COMMUNICATIONS

Received 26 May 2016
Accepted 3 June 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; p-hydroxy Schiff base; hydrogen bonding.

CCDC reference: 1483394

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of ethyl 4-[(E)-(4-hydroxy-3methoxybenzylidene)amino]benzoate: a p-hydroxy Schiff base

Jing Ling, ${ }^{\text {a }}$ Padmini Kavuru, ${ }^{\text {a }}$ Lukasz Wojtas ${ }^{\text {b }}$ and Keith Chadwick ${ }^{\text {a }}$ *

Abstract

${ }^{\text {a }}$ Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of South Florida, 4202 E Fowler Ave, Tampa, Florida 33620, USA. *Correspondence e-mail: chadwick@purdue.edu

The title p-hydroxy Schiff base, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$, was synthesized via the condensation reaction of benzocaine with vanillin. The benzylidine and benzoate rings are inclined to one another by $24.58(8)^{\circ}$, and the conformation about the $\mathrm{C}=\mathrm{N}$ bond is E. In the crystal, molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming zigzag chains propagating along [010]. Adjacent chains are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ and weak offset $\pi-\pi$ interactions [intercentroid distance $=3.819$ (1) \AA] , forming sheets parallel to $(10 \overline{2})$.

1. Chemical context

The pharmaceutical industry generally seeks to formulate crystalline forms of their active ingredient by their inherent stability (Yadav et al., 2009; Paul et al., 2005). Increasing attention is now being paid to crystal engineering for improving crystal properties (Byrn et al., 1999). One such strategy is co-crystallization due to its potential for enhancing the physicochemical properties of an API, such as solubility, bioavailability, dissolution, and chemical and physical stability (Shan \& Zaworotko, 2008; Good \& Rodríguez-Hornedo, 2009). The term co-crystal does not have a clear and consistent definition in the literature (Desiraju, 2003; Bond, 2007; Shan \& Zaworotko, 2008). Generally, a co-crystal is defined as a homogeneous crystalline phase consisting of two or more discrete chemical entities bound together in the crystal lattice through non-covalent, non-ionic molecular interactions.

Benzocaine, the ethyl ester of p-aminobenzoic acid, is a local anaesthetic which is used to subside pain perception. It relieves pain by inhibiting the voltage-dependent sodium channels on the nerve membrane, which results in stopping the propagation of the action potential. (Neumcke et al., 1981). In this study, we intended to formulate co-crystals of benzocaine and determine the impact on its physicochemical properties. Vanillin was selected as a potential co-former as it is FDA approved and has the potential to form a strong hydrogen

Figure 1
The molecular structure of compound (I), with atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
bond between the amine and hydroxy groups of benzocaine and vanillin, respectively. However, during crystallization a chemical reaction between the two was observed, the product of which is a novel p-hydroxy Schiff base. Schiff bases are an important class of organic compounds with significant biological and chemical importance. In general, they are synthesized by the condensation reaction of an aliphatic or aromatic amine with a carbonyl containing compound, such as an aldehyde, via nucleophilic addition. Herein, we report on the crystal structure of the title compound, a new p-hydroxy Schiff base, synthesized from benzocaine and vanillin by slurry crystallization.

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
Cg 2 is the centroid of the $\mathrm{C} 11-\mathrm{C} 14 / \mathrm{C} 20 / \mathrm{C} 21$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 15-\mathrm{H} 15 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.88(2)$	$2.00(2)$	$2.828(2)$	$156(2)$
C2-H2B $\cdots \mathrm{Cg} 2^{\mathrm{ii}}$	0.97	2.87	$3.766(2)$	154

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+2,-y+1,-z+1$.

2. Structural commentary

The title Schiff base, (I), is the product of the reaction of benzocaine with vanillin (Scheme). In the title compound, Fig. 1, the conformation of the $\mathrm{C} 10=\mathrm{N} 1$ imine bond is E. The molecule is non-planar, with a dihedral angle between the aryl rings of $24.58(8)^{\circ}$. The m-methoxy group ($\mathrm{O} 1 / \mathrm{C} 13 / \mathrm{C} 16$) is slightly out of the plane of the benzene ring ($\mathrm{C} 11-\mathrm{C} 14 / \mathrm{C} 20$ / $\mathrm{C} 21)$ to which it is attached by $5.37(18)^{\circ}$, while the mean plane of the ethylacetate group $(\mathrm{O} 3 / \mathrm{O} 17 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4)$ is inclined to the benzene ring ($\mathrm{C} 5-\mathrm{C} 8 / \mathrm{C} 18 / \mathrm{C} 19$) to which it is attached by $10.23(11)^{\circ}$. This non-linearity is consistent for Schiff bases.

3. Supramolecular features

In the crystal, molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming zigzag chains propagating along [010]; see

Figure 2

A view along the c axis of the crystal packing of compound (I), with hydrogen bonds shown as dashed lines and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions as blue arrows (see Table 1).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$
$M_{\text {r }}$	299.31
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	296
$a, b, c(\AA)$	12.4229 (5), 9.6392 (5), 13.2384 (6)
$\beta\left({ }^{\circ}\right.$)	102.457 (3)
$V\left(\mathrm{~A}^{3}\right)$	1547.94 (12)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.76
Crystal size (mm)	$0.26 \times 0.11 \times 0.04$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	```Multi-scan (SADABS; Bruker, 2013)```
$T_{\text {min }}, T_{\text {max }}$	0.599, 0.753
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	18263, 2895, 2277
$R_{\text {int }}$	0.037
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.614
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.040, 0.121, 1.05
No. of reflections	2895
No. of parameters	210
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.23,-0.14$

Computer programs: APEX2, SAINT (Bruker, 2013) and XPREP (Sheldrick,2008), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

Table 1 and Fig. 2. Adjacent chains are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1, Fig. 2), and weak offset $\pi-\pi$ - interactions, forming sheets parallel to (10 $\overline{2})\left[C g 1 \cdots C g 1^{\mathrm{i}}=\right.$ 3.819 (1) \AA, interplanar distance $=3.672(2) \AA$, slippage $=$ $1.05 \AA, C g 1$ is the centroid of ring C5-C8/C18/C19; symmetry code: (i) $-x+2,-y+1,-z+1]$,

The crystal structure analysis of compound (I), has shown that, due to the aromatic hydroxy group being located in the para rather than the ortho position, this Schiff base cannot form the intramolecular $\mathrm{C}=\mathrm{N} \cdots \mathrm{O}-\mathrm{H}$ hydrogen bond responsible for keto-enol tautomerism. However, the close proximity of the $\mathrm{C}=\mathrm{N}$ and $\mathrm{O}-\mathrm{H}$ groups gives rise to the possibility that external stimulation of the material by heat or light may lead to the zwitterionic form. The potential for compound (I) to form a zwitterionic state, coupled with the non-linear conformation of the molecule in the solid state, suggest that this Schiff base may exhibit interesting physical properties, that we are currently in the process of evaluating.

4. Database survey

In the Cambridge Structural Database (CSD, V53.7; Groom et al., 2016), there are three known Schiff bases synthesized from benzocaine (CSD ref codes: VABSUO; Shakir et al., 2010, and ZOZROV and ZOZRUB; Kurogoshi \& Hori, 1996), and one derived from vanillin (CSD ref code: LEFVID; Fejfarová et al., 2012). The dihedral angles between the aryl rings in

VABSUO, ZOZROV, ZOZRUB and LEFVID were found to be 24.85 (9), 59.7 (2), 53.94 (9), and 37.87 (10) ${ }^{\circ}$, respectively. The $\mathrm{N} 1=\mathrm{C} 10$ and $\mathrm{C} 8-\mathrm{N} 1$ bond lengths of the imine group of the title compound are 1.274 (2) and 1.415 (2) Å, respectively. They are comparable to the imine bond lengths observed for VABSUO, ZOZROV, ZOZRUB and LEFVID, which vary between 1.262 (4)-1.283 (3) \AA and 1.414 (7)-1.428 (3) \AA, respectively.

5. Synthesis and crystallization

Compound (I) was prepared by slurrying an equimolar mixture of benzocaine $(1.16 \mathrm{~g}, 7 \mathrm{mmol})$ and vanillin $(1.07 \mathrm{~g}$, 7 mmol) in 2 ml of anhydrous ethanol (see Scheme). The slurry was stirred continuously for 18 h at room temperature (296 K). The product was then filtered and air dried before being analysed by powder X-ray diffraction to determine the presence of a new crystalline phase. Single crystals were then prepared by dissolving an equimolar mixture of benzocaine $(0.83 \mathrm{~g}, 5 \mathrm{mmol})$ and vanillin $(0.77 \mathrm{~g}, 5 \mathrm{mmol})$ in 10 ml of ethanol. The solution was allowed to evaporate under ambient conditions and yellow block-like crystals were obtained after four days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Two H atoms, H15 and H10, were located in a difference Fourier map and freely refined. The remaining H atoms were placed in geometrically calculated positions and included in the refinement process using a riding model: $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}($ C-methyl $)$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

References

Bond, A. D. (2007). CrystEngComm, 9, 833-834.
Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Byrn, S. R., Pfeiffer, R. R. \& Stowell, J. G. (1999). West Lafayette: SSCI.
Desiraju, G. R. (2003). CrystEngComm, 5, 466-467.
Fejfarová, K., Dušek, M., Maghsodlou Rad, S. \& Khalaji, A. D. (2012). Acta Cryst. E68, o2466.

Good, D. J. \& Rodríguez-Hornedo, N. (2009). Cryst. Growth Des. 9, 2252-2264.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kurogoshi, S. \& Hori, K. (1996). Acta Cryst. C52, 660-663.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Neumcke, B., Schwarz, W. \& Stampfli, R. (1981). Pflugers Arch. 390, 230-236.
Paul, E. L., Tung, H. H. \& Midler, M. (2005). Powder Technol. 150, 133-143.
Shakir, R. M., Ariffin, A. \& Ng, S. W. (2010). Acta Cryst. E66, o2915. Shan, N. \& Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440446.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yadav, A. V., Shete, A. S., Dabke, A. P., Kulkarni, P. V. \& Sakhare, S. S. (2009). Indian J. Pharm. Sci. 71, 359-370.

supporting information

Acta Cryst. (2016). E72, 951-954 [doi:10.1107/S2056989016008999]

Crystal structure of ethyl 4-[(E)-(4-hydroxy-3-methoxybenzylidene)amino]benzoate: a p-hydroxy Schiff base

Jing Ling, Padmini Kavuru, Lukasz Wojtas and Keith Chadwick

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013) and SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013) and XPREP (Sheldrick,2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

Ethyl 4-[(E)-(4-hydroxy-3-methoxybenzylidene)amino]benzoate

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$
$M_{r}=299.31$
Monoclinic, $P 2_{1} / c$
$a=12.4229(5) \AA$
$b=9.6392(5) \AA$
$c=13.2384(6) \AA$
$\beta=102.457(3)^{\circ}$
$V=1547.94(12) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min }=0.599, T_{\text {max }}=0.753$
18263 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.121$
$S=1.05$
2895 reflections
210 parameters
0 restraints
Hydrogen site location: mixed
$F(000)=632$
$D_{\mathrm{x}}=1.284 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 3549 reflections
$\theta=11.5-68.2^{\circ}$
$\mu=0.76 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.26 \times 0.11 \times 0.04 \mathrm{~mm}$

2895 independent reflections
2277 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=71.1^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-15 \rightarrow 15$
$k=-11 \rightarrow 11$
$l=-15 \rightarrow 16$

Extinction correction: SHELXL2013
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0018 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	0.40310 (9)	0.79734 (13)	0.24104 (8)	0.0566 (3)
C1	1.3086 (2)	-0.0296 (3)	0.5552 (2)	0.1030 (8)
H1A	1.2688	-0.0661	0.4904	0.155*
H1B	1.3627	-0.0959	0.5878	0.155*
H1C	1.3447	0.0551	0.5433	0.155*
C2	1.23138 (15)	-0.00168 (18)	0.62283 (15)	0.0675 (5)
H2A	1.1963	-0.0870	0.6375	0.081*
H2B	1.2702	0.0384	0.6877	0.081*
O3	1.14975 (10)	0.09453 (12)	0.56841 (10)	0.0647 (3)
C4	1.07204 (13)	0.13648 (19)	0.61646 (13)	0.0577 (4)
C5	0.99507 (12)	0.23783 (16)	0.55419 (12)	0.0512 (4)
C6	0.92059 (14)	0.3074 (2)	0.60045 (14)	0.0636 (5)
H6	0.9217	0.2925	0.6701	0.076*
C7	0.84532 (14)	0.3980 (2)	0.54458 (14)	0.0609 (4)
H7	0.7960	0.4438	0.5767	0.073*
C8	0.84222 (11)	0.42174 (15)	0.44046 (12)	0.0461 (3)
N1	0.75716 (9)	0.50849 (13)	0.38633 (9)	0.0464 (3)
C10	0.77038 (12)	0.57994 (15)	0.30896 (12)	0.0472 (3)
C11	0.68431 (12)	0.66679 (15)	0.24840 (11)	0.0442 (3)
C12	0.58421 (12)	0.68797 (15)	0.27877 (11)	0.0449 (3)
H12	0.5723	0.6466	0.3389	0.054*
C13	0.50380 (11)	0.76950 (14)	0.22013 (11)	0.0416 (3)
C14	0.52011 (11)	0.83080 (14)	0.12814 (10)	0.0419 (3)
O15	0.44049 (9)	0.90702 (12)	0.06788 (8)	0.0514 (3)
C16	0.38242 (16)	0.7484 (3)	0.33611 (15)	0.0777 (6)
H16A	0.3899	0.6493	0.3391	0.117*
H16B	0.3089	0.7735	0.3410	0.117*
H16C	0.4344	0.7893	0.3925	0.117*
O17	1.06660 (13)	0.09730 (18)	0.70144 (12)	0.0924 (5)
C18	0.99445 (13)	0.26473 (18)	0.45153 (13)	0.0565 (4)
H18	1.0455	0.2211	0.4202	0.068*
C19	0.91880 (13)	0.35567 (18)	0.39485 (12)	0.0545 (4)
H19	0.9193	0.3726	0.3258	0.065*
C20	0.70063 (12)	0.73037 (17)	0.15876 (12)	0.0504 (4)
H20	0.7673	0.7185	0.1387	0.060*

C21	$0.61918(12)$	$0.81096(16)$	$0.09903(11)$	$0.0492(4)$
H21	0.6312	0.8521	0.0389	0.059^{*}
H15	$0.3862(18)$	$0.925(2)$	$0.0989(16)$	$0.077(6)^{*}$
H10	$0.8383(16)$	$0.5785(18)$	$0.2855(14)$	$0.060(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0488(6)$	$0.0743(7)$	$0.0522(6)$	$0.0172(5)$	$0.0227(5)$	$0.0181(5)$
C1	$0.1014(17)$	$0.1064(18)$	$0.1052(18)$	$0.0560(15)$	$0.0308(14)$	$0.0244(15)$
C2	$0.0615(10)$	$0.0546(9)$	$0.0794(12)$	$0.0128(8)$	$-0.0002(9)$	$0.0111(8)$
O3	$0.0589(7)$	$0.0652(7)$	$0.0676(7)$	$0.0188(6)$	$0.0084(6)$	$0.0122(6)$
C4	$0.0489(8)$	$0.0607(10)$	$0.0612(10)$	$0.0016(7)$	$0.0069(7)$	$0.0083(7)$
C5	$0.0413(7)$	$0.0544(8)$	$0.0556(9)$	$-0.0004(6)$	$0.0057(7)$	$0.0063(7)$
C6	$0.0572(9)$	$0.0845(12)$	$0.0516(9)$	$0.0134(9)$	$0.0171(8)$	$0.0164(8)$
C7	$0.0524(9)$	$0.0764(11)$	$0.0585(9)$	$0.0149(8)$	$0.0217(8)$	$0.0141(8)$
C8	$0.0360(7)$	$0.0497(8)$	$0.0512(8)$	$-0.0022(6)$	$0.0067(6)$	$0.0026(6)$
N1	$0.0388(6)$	$0.0501(7)$	$0.0490(7)$	$0.0018(5)$	$0.0061(5)$	$0.0021(5)$
C10	$0.0381(7)$	$0.0510(8)$	$0.0520(8)$	$-0.0007(6)$	$0.0086(6)$	$0.0004(6)$
C11	$0.0416(7)$	$0.0456(7)$	$0.0451(7)$	$-0.0002(6)$	$0.0085(6)$	$0.0000(6)$
C12	$0.0472(8)$	$0.0480(8)$	$0.0405(7)$	$0.0020(6)$	$0.0114(6)$	$0.0049(6)$
C13	$0.0409(7)$	$0.0450(7)$	$0.0405(7)$	$0.0005(6)$	$0.0125(6)$	$-0.0003(6)$
C14	$0.0439(7)$	$0.0435(7)$	$0.0376(7)$	$-0.0011(6)$	$0.0071(6)$	$0.0002(5)$
O15	$0.0483(6)$	$0.0630(7)$	$0.0439(6)$	$0.0092(5)$	$0.0122(5)$	$0.0125(5)$
C16	$0.0667(11)$	$0.1140(17)$	$0.0626(11)$	$0.0195(11)$	$0.0365(9)$	$0.0240(11)$
O17	$0.0848(10)$	$0.1206(13)$	$0.0759(9)$	$0.0343(9)$	$0.0268(8)$	$0.0444(9)$
C18	$0.0503(8)$	$0.0636(10)$	$0.0564(9)$	$0.0106(7)$	$0.0131(7)$	$0.0017(7)$
C19	$0.0544(9)$	$0.0625(9)$	$0.0462(8)$	$0.0100(7)$	$0.0102(7)$	$0.0034(7)$
C20	$0.0415(7)$	$0.0605(9)$	$0.0523(8)$	$0.0005(7)$	$0.0170(6)$	$0.0022(7)$
C21	$0.0487(8)$	$0.0596(9)$	$0.0420(7)$	$-0.0011(7)$	$0.0152(6)$	$0.0068(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 13$	$1.3650(17)$	$\mathrm{N} 1-\mathrm{C} 10$	$1.2739(19)$
$\mathrm{O} 1-\mathrm{C} 16$	$1.418(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.455(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.471(3)$	$\mathrm{C} 10-\mathrm{H} 10$	$0.960(19)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9600	$\mathrm{C} 11-\mathrm{C} 20$	$1.389(2)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9600	$\mathrm{C} 11-\mathrm{C} 12$	$1.402(2)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9600	$\mathrm{C} 12-\mathrm{C} 13$	$1.372(2)$
$\mathrm{C} 2-\mathrm{O} 3$	$1.446(2)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	$\mathrm{C} 13-\mathrm{C} 14$	$1.4070(19)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700	$\mathrm{C} 14-\mathrm{O} 15$	$1.3469(17)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.329(2)$	$\mathrm{C} 14-\mathrm{C} 21$	$1.380(2)$
$\mathrm{C} 4-\mathrm{O} 17$	$1.202(2)$	$\mathrm{O} 15-\mathrm{H} 15$	$0.88(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.486(2)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~A}$	0.9600
$\mathrm{C} 5-\mathrm{C} 18$	$1.382(2)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	0.9600
$\mathrm{C} 5-\mathrm{C} 6$	$1.388(2)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	0.9600
$\mathrm{C} 6-\mathrm{C} 7$	$1.373(2)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.382(2)$

C6-H6	0.9300
C7-C8	1.390 (2)
C7-H7	0.9300
C8-C19	1.387 (2)
C8-N1	1.4152 (18)
C13-O1-C16	117.64 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1B-C1-H1C	109.5
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	107.05 (16)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.3
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.6
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2$	117.42 (14)
O17-C4-O3	123.07 (16)
O17-C4-C5	124.49 (16)
O3-C4-C5	112.43 (14)
C18-C5-C6	118.72 (15)
C18-C5-C4	122.37 (15)
C6-C5-C4	118.91 (15)
C7-C6-C5	120.74 (15)
C7-C6-H6	119.6
C5-C6-H6	119.6
C6-C7-C8	120.60 (15)
C6-C7-H7	119.7
C8-C7-H7	119.7
C19-C8-C7	118.78 (14)
C19-C8-N1	123.94 (14)
C7-C8-N1	117.23 (13)
C10-N1-C8	120.99 (12)
N1-C10-C11	123.17 (13)
N1-C10-H10	121.8 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 4$	-178.81 (19)
$\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 17$	-0.7 (3)
C2-O3-C4-C5	178.40 (14)
O17-C4-C5-C18	-170.41 (19)
O3-C4-C5-C18	10.6 (2)
O17-C4-C5-C6	9.2 (3)
O3-C4-C5-C6	-169.87 (16)
C18-C5-C6-C7	2.0 (3)
C4-C5-C6-C7	-177.54 (17)

C18-H18	0.9300
C19-H19	0.9300
C20-C21	1.381 (2)
$\mathrm{C} 20-\mathrm{H} 20$	0.9300
C21-H21	0.9300
C11-C10-H10	115.0 (11)
C20-C11-C12	118.87 (13)
$\mathrm{C} 20-\mathrm{C} 11-\mathrm{C} 10$	119.95 (13)
C12-C11-C10	121.18 (13)
C13-C12-C11	120.24 (13)
C13-C12-H12	119.9
C11-C12-H12	119.9
$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 12$	125.80 (13)
O1-C13-C14	113.73 (12)
C12-C13-C14	120.46 (13)
O15-C14-C21	119.69 (12)
O15-C14-C13	121.15 (12)
C21-C14-C13	119.15 (13)
C14-O15-H15	111.7 (14)
O1-C16-H16A	109.5
O1-C16-H16B	109.5
H16A-C16-H16B	109.5
O1-C16-H16C	109.5
H16A-C16-H16C	109.5
H16B-C16-H16C	109.5
C19-C18-C5	120.78 (15)
C19-C18-H18	119.6
C5-C18-H18	119.6
C18-C19-C8	120.32 (15)
C18-C19-H19	119.8
C8-C19-H19	119.8
C21-C20-C11	120.90 (13)
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20$	119.6
$\mathrm{C} 11-\mathrm{C} 20-\mathrm{H} 20$	119.6
C14-C21-C20	120.36 (13)
C14-C21-H21	119.8
C20-C21-H21	119.8
C16-O1-C13-C12	5.9 (2)
C16-O1-C13-C14	-175.42 (16)
C11-C12-C13-O1	179.61 (14)
C11-C12-C13-C14	1.1 (2)
O1-C13-C14-O15	-1.10 (19)
C12-C13-C14-O15	177.62 (13)
$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 21$	179.55 (13)
C12-C13-C14-C21	-1.7 (2)
C6-C5-C18-C19	-2.1 (3)

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.0(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 19$	$-2.0(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$175.45(16)$
$\mathrm{C} 19-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 10$	$-31.1(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 10$	$151.56(15)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$	$177.71(13)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 20$	$-173.29(14)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$6.7(2)$
$\mathrm{C} 20-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$0.5(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-179.54(13)$

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 18-\mathrm{C} 19$	$177.46(16)$
$\mathrm{C} 5-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 8$	$0.1(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 19-\mathrm{C} 18$	$1.9(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 19-\mathrm{C} 18$	$-175.34(15)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 20-\mathrm{C} 21$	$-1.3(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 20-\mathrm{C} 21$	$178.69(14)$
$\mathrm{O} 15-\mathrm{C} 14-\mathrm{C} 21-\mathrm{C} 20$	$-178.47(14)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 21-\mathrm{C} 20$	$0.9(2)$
$\mathrm{C} 11-\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 14$	$0.6(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 2 is the centroid of the $\mathrm{C} 11-\mathrm{C} 14 / \mathrm{C} 20 / \mathrm{C} 21$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 15 — \mathrm{H} 15 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.88(2)$	$2.00(2)$	$2.828(2)$	$156(2)$
$\mathrm{C} 2 — \mathrm{H} 2 B \cdots C g 2^{\mathrm{ii}}$	0.97	2.87	$3.766(2)$	154

Symmetry codes: (i) $-x+1, y+1 / 2,-z+1 / 2$; (ii) $-x+2,-y+1,-z+1$.

