CAD, MI, AF) 

(%)
14 (17.7%) 4 (12.5%) 0.499

Data are presented as number and percentage or mean and standard deviation. 
Abbreviations: AF, Atrial fibrillation; BMI, body mass index; CAD, coronary 
artery disease; COPD, chronic obstructive pulmonary disease; CVD, cardiovas
cular disease; DM, diabetes mellitus; MI, myocardial infarction 

Table 3. Patients characteristics.

Laboratory parameters
At admission 

(N = 79)
Day-7 

(N = 71)
Day-21 

(N = 18) P-value

hsCRP (mg/dL) 5.3 [3.13–7.69] 1.87 [0.61–5.27] 0.5 [0.1–4.89] <0.001
D-dimer (μg/mL) 1.15 [0.45–2.16] 0.80 [0.46–1.47] 0.72 [0.36–1.78] 0.654
PCT (ng/mL) 0.11 [0.07–0.14] 0.07 [0.04–0.09] 0.07 [0.04–0.13] 0.538
WBC (mg/dL) 6.49 ± 2.87 8.69 ± 2.81 6.98 ± 2.74 0.028
Neutrophils 4.58 ± 3.17 6.24 ± 2.75 4.23 ± 2.0 0.091
Lymphocyte 0.72 ± 0.28 1.46 ± 0.85 1.74 ± 0.97 0.015
Blood iron (μg/dL) 36.5 [26.25–59.25] 86 [72.75–106.75] 88.5 [51.25–115.5] 0.001
Ferritine (ng/mL) 633 ± 306.20 771 ± 569.76 855 ± 310.23 0.093

Data are presented as mean ± standard deviation (SD) and median and interquartile range based on the data distribution. P-value is calculated based on One-way 
ANOVA test for three groups comparison. p values marked with bold indicate statistically significant differences between the multiple groups <0.05. Abbreviations: 
BMI, body mass index; COPD, chronic obstructive pulmonary disease; hsCRP, high-sensitivity C-reactive protein; CVD, cardiovascular disease; DM, diabetes mellitus; 
PCT, procalcitonin; SD, standard deviation; WBC, white blood cells. 
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the important role of CALM1 in COVID-19 related thrombotic 
complications. Moreover, in enrichment analyses we found 
strong overrepresentation of pathways related to immune sys
tem and platelet activity pointing out that genes identified based 
on publicly available expression data indeed play a role in 
thrombosis processes induced by coronavirus infection.

4.2. Identification of the top miRNAs related to 
thrombotic events associated with COVID-19

The identification of the top genes related to thrombosis and 
ACE2 interaction network, affected by coronavirus infection, 
allowed us to predict the miRNAs with the biggest potential of 
playing a role as biomarkers in thrombotic complications 
associated with COVID-19. MiR-16-5p takes part in the reg
ulation of inflammation and programmed cell death. Many 
studies showed the anti-inflammatory effect of miR-16 in 
atherosclerosis, acute lung injury and sepsis [83,84,85]. MiR- 
16 influences the phenotypic changes on T cells survival, 
differentiation, and proliferation, which are critical for anti
viral responses. Limited studies aimed to analyse the predic
tive and prognostic value of miR-16-5p, and miR-27a in 
cardiovascular diseases. A previous publication showed up- 

regulation of miR-16 in patients with Takotsubo cardiomyo
pathy compared to healthy subjects [86]. Latest meta analysis 
assessed the prognostic utility of 19 circulating miRNAs 
included in four relevant articles in heart failure patients. 
Meta analysis showed that patients with low expression of 
miR-16-5p and miR-27a levels have significantly worse overall 
survival [87]. MiR-27a was found significantly lower in 
patients with atherosclerosis compared to healthy individuals, 
however the study included only 25 patients and 26 controls 
[88]. However, its impact on SARS-CoV2 infection remains 
unclear. Previous bioinformatic analysis revealed the ability of 
miR-16-5p to target genes responsible for host-SARS-CoV2 
interaction [1,61]. Another possible implication of this 
miRNA in COVID-19 infections is its ability to influence 
viral entry receptor (ACE2) related networks, which was also 
determined by bioinformatic analyses [1,89]. However, the 
implications of these findings have not been deeply investi
gated yet. One possible explanation is that miR-16 suppresses 
cell cycle and prevents viral replication through decreasing 
CCND1 level, which is a crucial protein in G1 to S phase 
transition during cell cycle processes [61,90].

In line with our data, miR-16-5p represents the most 
abundant miRNA in the plasma, followed by miR-223-3p, 
let-7b-5p and miR-146a-5p in previous study [91]. Further 

Figure 4. Comparison of circulating miRNAs relative expression between the groups. a) miR-16-5p; b) Let-7b-5p; c) miR-27a-3p; d) miR-155-5p. Mann-Whitney 
U test and Wilcoxon test were used appropriately. Kruskal-Wallis test shows the difference among the four groups. MiRNAs expression data is presented as log10 
transformation. Abbreviations: COVID-19, coronavirus disease 2019; miR, microRNA; p, p value.
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several miRNAs, including miR-16-2-3p, DE in peripheral 
blood and infected tissues from COVID-19 patients when 
compared to healthy controls, indicate a potential role in 
the infection [92,93]. However miR-16-5p is downregulated 
in lung epithelium, but upregulated in peripheral blood 
[92,93]. Importantly, in another study, plasma levels of miR- 
16-5p were lower in critically ill patients and were negatively 
correlated with the total number of days of ICU stay 
(rho = −0.38). Besides, miR-16-5p in cluster with miR-92a- 
3p, miR-98-5p, miR-132-3p, miR-192-5p and miR-323a-3p 
showed significant decrease in patients who did not survive 
at the ICU, however miR-16-5p was not included in the 
multivariate analysis that predicted mortality during the 

ICU stay [43]. Also in our analysis we did not find 
a correlation between miR-16-5p expression and mortality, 
although it was significantly lower in individuals who stayed 
longer in hospital.

Thrombosis-related miR-27a-3p also influences ACE2 
related pathways [1] and its expression was upregulated in 
hospitalized COVID-19 patients compared to healthy con
trols. We also observed a significant increase in its expression 
during the stay in hospital, however there was no association 
with in-hospital length of stay or mortality. MiR-27a-3p is DE 
between ward and ICU patients, was correlated with leuko
cytes and CRP [43], and represents a potential in regulation of 
inflammatory response in sepsis. MiR-27a stimulates the 

Figure 5. Baseline miR-16-5p expression box-plots and receiver operating characteristic (ROC) curves: a) miR-16-5p box-plots for hospital length of stay 
comparison; b) miR-16-5p ROC curve for prediction of hospital length of stay; c) miR-16-5p box-plots for hospital length of stay or death in follow-up as a composite 
endpoint; d) miR-16-5p ROC curve for prediction of hospital length of stay or death in follow-up as a composite endpoint. Abbreviations: AUC, Area under the ROC 
Curve; COVID-19, coronavirus disease 2019; miR, microRNA; N, number.

Table 4. Statistical estimates for prediction of increased hospital length of stay or death in follow-up as a composite endpoint by baseline expression of miR-16-5p.

MiRNA AUC (95% CI) p-value Cut-off Sensitivity Specificity PPV NPV

baseline 
low miR-16-5p vs 
high miR-16-5p

0.810 (0.71–0.91) 0.000009 6.1* 78% 73% 71% 80%

*Log10-transformed data was used for the cut-off value. Abbreviations: AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, 
negative predictive value. 
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synthesis of inflammatory cytokines through the NF-kB path
way, and thus IL-6 and TNF-a expression. Thus, it may be 
hypothesized that miR-27a promotes pulmonary inflamma
tion and sepsis or may reflect SARS-CoV-2 mediated gastro
intestinal tract infection or inflammation [94].

In a previous study which performed small RNA deep 
sequencing in patients with COVID-19, miR-16-5p was the 
most abundant regulated miRNA, followed by miR-223-3p, 
let-7b-5p and miR-146a-5p [91]. Moreover, previously pub
lished bioinformatic analysis also presented the interaction 
between let-7b-5p and TMPRSS [95]. Based on our bioinfor
matic prediction analysis we validated the potential of let-7b 
in COVID-19 patients and found that low expressions of let- 
7b can have diagnostic utility in patients with COVID-19. Let- 
7b can potentially enhance the synthesis of inflammatory 
cytokines, activating TLR4/NF-κB pathway and inhibiting 
the TLR4 expression, which in COVID-19 patients may be 
interesting especially in neutrophils, due to their role in sepsis 
development. Thus, let-7b might indirectly stimulate neutro
phils recruitment [96]. Let-7b further inhibits M protein 
expression of the SARS-CoV-2 genome. Interestingly, let-7 
not only IL-6 mRNA expression, but also significantly 
decreased the expression of many other SARS-CoV-2 related 
cytokines and chemokines including IL-1β, IL-8, CCL2, GM- 
CSF, TNF-α, and VEGFα. Therefore, let-7, a miRNA ubiqui
tously expressed in human cells, blocks SARS-CoV-2 replica
tion by targeting S and M protein, as well as inhibits the 
expression of multiple inflammatory mediators [97].

As previously described miRNAs, miR-155 is also involved 
in inflammation. There it acts via different mechanisms by 
directly targeting IL13Rα1, IL-13 receptor and also contri
butes to IL-8 secretion. Moreover, it influences the T-cell 
differentiation and affects the innate immunity [72]. MiR- 
155 additionally regulates pathways related with the IFN 
superfamily, an important regulator of inflammatory 
response, especially in viral infections [98,99,100]. SARS- 
CoV-2 infection correlates with a strong increase of miR- 
155 expression in the infected cells and thereby allows the 
distinction between patients with influenza-related and 
COVID-19-related acute respiratory distress syndromes 
[101]. Recently two human studies found that miR-155 
expression significantly differed between critically ill 
COVID-19 patients and healthy controls [102,103]. 

Importantly, Tacke et al. [103] did not find miR-155 as an 
indicator for patient’s survival. However, when patients were 
subdivided according to their age upon admission to the ICU 
into those younger and older than 65 years, low miR-155 
expression levels became a strong independent indicator for 
patient mortality [103]. In our study only miR-155-5p expres
sion was significantly higher in COVID-19 patients compared 
to healthy individuals. Moreover, miR-155 expression showed 
an increasing trend at day-7 and day-21 after admission. Our 
results are in line with previous reports which stated that high 
miR-155 expression can be a diagnostic biomarker. Further 
analysis should confirm its ability to predict the severity of the 
disease in COVID-19 patients.

5. Study limitations

The main limitation of our study is the small size of the 
patient group and a low mortality in the included cohort. 
Moreover, there were no clinically relevant thrombotic events 
in the patient population, and thus we could not test the 
hypothesis whether miRNAs selected based on computational 
analysis may serve as predictive biomarkers of thrombo- 
inflammatory events. Third, due to the hypothesis- 
generating study design, we limited our analysis to miRNAs 
associated with thrombosis, based on our bioinformatic ana
lysis and publicly available expression datasets related to cor
onavirus infection. However, we did not perform the miRNA 
sequencing in the collected plasma samples, which might 
enable us to determine novel miRNAs with higher predictive 
value for COVID-19. Finally, we did not have the possibility 
to analyse the top genes that were predicted in relation to 
thrombosis from our bioinformatic analysis. Altogether, our 
results should be confirmed in a larger, preferably multi- 
centre study before miRNAs and their target genes can be 
used as a prognostic biomarker of COVID-19 in clinical 
practice.

6. Conclusions

This study enabled us to better characterize changes in gene 
expression and signalling pathways related to hypercoagulable 
and thrombotic conditions in COVID-19. In this study we 
identified and validated miRNAs which could serve as novel, 
thrombosis-related predictive biomarkers of the COVID-19 
complications, and can be used for early stratification of 
patients and prediction of severity of infection development 
in an individual. Non-coding RNAs associated with inflam
mation and coagulation pathways identified by bioinformatic 
analysis can serve as potential early biomarkers helping in 
identification of the pathological changes in COVID-19. 
Future investigations should take into account the effect of 
pharmacological therapies on the circulating miRNAs pattern 
in this emerging disease [43]. Identifying novel biomarkers 
and creating predictive tools may improve outcome in 
patients with COVID-19, and therefore has a potential for 
reducing disease-related, personal and economic conse
quences of the global pandemic. Additional studies in larger 
cohorts with thrombotic complications and functional 

Table 5. Multivariate logistic regression model for prediction of increased hos
pital length of stay or death in follow-up as a composite endpoint by low 
expression baseline of miR-16-5p along with clinical variables.

Variable OR 95% CI p-value
Lower Upper

Low baseline miR-16-5p expression 9.417 2.647 33.506 0.0005
Gender (male) 1.580 0.373 6.686 0.534
Age (years) 1.034 0.970 1.103 0.303
BMI >30 1.449 0.379 5.535 0.588
DM 6.257 1.049 37.316 0.044
Smoking 1.934 0.101 37.062 0.661
Hypertension 0.677 0.134 3.421 0.637
CVD 0.245 0.037 1.616 0.144

P values marked with bold indicate statistically significant significant <0.05. 
Abbreviations: BMI, Body mass index; CI, confidence interval; COVID-19, cor
onavirus disease 2019; CVD, cardiovascular disease; DM, diabetes mellitus; miR, 
microRNA; OR, odds ratio. 
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approaches are warranted to validate these findings and pro
vide further insight into the role of circulating miRNAs as 
biomarkers and functional mediators of COVID-19.
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