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Purpose: Total marrow irradiation (TMI) involves optimization of extremely

large target volumes and requires extensive clinical experience and time for

both treatment planning and delivery. Although volumetric modulated arc

therapy (VMAT) achieves substantial reduction in treatment delivery time,

planning process still presents a challenge due to use of multiple isocenters

and multiple overlapping arcs. We developed and evaluated a knowledge-

based planning (KBP) model for VMAT-TMI to address these clinical challenges.

Methods: Fifty-one patients previously treated in our clinic were selected for

the model training, while 22 patients from another clinic were used as a test set.

All plans used a 3-isocenter to cover sub-target volumes of head and neck

(HN), chest, and pelvis. Chest plan was performed first and then used as the

base dose for both the HN and pelvis plans to reduce hot spots around the field

junctions. This resulted in a wide range of dose-volume histograms (DVH). To

address this, plans without the base-dose plan were optimized and added to

the library to train the model.

Results: KBP achieved our clinical goals (95% of PTV receives 100% of Rx) in a

single day, which used to take 4-6 days of effort without KBP. Statistically

significant reductions with KBP were observed in the mean dose values to

brain, lungs, oral cavity and lenses. KBP substantially improved 105% dose

spillage (14.1% ± 2.4% vs 31.8% ± 3.8%), conformity index (1.51 ± 0.06 vs 1.81 ±

0.12) and homogeneity index (1.25 ± 0.02 vs 1.33 ± 0.03).

Conclusions: KBP improved dosimetric performance with uniform quality. It

reduced dependence on planner experience and achieved a factor of 5

reduction in planning time to produce quality plans to allow its wide-spread

clinical implementation.
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1 Introduction

Allogeneic stem cell transplantation commonly requires

total body irradiation (TBI) to provide a sufficient level of

immunosuppression in addition to killing malignant cells

(1–3). Although higher radiation dose would improve disease-

free survival, injuries to critical organs compel the radiation to be

targeted more selectively (4, 5). Over the past decade, radiation

dose sculpting to the total marrow has been implemented to

substantially decrease dose to normal organs using techniques of

intensity modulated radiation therapy (IMRT) (6, 7) and helical

tomotherapy (8, 9). In particular, recent studies of volumetric

modulated arc therapy (VMAT) total marrow irradiation

(TMI) demonstrated satisfactory plan quality and treatment

delivery efficiency (10–13). Recent efforts enabled clinical

implementation of TMI through several Phase I and II clinical

trials for advanced acute myeloid leukemia and multiple

myeloma patients proving its clinical feasibility and tolerability

with encouraging outcome results (14–17). There is now

worldwide interest for the implementation of TMI especially

for those patients with advanced diseases who could benefit from

intensified treatment regiments.

Treatment planning for TMI, however, is an extremely

resource-intensive procedure as the inverse planning

optimization requires extended computing time and planner

interventions to work out a plan for the huge target volumes

encompassing total marrow. These difficulties, along with

variations in knowledge and experience, can lead to

inconsistent treatment plan qualities and remain the major

hurdle for widespread clinical application of TMI.

Knowledge-based radiotherapy treatment planning (KBP),

in which new plan dose volume histograms (DVH) and

optimization objectives are predicted from libraries of the

historical plan data (18–22), suggests a possibility to expedite

the demanding VMAT-TMI planning with reduced iterations of

planner-intervention during optimization. Commercially

available KBP solutions analyze the field geometry, patient

anatomy and DVH’s of the past plans to train a model using

principal component analysis and generates patient-specific

achievable plan objectives along with estimated DVH’s for

organs at risk (OARs) (23–25).

Although KBP approach has been investigated in various

anatomical sites and proved its value to facilitate challenging

treatment planning processes with consistent plan quality, TMI

adds an extra difficulty for KBP application as the large target

volume requires multiple isocenters plans and a base-dose

optimization technique, which compound the model training.

In this study, we developed a KBP model to handle multiple-

isocenter VMAT TMI and assessed its performance and

robustness using patient data from two clinics.
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2 Methods and materials

2.1 Patient selection

Fifty-one patients previously treated at the University of

Illinois at Chicago (UIC) from 2009 to 2020 were selected for the

model training, and 22 patients treated at the University of

Chicago (UChicago) were selected to test the model. All patients

in this study were treated under clinical trials approved by their

respective institutional review boards (IRB). Target and critical

structures were contoured and planned using the Eclipse

treatment planning system and RapidPlan version 15.6

(Varian Medical Systems, Palo Alto, CA). Although the

patients had been contoured in the consistent way, we

observed a gradual improvement in plan quality - as defined

in the Evaluation section - with the upgrade of Varian

optimization software over the past decade to exploit advanced

techniques and user interface such as Photon Optimizer

algorithm (26, 27) and Arc Geometry tool (28). To minimize

the dosimetric performance variation in the reference set for the

evaluation of our KBP, we identified a benchmark cohort of

recent 11 clinically approved plans optimized by a single planner

at UIC with similar target volumes. The average planning target

volume (PTV) sizes were 7470 ± 880 cc (range: 6383 - 9389 cc)

and 7770 ± 1190 cc (range: 5702 - 9489 cc) for the 11 clinical and

22 test patients, respectively.
2.2 VMAT-TMI plan preparation

For all patients, clinical target volume (CTV) was defined as

bones from head to mid-femur and was contoured in the whole-

body simulation computed tomography (CT) of 3-mm slice

thickness. PTV was generated by adding a 3-mmmargin around

the CTV and was divided into three sub volumes to form

separate targets for head and neck (H&N), chest, and the

pelvis. Our institutional practice has been to exclude

extremities and mandible from the PTV due to treatment field

length limitation and acute toxicities in the oral cavity,

respectively. Further justification for the exclusion of

extremities is the fact that there is no active bone marrow in

adults. Nevertheless, we recently started including mandible

after a local recurrence case (29). Also, a careful field junction

setup can achieve optimal target coverage including legs (30).

However, for a consistent evaluation with the benchmark cohort

of clinically approved plans, we maintained the same target

volume definition in this study to exclude extremity bones below

mid-humerus in arms and below mid-femur in legs, mandible

and maxillary structures from the PTV. Three-isocenter plans

with 13 arcs delivered 3 Gy dose in two fractions per day. H&N
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and pelvis plans were optimized utilizing the chest plan as the

base dose to prevent hot spots around the field junctions. Chest

plans used five 280° arcs, and both H&N and pelvis plans used

four 280° arcs each to have all area of target well visible by the

jaw opening. The Eclipse Arc Geometry tool reported the point

with the lowest coverage was seen by at least 30% of the control

points. Each arc had an upper jaw (y-axis) opening of 40-cm and

a lower jaw (x-axis) opening of 15-cm to achieve full modulation

performance of the Millenium™MLC. Optimization goals were

set to cover 95% of PTVs by the prescription dose with up to

140% hot spots allowed within the targets. All plans used 6-MV

beams and Anisotropic Analytical Algorithm as dose calculation

method with 2.5-mm dose resolution grid.
2.3 Model training

Three model libraries were created separately for H&N,

chest and pelvis using 51 training plans. In an ideal data-rich

environment, the patient data set needs to be randomly divided

into a training set, a validation set, and a test set. The validation

step can estimate prediction error for model selection before the
Frontiers in Oncology 03
test set assesses the generalization error of the final model.

However, with the slow accumulation of patient data for TMI

(51 patients in one center over the past decade), we adopted a

continuous validation approach to maximally exploit the limited

number of patients. If plan qualities of the training patients got

improved with KBP, the improved plan was added back to the

same model to continuously improve the quality of the model.

The final model thus created was assessed using the test set of 22

UChicago patients that was unknown to the model. Each model

was designed to generate estimated mean dose values of OARs

with priority values set to the institutional practice. With the

relative priority values of 100 assigned for PTV coverage, the

mean dose constraints priorities were set 60 for the brain and

lungs, and 30 or 40 for all other critical organs.

The H&N and pelvis plans optimized with base dose resulted

in a wide range of DVH as shown in Figure 1 (left). The scattered

distribution due to chest base dose distribution was successfully

removed once the model plans were re-optimized without the

base dose. These re-optimized plans would generate hot spots at

field junctions in the plan sum and were not clinically

deliverable. They served as KBP model plans to drive better

DVH estimation for H&N and pelvis (Figure 1, right).
FIGURE 1

Target DVH distribution for H&N and pelvis plans. Optimization when chest plan is used as the base dose resulted in a wide target DVH range
(left column). The scattered DVH distribution was successfully removed once the model plans were re-optimized without the base dose.
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2.4 DVH estimation and optimization

The KBP model trained using 51 UIC patients was used to

generate DVH estimates and dose objectives for 3 sub plans for

each of the 22 test patients. In addition to these KBP objectives, we

created 1-cm thick ring structures around PTV to improve dose

conformity near the target volume and turned-on normal tissue

objective with 1-cm distance from the target border to further

suppress dose outside the ring structures. Eclipse optimization

conveniently displays the calculation cost per structure to enable

modifying the relative computing effort on the fly. The relative

priority values of the ring structure and the normal tissue objective

were intermittently adjusted during the optimization to maintain

these calculation costs comparable to that of the target volume.

For H&N and pelvis plans, the training model predictions of

OARs depended on their location relative to the junctions. For

brain or eyes, for instance, the predicted DVHs would be

adequate to guide the base-dose optimization - even though

the H&N model ignored the dose contribution from the chest

plan - because the OARs are away from the junctions and the

dose contribution from the chest plan would be negligible. For

kidneys or bowel, on the other hand, the predicted DVHs from

pelvis plan would substantially underestimate the final dose

because the model could not account for the base dose

contribution from the chest plan. Nevertheless, the sums of

predicted mean dose values from chest and pelvis plans would be

the upper limits of the composite mean dose values, and were

used as the surrogate optimization objectives. Note that a

composite DVH cannot be calculated from two subplan

DVHs, but a composite mean dose can be calculated from the

corresponding subplan DVHs by simply adding the respective

mean values (see the Supplemental Figure).
Frontiers in Oncology 04
2.5 Evaluation

KBP performance on 22 test patients independent of the

training set (open-loop) was benchmarked using 11 patients

treated between 2018 and 2019. Also, one of those 11 patients

was selected to run closed-loop KBP to demonstrate its

performance on the same patient CT. Plan quality was

evaluated using homogeneity index (D0.03cc/D100%),

conformity index (V95%/PTV), dose spillage (V105%-PTV)/

PTV), and total MU’s. Student t-tests (two-tails, two-sample

unequal variance) identified significant differences in mean dose

values of PTVs and OARs. F-tests evaluated if two variances

were significantly different.
3 Results

Model training statistics for the 51 patients are summarized

in Table 1. Note that lungs overlap with both H&N and chest

models. Liver, bowel, and kidneys overlap with both chest and

pelvis models. The coefficients of determination (R2) were in the

range 0.40 (lungs, chest model) – 0.96 (liver, pelvis model), and

chi squares were in the range 1.04 (lungs, chest model) – 1.17

(oral cavity, H&Nmodel). The training model detected potential

outliers using all of the statistics for each structure and reported

substantially large number of outliers for kidneys in the chest

model and bowel in the pelvis model. Figure 2 shows DVH plots

and residual plots for brain, lungs, and bowel in the H&N, chest,

and pelvis models, respectively. The residual plots evaluate how

the original DVH differs from the estimated DVH by showing

the first principal component scores of the actual and estimated

DVH for each structure.
TABLE 1 Summary of model training.

Model Structure Coeff. of Determination (R2) Chi Square Outliers/Matched Structures

H&N brain 0.701 1.164 11/41

eyes 0.535 1.077 12/41

lenses 0.615 1.077 7/41

oral cavity 0.743 1.170 10/41

lungs 0.955 1.047 1/41

chest lungs 0.402 1.040 5/51

heart 0.681 1.101 5/51

liver 0.689 1.122 4/51

kidneys 0.503 1.069 24/51

bowel 0.924 1.111 13/51

pelvis liver 0.956 1.096 7/41

kidneys 0.852 1.053 2/41

bowel 0.770 1.108 20/41
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The KBP models generated achievable mean dose values

along with the prediction ranges of DVHs for each OAR for the

22 test patients. The estimated objectives were attained within a

single day using 2~3 iterative optimizations, which used to take

4-6 days of effort for clinical plans without using the knowledge-

based approach. Table 2 shows a comparison of mean dose

values to organs and targets for the KBP test plans and

benchmark clinical plans. P-values are shown in bold if
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differences are statistically significant (<0.05). Overall KBP had

comparable dosimetric results as clinical plans and achieved

significant improvement in major OARs. The mean dose values

(% of prescribed dose) for brain and lungs decreased from 58.5%

± 3.9% to 54.5% ± 2.5%, and from 64.1% ± 3.3% to 60.3% ±

1.9%, respectively. Although both groups were normalized to

cover 95% of PTV’s with the prescription dose, KBP achieved the

coverage with lower mean dose to the chest and H&N target
TABLE 2 Comparison of mean dose values of OAR (% of prescribed dose).

Clinical plans KBP P-value

Average (T-test) St.Dev. (F-test)

Brain 58.5 ± 3.9 54.5 ± 2.5 0.008 0.08

Heart 51.5 ± 3.6 50.9 ± 3.4 0.77 0.81

Lungs 64.1 ± 3.3 60.3 ± 1.9 0.002 0.03

Bowel 47.7 ± 5.8 46.5 ± 5.0 0.95 0.54

Liver 52.7 ± 4.5 54.0 ± 2.9 0.32 0.10

Kidneys 49.7 ± 5.5 50.5 ± 4.9 0.37 0.63

Eyes 44.2 ± 3.3 41.6 ± 2.6 0.07 0.35

Oral Cavity 34.7 ± 4.1 27.0 ± 3.2 <0.001 0.33

Lenses 29.4 ± 1.9 25.9 ± 1.8 <0.001 0.80

PTV chest 111.7 ± 1.5 108.5 ± 0.5 <0.001 <0.001

PTV HN 111.0 ± 1.6 109.0 ± 0.5 0.002 <0.001

PTV Pelvis 108.0 ± 0.9 108.0 ± 0.5 0.77 0.03

Body 56.8 ± 3.9 57.0 ± 5.1 0.44 0.36
Statistically significant p-values (<0.05) are in bold.
FIGURE 2

DVH plots (top) and principal component scatter plots (bottom) for brain, lungs, and bowel in the HN, chest, and pelvis models, respectively.
Confidence intervals are displayed using one standard deviation of fitting error (bottom).
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volumes. In addition, KBP had narrower distribution of mean

dose values for lungs and each of the PTVs as indicated by p-

values of F-tests.

KBP also had better plan qualities as shown in Table 3.

Average homogeneity index (D0.03cc/D100%) and conformity

index (V95%/PTV) decreased from 1.33 ± 0.03 to 1.25 ± 0.02,

and from 1.81 ± 0.12 to 1.51 ± 0.06, respectively. Note that

standard deviation of the two indices also significantly decreased

as confirmed by F-tests. Furthermore, KBP achieved a factor of

two reduction in the 105% dose spillage by decreasing it from
Frontiers in Oncology 06
31.8% ± 3.8% to 14.1% ± 2.4%. The slight increase in total MU’s

for KBP was statistically insignificant (p-value = 0.08).

Figure 3 shows an example of KBP performance (left)

compared to a clinical plan (right) with axial, coronal, and

sagittal views. As there was no overlapping between the test

set and the benchmark clinical set, a closed-loop KBP validation

was performed on one patient selected from the clinical set for a

fair comparison on the same patient CT. Both plans had

acceptable mean dose values for OARs close to those reported

in Table 2. For instance, mean brain and lung dose values were
FIGURE 3

An example of KBP performance (left) compared to a clinical plan (right). Black lines depict PTV. Dose range shown from 900 cGy (red) to 600
cGy (blue) in axial (top), coronal (bottom left), and sagittal plane (bottom right).
TABLE 3 Comparison of plan quality.

Clinical plans KBP P-value

Average (T-test) St.Dev. (F-test)

D0.03cc 1.33 ± 0.03 1.25 ± 0.02 <0.001 0.03

V95%/PTV 1.81 ± 0.12 1.51 ± 0.06 <0.001 0.01

Dose spillage 31.8 ± 3.8 14.1 ± 2.4 <0.001 0.06

Total MU 3245 ± 387 3492 ± 265 0.08 0.14
Statistically significant p-values (<0.05) are in bold.
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58% and 61% for the KBP and 63% and 62% for the clinical plan,

respectively. The homogeneity index, conformity index, dose

spillage, and total MU were 1.27, 1.62, 20.8%, and 3634 for the

KBP, and 1.32, 1.95, 35.6%, and 3507 for the clinical plan,

respectively. Overall, the color-wash dose distribution shown in

Figure 3 demonstrates a visible improvement in dose conformity

indicated by the 600 cGy dose level.
4 Discussion

Linac-based multiple-isocenter TMI planning used base-

dose optimization, and the model configuration was

performed using re-optimization. The plots for brain and

bowel in Figure 2 were generated from the models of re-

optimized plans with base-dose turned off. The results, or

predicted objectives, could not be used for TMI directly, and

we had to go through a few more steps for OARs at the field

junctions as described in section 2.4. Our study is the first

attempt to use RapidPlan for multiple adjacent plans with

base-dose optimization, and we provide a working solution on

how to handle the scattered target DVH distribution as shown in

Figure 1. As indicated in Table 1, our approach enabled the

model training with each of the OAR having sufficient number

of instances for fitting the regression model. It should be noted

that field overlapping of subplans inevitably resulted in OARs at

the border partially covered by each subplan. In particular,

kidneys and bowel were split by the chest and the pelvis

subplans at arbitrary positions thus increased the number of

outliers possibly due to the variability of in-field volume for the

corresponding models. The goodness of fit statistics shown in

Table 1, however, were supported by a favorable chi square

(close to 1.0) and relatively robust to potential outliers, and KBP

supported acceptable performance for all OARs as shown in

Table 2. This also agrees with the previous studies that

demonstrated robustness of RapidPlan for moderate

proportions of dosimetric outliers (31, 32).

We note that KBP for general external beam cases employ

substantially higher number of cases for training. However, there

are reasonable differences in interpatient variation to support

relatively small number of cases for TMI. For example, it is

understandable that the H&N region KBP studies were

performed with >100 patients with the wide variety of target

shape (33, 34). The more variation treatment involves, the

greater number of plans need to be included in the model.

Every H&N cancer patient has different target shape, size, and

the position of the target relative to OARs (far, close;

overlapping, non-overlapping). On the other hand, every H&N

TMI patient of ours had almost the same target shape, size and

the geometrical relationships between the target and OARs.

Compared to typical coefficients of determination (R2, 0.7-

0.9) in vendor-provided models for general clinical cases, Table 1

reports low values for some structures. In particular, R2 for lungs
Frontiers in Oncology 07
in chest model was only 0.4, which could be due to the extremely

complex target (rib cage) shape around the OAR, and would

inevitably decrease the model prediction effect. Nevertheless, the

chi square (1.040) indicates a reasonable performance of the

fitting function and the mean lung dose predicted by KBP was

achievable and even produced statistically significant

improvement as shown in Table 2. This validates our

approach and as a matter of fact is currently being used in at

least two clinics with proven success. Again, it is worth noting

that the convoluted target shape of TMI was repeated for each

patient in a quite predictable way. Unlike general tumors where

wide variety is observed for the target shape, size, and position,

the PTV defined from bones presents relatively consistent target-

OAR geometry for TMI, and this could be an advantageous

aspect for model training with limited number of patients and

the remarkably good results in this study.

To optimize the dose distribution of the large target from

head to mid-femur, we developed three-iso, three-plan approach

for TMI planning and implemented the KBP model to

accommodate such configuration. While our current multi-

plan approach breaks down a complex task of TMI into sub-

problems to make them easier for the machine learning, it is

inherently subject to increased number of dosimetric outliers at

field overlapping area as discussed above and could potentially

lead to suboptimal solution. Recent upgrade of Eclipse (version

16) opens up the possibility of an improvement by fully

supporting both optimization and dose estimation of multiple

isocenters in a single plan and calls for a further study that can

potentially simplify the treatment delivery and improve plan

quality as well.

One of the major difficulties for the inverse planning of large

and complex target volumes is to figure out how far the planning

can be pushed. Planners might end up either stopping the

optimization prematurely or spending indefinite time in too

many iterative optimizations without achieving clinically valid

improvement. KBP provided attainable optimization goals ahead

of treatment planning, and enabled substantial reduction in

treatment planning time for the test patients which are not used

for training the model. Moreover, Table 2 shows that the

knowledge-based optimization provided significantly decreased

mean doses to brain, lungs, oral cavity and lenses even with the

reduction of planning time. It is noteworthy that the improved

therapeutic ratio is also implied by the decreased mean dose values

to HN and chest PTV. For external beam therapy, the elevated

mean target dose that achieves the same prescription coverage and

conformity generally entails unnecessary radiation dose delivered

to normal tissue.

Treatment planning is usually confronted with a trade-off

problem among various dosimetric goals. Especially, pushing the

optimization exceedingly to lower dose to OARs could

compromise conformity, uniformity, or dose spillage to an

unacceptable degree, or lead to increased beam modulation and

complexity to deteriorate delivery accuracy along with increased
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time of planning (35–37). However, such drive toward a desired

dose to OARs for TMI in this study was well under control with

KBP as indicated by the improved plan qualities reported in

Table 3. Note that the slight increase in total plan MU, a common

indicator of plan complexity, was statistically insignificant.

Another important value of the knowledge-based approach is

the prospect of plan quality management. KBP resulted in

comparable or better dosimetric parameters mostly as shown in

Table 2 and Table 3. Furthermore, significantly narrower

distributions were produced for the mean dose to lungs and

PTVs, as well as for homogeneity and conformity indices. These

are strong indications that the plan quality adheres to a set of criteria

defined by the transferable knowledge and expertise. This could

potentially enable widespread clinical application of TMI. In fact,

our study design itself had the training from 51 plans in one clinic

achieve treatment planning of 22 new patients in another clinic. It

demonstrates that the knowledge-based artificial intelligence

approach can facilitate multi-center clinical trials of TMI with

automation and data sharing as foreseen by Wong et al. (38).
5 Conclusions

A knowledge-based DVH estimation model was successfully

configured for linac-based multiple-isocenter TMI planning and

was used to generate plans for test patients from another clinic

with plan quality equivalent or superior compared to the

references. VMAT-TMI powered by KBP can potentially

support uniform dosimetric quality among different users and

clinics, and can reduce treatment planning time and effort by

providing a goal attainable within a few iterative optimizations

allowing widespread clinical use of TMI.
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