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Abstract: Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, 

synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used 

in many biotechnological applications requiring high activity at mild temperatures or fast 

heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low 

temperature at the expense of substrate affinity, therefore reducing the free energy barrier 

of the transition state. Furthermore, a weak temperature dependence of activity ensures 

moderate reduction of the catalytic activity in the cold. In these naturally evolved enzymes, 

the optimization to low temperature activity is reached via destabilization of the structures 

bearing the active site or by destabilization of the whole molecule. This involves a 

reduction in the number and strength of all types of weak interactions or the disappearance 

of stability factors, resulting in improved dynamics of active site residues in the cold. 

Considering the subtle structural adjustments required for low temperature activity, 

directed evolution appears to be the most suitable methodology to engineer cold activity in 

biological catalysts.  
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1. Introduction 

Psychrophiles are mainly microorganisms thriving in permanently cold environments and even at 

sub-zero temperatures in supercooled liquid water. Such extremely cold conditions are encountered, 
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for instance, in salty cryopegs at −10 °C in the permafrost [1] or in the brine veins between polar sea 

ice crystals at −20 °C [2]. Unusual microbiotopes have also been described, such as porous rocks in 

Antarctic dry valleys hosting microbial communities surviving at −60 °C [3,4]. These examples 

illustrate the unsuspected ability of microorganisms to adapt to low temperatures. Such microorganisms 

do not merely survive or endure such extremely inhospitable conditions but are irreversibly adapted to 

these environments, as most psychrophiles are unable to grow at mild (or mesophilic) temperatures. It 

is frequently overlooked that the majority (>80%) of the Earth’s biosphere is cold and permanently 

exposed to temperatures below 5 °C [5]. Such a low mean temperature mainly arises from the fact that 

~70% of the Earth’s surface is covered by oceans that have a constant temperature of 2–4 °C below 

1000 m depth, irrespective of the latitude. The polar regions account for another 15%, to which the 

glacier and alpine regions must be added, as well as the permafrost representing more than 20% of 

terrestrial soils [6,7]. All these low temperature biotopes have been successfully colonized by  

cold-adapted organisms, which include a large range of representatives from all three domains: 

Bacteria, Archaea and Eukarya. As a result, psychrophiles are the most abundant extremophiles in 

terms of biomass, diversity and distribution. 

Life in cold environments requires a vast array of adaptive features at nearly all levels of the cell 

architecture and function. However, a key determinant of these adaptations lies in the protein function 

that drives microbial metabolism and cell cycle. Earlier studies of psychrophiles at the molecular level 

were mainly focused on cold-active enzymes because this aspect was regarded as a prerequisite to the 

environmental adaptation. It was shown that the high level of specific activity at low temperatures of 

cold-adapted enzymes is a key adaptation to compensate for the exponential decrease in chemical 

reaction rates as the temperature is reduced. Such high biocatalytic activity arises from the 

disappearance of various non-covalent stabilizing interactions, resulting in an improved flexibility of 

the enzyme conformation [8–10]. As a general picture, psychrophilic enzymes are all faced to a main 

constraint, to be active at low temperatures, but the ways to reach this goal are quite diverse. It should 

be noted that this adaptive feature is genetically encoded within the protein sequence and results from 

a long term selection. We present here an overview of the optimization to low temperature activity in 

psychrophilic enzymes, also referred to as cold enzymes, and of their biotechnological applications. 

2. Kinetic Properties of Cold Enzymes 

2.1. General Properties  

The activity of enzymes is strongly dependent on the surrounding temperature. The catalytic 

constant kcat corresponds to the maximum number of substrate molecules converted to product per 

active site per unit of time, and the temperature dependence of the catalytic rate constant is given by 

the relation: 

B
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In this equation, κ is the transmission coefficient generally close to 1, kB is the Bolzmann constant 

(1.38 × 10−23 J K−1), h, the Planck constant (6.63 × 10−34 J s), R, the universal gas constant  
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(8.31 J K−1 mol−1) and ΔG#, the free energy of activation or the variation of the Gibbs energy between 

the activated enzyme-substrate complex ES* and the ground state ES. Accordingly, the activity kcat is 

exponentially dependent on the temperature. As a rule of thumb, for a biochemical reaction catalyzed 

by an enzyme from a mesophile (a bacterium or a warm-blooded vertebrate), a drop in temperature 

from 37 °C to 0 °C results in a 20 to 80 times lower activity. This is the main factor preventing the 

growth of non-adapted organisms at low temperatures. 

The effect of temperature on the activity of psychrophilic and mesophilic enzymes is illustrated in 

Figure 1. Equation 1 is only valid for the exponential rise of activity with temperature on the left limb 

of the curves. This figure reveals at least three basic features of cold-adaptation. (i) In order to 

compensate for the slow reaction rates at low temperatures, psychrophiles synthesize enzymes having 

an up to tenfold higher specific activity in this temperature range. This is in fact the main physiological 

adaptation to cold at the enzyme level; (ii) The temperature for apparent maximal activity for  

cold-active enzymes is shifted towards low temperatures, reflecting the weak stability of these proteins 

and their unfolding and inactivation at moderate temperatures; (iii) Finally, the adaptation to cold is 

not always perfect. It can be seen in Figure 1 (left panel) that the specific activity of the psychrophilic 

enzymes at low temperatures, although very high, remains lower than that of the mesophilic enzyme  

at 37 °C. 

Figure 1. Temperature dependence of activity. The activity of psychrophilic (open 

symbols, blue lines) and mesophilic (closed symbols) enzymes recorded at various 

temperatures illustrates the main properties of cold-adapted enzymes: cold activity and heat 

lability. Left panel, -amylases; right panel, cellulases. Both psychrophilic enzymes are 

from the Antarctic bacterium Pseudoalteromonas haloplanktis. Adapted from [11,12]. 

 

2.2. Heat-Labile and Unstable Cold Enzymes  

Most psychrophilic enzymes share at least one property: a heat-labile activity, irrespective of the 

protein structural stability. Furthermore, the active site appears to be the most heat-labile structural 

element of these proteins [13–15]. Figure 2 illustrates this significant difference between the stability 

of the active site and the stability of the structure. The lower panel shows the stability of the structure 

as recorded by fluorescence. As expected, the structure of the cold-active enzyme is less stable than the 

mesophilic one. In the upper panel, the activity is recorded under the same experimental conditions and 
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it can be seen that the mesophilic enzyme is inactivated when the protein unfolds. By contrast, activity 

of the cold-active enzyme is lost before the protein unfolds. This means that the active site is even 

more heat-labile than the whole protein structure. It was also shown that the active site of a 

psychrophilic -amylase is the first structural element that unfolds in transverse urea gradient gel 

electrophoresis [16]. All these aspects point to a very unstable and flexible active site and illustrate a 

central concept in cold adaptation: localized increases in flexibility at the active site are responsible for 

the high but heat-labile activity [17], whereas other regions of the enzyme might or might not be 

characterized by low stability when not involved in catalysis. For instance, psychrophilic carbonic 

anhydrase [18] and isocitrate dehydrogenase [19] are highly stable enzymes with however improved 

flexibility in regions driving catalysis. 

Figure 2. Inactivation and unfolding of psychrophilic enzymes. The activity of 

psychrophilic enzymes (upper panel, blue line) is inactivated by temperature before 

unfolding of the protein structure (lower panel, blue line) illustrating the pronounced  

heat-lability of the active site. By contrast, inactivation of mesophilic enzymes (black 

curves) closely corresponds to the loss of the protein conformation. Adapted from [14]. 

 

Beside this general rule, some rare exceptions have been reported so far. The chaperonin and  

heat-shock protein GroEL from an Antarctic bacterium is not cold-adapted and displays similar 

stability and activity than that of its E. coli homologue [20]. It has been suggested that this chaperonin 

remains suited to function during sudden temperature increases of the environment [21]. Similarly, 

activity of thioredoxin from the same bacterium is much more heat-stable than that of E. coli [22].  

One cannot exclude the possibility that enzymes involved in electron transfer do not require the  

same type of adaptations because the rate of electron flow is not significantly affected by the low 

biological temperatures. 

2.3. Active Site Structure 

Crystal structures of psychrophilic enzymes were of course of prime importance to investigate the 

properties of these heat-labile and cold-active catalytic centers. The first basic observation is that all 
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side chains involved in the catalytic mechanism are strictly conserved. Indeed, comparison of the first 

X-ray structure of a psychrophilic enzyme, the cold-active -amylase [23,24], and of its closest 

structural homologue from pig both in complex with acarbose, a pseudosaccharide inhibitor mimicking 

the transition state intermediate [25,26], has shown that all 24 residues forming the catalytic cleft are 

strictly conserved in the cold-active α-amylase (Figure 3). This outstanding example of active site 

identity demonstrates that the specific properties of psychrophilic enzymes can be reached without any 

amino acid substitution in the reaction center. As a consequence, changes occurring elsewhere in the 

molecule are responsible for the optimization of the catalytic parameters (see Section 4). 

Figure 3. Structure of the active site. Superimposition of the active site residues in 

psychrophilic (blue) and mesophilic α-amylases (red). The chloride and calcium ions  

are shown as blue and green spheres, respectively. The 24 residues performing direct or 

water-mediated interactions with the substrate analog derived from acarbose (yellow) are 

identical and superimpose perfectly within the resolution of the structures, demonstrating a 

structural identity in these psychrophilic and mesophilic enzymes [27]. 

 

Nevertheless, significant structural adjustments at the active site of psychrophilic enzymes have 

been frequently reported. In many cases, a larger opening of the catalytic cleft is observed and 

achieved by various ways, including replacement of bulky side chains for smaller groups, distinct 

conformation of the loops bordering the active site or small deletions in these loops, as illustrated by a 

cold active citrate synthase [28]. In the case of a Ca2+, Zn2+-protease from a psychrophilic 

Pseudomonas species, an additional bound Ca2+ ion pull the backbone forming the entrance of the site 

and markedly increases its accessibility when compared with the mesophilic homologue [29]. As a 

result of such a better accessibility, cold-active enzymes can accommodate substrates at lower energy 

cost, as far as the conformational changes are concerned, and therefore reduce the activation energy 

required for the formation of the enzyme-substrate complex. The larger active site may also facilitate 

easier release and exit of products and thus may alleviate the effect of a rate limiting step on the 

reaction rate. 



Int. J. Mol. Sci. 2012, 13 11648 

 

 

In addition, differences in electrostatic potentials in and around the active site of psychrophilic 

enzymes appear to be a crucial parameter for activity at low temperatures. Electrostatic surface 

potentials generated by charged and polar groups are an essential component of the catalytic 

mechanism at various stages: as the potential extends out into the medium, a substrate can be oriented 

and attracted before any contact between enzyme and substrate occurs. Interestingly, the cold-active 

citrate synthase [28], malate dehydrogenase [30], uracyl-DNA glycosylase [31] and trypsin [32–34] 

are characterized by marked differences in electrostatic potentials near the active site region compared 

to their mesophilic or thermophilic counterparts that may facilitate interaction with ligand. In the case 

of malate dehydrogenase for example, the increased positive potential at and around the oxaloacetate 

binding site and the significantly decreased negative surface potential at the NADH binding region 

may facilitate the interaction of the oppositely charged ligands with the surface of the enzyme [30]. In 

all cases, the differences were caused by discrete substitutions in non-conserved charged residues 

resulting in local electrostatic potential differing in both sign and magnitude. 

2.4. Active Site Dynamics 

The heat-labile activity of psychrophilic enzymes suggests that the dynamics of the functional side 

chains at the active site is improved in order to contribute to cold-activity and the above mentioned 

structural adaptations seem to favor a better accessibility to the substrate and release of the product. 

This view is strongly supported by the enzymological properties of cold-active enzymes. Non-specific 

psychrophilic enzymes accept various substrates and have a broader specificity than the mesophilic 

homologues, because substrates with slightly distinct conformations or sizes can fit and bind to the 

site. For instance, the observed differences in substrate specificity between Atlantic salmon and 

mammalian elastases have been interpreted to be based on a somewhat wider and deeper binding 

pocket for the cold-adapted elastase [32]. The broad specificity of a psychrophilic alcohol 

dehydrogenase that oxidizes large bulky alcohols was also assigned to a highly flexible active site [35]. 

Several crystal structures of psychrophilic enzymes also point to an increased flexibility at or near the 

active site [36], as also supported by molecular dynamic simulations [37–40]. 

This active site flexibility of cold-active enzymes in solution is also well demonstrated by the 

psychrophilic α-amylase [41]. As shown in Table 1, both the psychrophilic and mesophilic α-amylases 

degrade large macromolecular polysaccharides made of glucose units linked by -1,4 bonds. These 

substrates have a complex structure and are generally branched. Taking the natural substrate, starch, as 

the reference, it can be seen that the psychrophilic enzyme is more active on all these large substrates. 

Being more flexible, the active site can accommodate easily these macromolecular polysaccharides. 

Considering the small substrates, the reverse situation is observed. Both enzymes are active on short 

oligosaccharides of at least four glucose units but in this case, the psychrophilic α-amylase is less 

active on all these small substrates. Apparently, the flexible active site accommodates less efficiently 

these short oligosaccharides.  
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Table 1. Relative activity of the psychrophilic (AHA) and the mesophilic (PPA)-amylases 

on macromolecular polysaccharides and on maltooligasaccharides. Adapted from [41]. 

Substrate 
Relative activity (%) 

AHA PPA 
Macromolecular substrates   

Starch 100 100 
Amylopectin 96 68 

Amylose 324 214 
Dextrin 108 95 

Glycogen 74 59 
Short oligosaccharides   

Maltotetraose G4 17 22 
Maltopentose G5 69 145 
Maltohexaose G6 94 147 
Maltoheptaose G7 119 155 

Maltooligosaccharides (G4 to G10 mix) 64 101 

2.5. Adaptive Drift of Substrate Affinity  

As a consequence of the improved active site dynamics in cold-active enzymes, substrates bind less 

firmly in the binding site (if no point mutations have occurred) giving rise to higher Km values.  

An example is given in Table 2 showing that the psychrophilic α-amylase is more active on its 

macromolecular substrates whereas the Km values are up to 30-fold larger, i.e., the affinity for the 

substrates is up to 30-fold lower. Ideally, a functional adaptation to cold would mean optimizing both kcat 

and Km. However, a survey of the available data on psychrophilic enzymes indicates that optimization of 

the kcat/Km ratio is far from a general rule but on the contrary that the majority of cold-active enzymes 

improve the kcat value at the expense of Km, therefore leading to suboptimal values of the kcat/Km ratio, as 

also shown in Table 2. For instance, high Km values have been reported for psychrophilic aspartate 

carbamoyltransferase [42,43], triose-phosphate isomerase [44], subtilisin [45], lactate dehydrogénase [17,46], 

DNA ligase [47], elongation factor Tu [48] and G [49], glutamate dehydrogenase [50,51], α-amylase [52], 

dihydrofolate reductase [53], cellulase [54], endonuclease I [55], aspartate aminotransferase [56], isocitrate 

dehydrogenase [57], xylanase [58], ornithine carbamoyltransferase [59], citrate synthase [60], purine 

nucleoside phosphorylase [61], DEAD-Box proteins [62] and acetate kinase [63]. 

There is in fact an evolutionary pressure on Km to increase in order to maximize the overall reaction 

rate. Such adaptive drift of Km has been well illustrated by the lactate dehydrogenases from Antarctic 

fish [17] and by the psychrophilic α-amylase [52] because both enzymes display rigorously identical 

substrate binding site and active site architecture when compared with their mesophilic homologues. In 

both cases, temperature-adaptive increases in kcat occur concomitantly with increases in Km in  

cold-active enzymes. As already mentioned, such identity of the sites also implies that adjustments of 

the kinetic parameters are obtained by structural changes occurring distantly from the reaction center. 

This aspect has received strong experimental supports [64,65]. 
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Table 2. Kinetic parameters for the hydrolysis of polysaccharides at 25 °C by the 

psychrophilic (AHA) and the mesophilic (PPA) α-amylases. Adapted from [41]. 

Substrate 
AHA PPA 

kcat Km kcat/Km kcat Km kcat/Km 
s−1 mg L−1 s−1mg−1 L s−1 mg L−1 s−1mg−1 L 

Starch 663 155 4.3 327 41 8.0 
Amylopectin 636 258 2.5 222 53 4.2 

Amylose 2148 178 12.1 700 36 19.4 
Dextrin 716 586 1.2 311 61 5.1 

Glycogen 491 1344 0.3 193 46 4.2 

2.6. Adaptive Optimization of Substrate Affinity 

Several enzymes, especially in some cold-adapted fish, counteract this adaptive drift of Km in order 

to maintain or to improve the substrate binding affinity by amino acid substitutions within the active 

site [32,66]. The first reason for these enzymes to react against the drift is obvious when considering 

the regulatory function associated with Km, especially for intracellular enzymes. The second reason is 

related to the temperature dependence of weak interactions. Substrate binding is an especially 

temperature-sensitive step because both the binding geometry and interactions between binding site 

and ligand are governed by weak interactions having sometimes opposite temperature dependencies. 

Hydrophobic interactions form endothermically and are weakened by a decrease in temperature. By 

contrast, interactions of electrostatic nature (ion pairs, hydrogen bounds, Van der Waals interactions) 

form exothermically and are stabilized at low temperatures. Therefore low temperatures do not only 

reduce the enzyme activity (kcat), but can also severely alter the substrate binding mode according to 

the type of interaction involved.  

3. Thermodynamic Origin of Optimization 

Referring to Equation 1, the high activity of cold-adapted enzymes corresponds to a decrease of the 

free energy of activation ΔG#. Two strategies have been highlighted to reduce the height of this energy 

barrier. Figure 4 illustrates the first strategy where an evolutionary pressure increases Km in order to 

maximize the reaction rate. According to the transition state theory, when the enzyme encounters its 

substrate, the enzyme-substrate complex ES falls into an energy pit. For the reaction to proceed, an 

activated state ES# has to be reached, that eventually breaks down into the enzyme and the product. 

The height of the energy barrier between the ground state ES and the transition state ES# is defined as 

the free energy of activation ΔG#: the lower this barrier, the higher the activity as reflected in  

Equation 1. In the case of cold active enzymes displaying a weak affinity for the substrate, the energy 

pit for the ES complex is less deep (dashed in Figure 4). It follows that the magnitude of the energy 

barrier is reduced and therefore the activity is increased. This thermodynamic link between affinity and 

activity is valid for most enzymes (extremophilic or not) under saturating substrate concentrations and 

this link appears to be involved in the improvement of activity at low temperatures in numerous  

cold-active enzymes [17,59].  
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Figure 4. Optimization of activity by decreasing substrate affinity in psychrophilic 

enzymes. Reaction profile for an enzyme-catalyzed reaction with Gibbs energy changes 

under saturating substrate concentration. Weak substrate binding (in blue) decreases the 

activation energy (ΔG#psychro) and thereby increases the reaction rate. In this scheme, the 

energy levels of E + S and of ES# are assumed to be similar [10]. 

 

The second and more general strategy involves the temperature-dependence of the reaction 

catalyzed by cold-active enzymes. Table 3 reports the enthalpic and entropic contributions to the free 

energy of activation in extremophilic α-amylases. The free energy of activation ΔG# is calculated from 

Equation 1 using the kcat value at a given temperature and the enthalpy of activation ΔH# is obtained by 

recording the temperature dependence of the activity [67]. Finally, the entropic contribution TΔS# is 

deduced from the Gibbs-Helmholtz equation: 

ΔG# = ΔH# − TΔS# (2) 

The enthalpy of activation ΔH# depicts the temperature dependence of the activity: the lower this 

value, the lower the variation of activity with temperature. The low value found for almost all 

psychrophilic enzymes demonstrates that their reaction rate is less reduced than for other enzymes 

when the temperature is lowered. Accordingly, the decrease of the activation enthalpy in the enzymatic 

reaction of psychrophilic enzymes can be considered as the main adaptive character to low 

temperatures. This decrease is structurally achieved by a decrease in the number of enthalpy-driven 

interactions that have to be broken during the activation steps. These interactions also contribute to the 

stability of the protein folded conformation and, as a corollary, the structural domain of the enzyme 

bearing the active site should be more flexible. It is interesting to note that such a macroscopic 

interpretation of the low activation enthalpy in cold-active enzymes fits with the experimental 

observation of a markedly heat-labile activity illustrated in Figure 2. Table 3 shows that the entropic 

contribution TΔS# for the cold-active enzyme is larger and negative. This has been interpreted as a 

large reduction of the apparent disorder between the ground state with its relatively loose conformation 

and the well organized and compact transition state [67]. The heat-labile activity of cold-active 

enzymes suggests a macroscopic interpretation for this thermodynamic parameter. As a consequence 
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of active site flexibility, the enzyme-substrate complex ES occupies a broader distribution of 

conformational states translated into increased entropy of this state, compared to that of the mesophilic 

or thermophilic homologues. This assumption has received strong experimental support by using 

microcalorimetry to compare the stabilities of free extremophilic enzymes with the same enzymes 

trapped in the transition state conformation by a non-hydrolysable substrate analog [14]. The larger 

increase in stability for the psychrophilic enzyme in the transition state conformation demonstrated 

larger conformational changes between the free and bound states when compared to mesophilic and 

thermophilic homologues. Furthermore, a broader distribution of the ground state ES should be 

accompanied by a weaker substrate binding strength, as indeed observed for numerous psychrophilic 

enzymes. Finally, it should be mentioned that the typical activation parameters of psychrophilic 

enzymes are well reproduced by reaction kinetic simulations [68]. 

Table 3. Activation parameters of the hydrolytic reaction of α-amylases at 10 °C. Adapted from [14]. 

 kcat ΔG# ΔH# TΔS# 
 s−1 kcal mol−1 kcal mol−1 kcal mol−1 

Psychrophile 294 13.3 8.3 -5.0 
Mesophile 97 14.0 11.1 -2.9 

Thermophile 14 15.0 16.8 1.8

4. Structural Origin of Cold Activity 

Many observations similar to Figure 1 have suggested relationships between the activity of the 

enzyme, the flexibility of the protein and its stability. Indeed, the high activity at low temperatures 

seems to arise from an increased flexibility of the protein structure, especially at temperatures that 

strongly slow down molecular motions, but the consequence of this improved mobility of the protein 

structure is of course a weak stability. As a matter of fact, various biophysical studies using 

fluorescence quenching [13–15] or neutron scattering [69] have revealed a less compact conformation 

of psychrophilic enzymes, undergoing frequent micro-unfolding events. 

The number of X-ray crystal structures from psychrophilic enzymes has increased dramatically, 

demonstrating the growing interest for these peculiar proteins. However, the interpretation of these 

structural data is frequently difficult for two main reasons. First, the structural adaptations are extremely 

discrete and can easily escape the analysis. Second, these structural adaptations are very diverse, 

reflecting the complexity of factors involved in the stability of a macromolecule at the atomic level. For 

instance, it was found that all structural factors currently known to stabilize the protein molecule could 

be attenuated in strength and number in the structure of cold-active enzymes [32,70–72]. An exhaustive 

description of all these factors is beyond the scope of this chapter and only the essential features are 

summarized below. Two review articles can be consulted for a comprehensive discussion of this  

topic [9,32]. 

The observable parameters related to protein stability include structural factors and mainly weak 

interactions between atoms of the protein structure. In psychrophilic proteins, this involves the 

clustering of glycine residues (providing local mobility) [73,74], the disappearance of proline residues 

in loops (enhancing chain flexibility between secondary structures) [75], a reduction in arginine 

residues which are capable of forming multiple salt bridges and H-bonds, as well as a lower number of 
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ion pairs, aromatic interactions or H-bonds, compared to mesophilic enzymes. The size and relative 

hydrophobicity of non-polar residue clusters forming the protein core are frequently smaller, lowering 

the compactness of the protein interior by weakening the hydrophobic effect on folding. Psychrophilic 

proteins have larger cavity sizes sufficient to accommodate water molecules: these cavities and 

embedded water molecules can play a significant role in structural flexibility [76]. The N and C-caps 

of α-helices are also altered (weakening the charge-dipole interaction) and loose or relaxed protein 

extremities appear to be preferential sites for unzipping. The binding of stabilizing ions, such as 

calcium, can be extremely weak, with binding constants differing from mesophiles by several orders of 

magnitude. Insertions and deletions are sometimes responsible for specific properties such as the 

acquisition of extra-surface charges (insertion) or the weakening of subunit interactions (deletion).  

Calculation of the solvent accessible area showed that some psychrophilic enzymes expose a higher 

proportion of non-polar residues to the surrounding medium [24,28]. This is an entropy-driven 

destabilizing factor caused by the reorganization of water molecules around exposed hydrophobic side 

chains. Calculations of the electrostatic potential revealed in some instances an excess of negative 

charges at the surface of the protein and, indeed, the pI of cold-active enzymes is frequently more acidic 

than that of their mesophilic or thermophilic homologues. This has been related to improved interactions 

with the solvent, which could be of prime importance in the acquisition of flexibility near zero  

degrees [77]. Besides the balance of charges, the number of salt bridges covering the protein surface is 

also reduced. There is a clear correlation between surface ion pairs and temperature adaptation, since 

these weak interactions significantly increase in number from psychrophiles to mesophiles, to 

thermophiles and hyperthermophiles, the latter showing arginine-mediated multiple ion pairs and 

interconnected salt bridge networks [78,79]. Such an altered pattern of electrostatic interactions is 

thought to improve the dynamics or the “breathing” of the external shell of cold-active enzymes. 

However, each enzyme adopts its own strategy by using one or a combination of these altered 

structural factors in order to improve the local or global mobility of the protein edifice. Accordingly, a 

general theory for structural adaptations cannot be formulated but nevertheless, enzyme families sharing 

the 3D fold can be compared [80]. Comparative structural analyses of psychrophilic, mesophilic and 

thermophilic enzymes indicate that each protein family displays different structural strategy to adapt to 

temperature [71,80–85]. However, some common trends are observed: the number of ion pairs, the  

side-chain contribution to the exposed surface, and the apolar fraction of the buried surface show a 

consistent decrease with decreasing optimal temperatures [71]. The multitude of structural strategies in 

cold-adapted proteins has also complicated statistical analyses aimed at delineating general trends in 

temperature adaptation. Various trends have been reported for psychrophilic proteins using different 

methodologies and datasets: a preference for smaller-size and less hydrophobic residues [86]; a less 

hydrophobic core, less charged and long-chained surface residues [87]; a decrease of solvent accessible 

surface contribution of charged residues and an increase of hydrophobic surface contribution [88] or 

various patterns of preferential amino acid substitutions [89,90]. 

5. Biotechnological Usefulness of Psychrophilic Enzymes 

As mentioned in previous sections, most enzymes from psychrophiles are cold-active and  

heat-labile. Psychrophilic enzymes can be up to ten times more active at low and moderate 
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temperatures as compared with their mesophilic homologues. Furthermore, psychrophilic enzymes are 

frequently inactivated at temperatures that are not detrimental for their mesophilic counterparts. These 

specific traits are responsible for the three main advantages of cold-active enzymes in biotechnology:  

(i) as a result of their high activity, a lower concentration of the enzyme catalyst is required to reach a 

given activity, therefore reducing the amount of costly enzyme preparation in a process; (ii) as a result 

of their cold-activity, they remain efficient at tap water or ambient temperature, therefore avoiding 

heating during a process, either at domestic (e.g., washing machine) or industrial levels; and (iii) as a 

result of heat-lability, they can be efficiently and sometime selectively inactivated after a process by 

moderate heat input. Beside these traits specifically linked to temperature adaptation, an additional 

important aspect has to be mentioned: enzymes from organisms endemic to cold environments can be a 

valuable source of new catalysts possessing useful enzymological characteristics such as novel 

substrate specificities or product properties, as exemplified by lipases from the yeast  

Candida antarctica or by the xylanase from the bacterium Pseudoalteromonas haloplanktis  

(see below). Previous reviews should be consulted for a complete coverage of this topic [7,91–97]. 

Bioprospector, an online database [98] provides a survey of patents, commercial products and 

companies involved in applied research using genetic resources from both the Antarctic and the Arctic. 

This excellent initiative, accompanied by relevant publications, is currently the most updated survey of 

biotechnological applications based on psychrophiles and on their biomolecules. Some specific 

examples are provided below. 

5.1. Molecular Biology  

In a pioneering work, Kobori et al. [99] have purified and characterized a heat-labile alkaline 

phosphatase from an Antarctic bacterium isolated in McMurdo Sound. Alkaline phosphatases are 

mainly used in molecular biology for the dephosphorylation of DNA vectors prior to cloning to 

prevent recircularization, for the dephosphorylation of 5'-nucleic acid termini before 5'-end labeling by 

polynucleotide kinase or for removal of dNTPs and pyrophosphate from PCR reactions. However, the 

phosphatase has to be carefully removed after dephosphorylation to avoid interferences with the 

subsequent steps. Furthermore, E. coli and calf intestinal alkaline phosphatase (that was the preferred 

enzyme for these applications) are heat-stable and require detergent addition for inactivation. It follows 

that heat-labile alkaline phosphatases are excellent alternatives as they are inactivated by moderate 

heat treatment allowing to perform the subsequent steps in the same test tube and minimizing nucleic 

acid losses. While the scientific report of Kobori et al. [99] specifically stressed the usefulness of their 

heat-labile alkaline phosphatase as a new tool in molecular biology, this interesting finding was 

apparently not turned into a marketed product. Fifteen years later, the group of V. Bouriotis isolated an 

alkaline phosphatase from another Antarctic bacterium and cloned its gene in E. coli [100], solved its 

crystal structure [101] and also showed that its properties can be further improved by directed 

evolution in terms of high activity and heat-lability [102]. This heat-labile alkaline phosphatase, sold 

as Antarctic phosphatase, is now proposed on the market by New England Biolabs Inc. (Ipswich, MA, 

USA). In the same context, the heat-labile alkaline phosphatase from the Arctic shrimp Pandalus 

borealis is also available for instance from Biotec Pharmacon ASA (Tromsø, Norway) or GE 

Healthcare Life Sciences (Little Chalfont, UK). 
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Two other psychrophilic enzymes are also marketed for molecular biology applications taking 

advantage of the heat-labile property. Shrimp nuclease selectively degrades double stranded DNA: for 

instance, it is used for the removal of carry-over contaminants in PCR mixtures, and then it is  

heat-inactivated prior addition of the template. This enzyme is produced in recombinant form in  

Pichia pastoris and is available from Biotec Pharmacon ASA (Tromsø, Norway), USB Corporation 

(Santa Clara, CA, USA) or Thermo Scientific (Waltham, MA, USA). Heat-labile uracil-DNA  

N-glycosylase from Atlantic cod (Gadus morhua), that presents typical cold adaptation features [31], is 

also used to remove DNA contaminants in sequential PCR reactions. When PCR is performed with 

dUTP instead of dTTP, PCR products become distinguishable from target DNA, and can be selectively 

degraded by uracil-DNA N-glycosylase. Following degradation of contaminants, the enzyme is 

completely and irreversibly inactivated after heat treatment. Heat-labile uracil-DNA N-glycosylase, 

produced in recombinant form in E. coli, is available from Biotec Pharmacon ASA (Tromsø, Norway). 

5.2. Industrial Enzymes 

At the industrial level, the best-known representative of polar microorganisms is certainly the yeast 

Candida antarctica, as its species name unambiguously refers to the sampling origin. This yeast 

produces two lipases, A and B, the latter being sold for instance as Novozym 435 by Novozymes 

(Bagsvaerd, Denmark). Although the moderate heat-stability of this lipase in aqueous solutions can be of 

concern, this enzyme is stabilized in its immobilized form. As a result of its substrate and 

stereospecificity, lipase B is involved in a very large number of organosynthesis applications related to 

food/feed processing, pharmaceuticals or cosmetics [103]. In a survey of patents related to  

Antarctica [104] it was shown that lipases from C. antarctica by far dominate the number of process- or 

product-based patents. This is a significant example of the potential for novel catalysts from genetic 

resources in cold environments. 

The market for enzymes used in detergents represents 30%–40% of all enzymes produced 

worldwide. Amongst these enzymatic cleaning agents, subtilisin (an alkaline serine protease 

predominantly produced by Bacillus species) largely dominates this market. At the domestic level, the 

current trend is however to use detergents at lower washing temperatures because of the associated 

reductions in energy consumption and costs as well as to protect texture and colors of the fabrics. 

Accordingly, cold-active subtilisins are required for optimal washing results at tap water temperatures 

and the current advertisements for cold-active detergents indicate that this goal has been reached. The 

first psychrophilic subtilisins isolated from Antarctic Bacillus species have been extensively 

characterized to comply with such requirement [45,105]. However, they suffered from a low  

heat-stability that can compromise their storage but also from a low chemical stability towards the 

detergent components. Therefore, subtilisins currently incorporated in cold-active detergents are 

engineered enzymes that combine storage stability, alkaline stability and activity and cold-activity. 

Although psychrophilic subtilisins are not components per se of cold-active detergents, they have 

largely contributed to the advancement of this economically attractive concept. 
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5.3. Food Technology  

The xylanase from the Antarctic bacterium Pseudoalteromonas haloplanktis is a nice example of 

the successful biotechnological transfer to the food industry. Xylanases are glycoside hydrolases that 

degrade the polysaccharide beta-1,4-xylan, thus breaking down hemicellulose, one of the major 

components of plant cell walls. Xylanases are also a key ingredient of industrial dough conditioners 

used to improve bread quality. It was found that the Antarctic enzyme belonged to a new class of 

xylanases as both its amino acid sequence and fold were distinct from previously characterized 

xylanases. The psychrophilic enzyme was therefore subjected to intensive investigations aimed at 

elucidating the structural origins of its high cold activity and weak stability as well as at understanding 

its enzymological mode of action [13,58,106–108]. Furthermore, baking trials have revealed that the 

psychrophilic xylanase was very effective in improving the dough properties and final bread quality 

with, for instance, a positive effect on loaf volume [109]. This efficiency appears to be related to the 

high activity of the psychrophilic xylanase at cool temperatures required for dough resting and to its 

specific mode of xylan hydrolysis. Following careful production optimization of this peculiar xylanase, 

the product is now sold by Puratos (Grand-Bigard, Belgium). This is apparently the psychrophilic 

enzyme produced at the highest amounts to date. 

Beta-galactosidase, or lactase, is also a glycoside hydrolase that specifically hydrolyzes the milk 

sugar lactose into galactose and glucose. It should be stressed that 75% of the world population suffers 

from lactose intolerance arising from deficient synthesis of intestinal lactase in adults and resulting in 

digestive disorders due to fermentation of lactose by enteric bacteria. In this context, a cold-active 

lactase from an Antarctic bacterium has been patented (WO 01/04276A1) for its capacity to hydrolyze 

lactose during milk storage at low temperatures [110]. It is worth mentioning that commercially 

available lactases require milk heating to become active. This heating step has however detrimental 

effects on milk quality as it alters the aspect, the taste and texture (Maillard reactions, activation of 

proteases, coagulation, …). Although the psychrophilic lactase is apparently not used for this specific 

application, it is expected that it will be produced soon in large quantities by Nutrilab NV (Bekkevoort, 

Belgium) to hydrolyze lactose (a by-product of the dairy industry) in the process of the high value 

sweetener D-tagatose, a natural monosaccharide with low caloric value and glycemic index. 

5.4. Engineering Cold Activity 

When considering the biotechnological potential of cold-active and/or heat-labile enzymes, it is 

tempting to devise a mutational strategy in order to introduce these properties into an already well 

characterized commercial enzyme. However, engineering psychrophilic activity in a mesophilic 

enzyme by rational design has not been reported to date. The main reason should be found in the huge 

complexity of amino acid substitutions and interactions leading to psychrophilic activity that have been 

optimized during evolution on a long timescale. Accordingly, engineering psychrophilic activity 

currently escape our computational capacity. By contrast, laboratory evolution, that mimics natural 

selection, has been successful in producing cold-active enzymes with or without heat-lability, as 

reviewed in [111]. It is worth mentioning that, in many cases, the effect of the selected random 

mutations cannot be properly explained, underlining again the complexity of the structural factors 

responsible for psychrophilic activity. The possibility to introduce several random mutations in a gene, 



Int. J. Mol. Sci. 2012, 13 11657 

 

 

to combine these mutations and to screen a large number of mutants for a specific property by directed 

evolution seems to be the best strategy to engineer enzyme cold-activity. Improved cold-activity by 

chemical modification has also been reported [112–114] but, although sometimes successful, the 

results of chemical modification remain unpredictable. 

6. Conclusions  

Cold-active enzymes are a key determinant in psychrophiles’ adaptation to life at low temperature. 

We have depicted the latest research on psychrophilic enzymes, underlining that cold-activity is not a 

uniform property: the extent of low temperature activity is variable, the adaptive optimization of the 

kinetic parameters differs in amplitude and origin and the structural factors involved are diverse and 

complex. Obviously, fine enzymological studies are required to improve our understanding of these 

essential adaptations for the vast range of organisms thriving on our cold planet. The biotechnological 

applications of these cold-active and heat-labile enzymes are still in their infancy. Nevertheless, future 

developments of these biocatalysts and of their derivatives are expected because they are frequently 

involved in environmentally friendly processes and contribute to energy saving, both aspects being of 

increasing significance. 
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