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Abstract
Detecting gene-gene interaction in complex diseases has become an important priority for

common disease genetics, but most current approaches to detecting interaction start with

disease-marker associations. These approaches are based on population allele frequency

correlations, not genetic inheritance, and therefore cannot exploit the rich information

about inheritance contained within families. They are also hampered by issues of rigorous

phenotype definition, multiple test correction, and allelic and locus heterogeneity. We

recently developed, tested, and published a powerful gene-gene interaction detection

strategy based on conditioning family data on a known disease-causing allele or a dis-

ease-associated marker allele4. We successfully applied the method to disease data and

used computer simulation to exhaustively test the method for some epistatic models. We

knew that the statistic we developed to indicate interaction was less reliable when applied

to more-complex interaction models. Here, we improve the statistic and expand the testing

procedure. We computer-simulated multipoint linkage data for a disease caused by two

interacting loci. We examined epistatic as well as additive models and compared them

with heterogeneity models. In all our models, the at-risk genotypes are “major” in the

sense that among affected individuals, a substantial proportion has a disease-related

genotype. One of the loci (A) has a known disease-related allele (as would have been

determined from a previous analysis). We removed (pruned) family members who did not

carry this allele; the resultant dataset is referred to as “stratified.” This elimination step has

the effect of raising the “penetrance” and detectability at the second locus (B). We used

the lod scores for the stratified and unstratified data sets to calculate a statistic that either

indicated the presence of interaction or indicated that no interaction was detectable. We

show that the new method is robust and reliable for a wide range of parameters. Our statis-

tic performs well both with the epistatic models (false negative rates, i.e., failing to detect

interaction, ranging from 0 to 2.5%) and with the heterogeneity models (false positive

rates, i.e., falsely detecting interaction,�1%). It works well with the additive model except

when allele frequencies at the two loci differ widely. We explore those features of the
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additive model that make detecting interaction more difficult. All testing of this method sug-

gests that it provides a reliable approach to detecting gene-gene interaction.

Introduction

1.1. The approach
One of the major challenges of human genetics today is reliably determining the existence of
gene-gene interactions. Gene-gene interaction has been invoked to explain the so-called “miss-
ing heritability,” a phrase coined to help explain the failure of Genomewide Association Studies
(GWAS) to account for most of the genetic contribution to clearly genetically-caused diseases.
Part of that explanation was that interaction was obscuring GWAS’s ability to find the genetic
contribution. The problems encountered in using GWAS data to look for interaction have fos-
tered the development of a number of association-based methods to find interaction. However,
GWAS methods face hurdles in detecting gene-gene interactions, including the exponential
increase in the number of tests performed.

Accumulated experience (e.g., the Genetic Analysis Workshops) had shown that a linkage
analysis can find evidence for a number of loci involved in a disease, but with association analy-
sis it is difficult to determine whether multiple signals represent loci that interact to cause dis-
ease (epistasis) or loci that contribute independently to disease expression (heterogeneity).
Furthermore, the nature of gene-gene interaction is such that evidence for interaction, whether
association- or linkage-based, can be hidden. In the case of association, interaction can be
obscured, by, for example, allelic heterogeneity and locus heterogeneity. In the case of linkage,
interaction my be obscured by weak linkage signals at one (or both) of the interacting genes,
due perhaps to locus heterogeneity (linkage is robust to allelic heterogeneity). Although careful
family-by-family analysis may help clarify such issues [1,2], it is usually difficult to learn
whether multiple linkage signals represent interacting loci that cause disease. Hence, the neces-
sity of having a reliable method to determine whether such interaction exists.

In a previous publication [3], we developed a technique for detecting epistatic gene-gene
interaction based on linkage analysis, and we applied this technique to data from families with
familial primary pulmonary arterial hypertension (FPAH). This led to evidence for a locus,
previously undetected, that interacts with the known FPAH causative locus, BMPR2, and
explains the greater part of the “reduced penetrance” of the disease for those unaffected family
members carrying the BMPR2 mutation. Our approach was based on the principles governing
epistatic inheritance, in which disease-related genotypes must be present at both loci in order
to manifest the disease.

In later work, we determined the efficiency and effectiveness of the method using computer
simulation [4]. We showed that, in the presence of “simple” epistatic interaction, the method
had close to 100% efficiency in distinguishing gene-gene interaction from genetic heterogene-
ity. By “simple” epistasis, we mean traits that were determined by two loci, each of which
shows either dominant or recessive inheritance. Moreover, as the FPAH results showed, our
approach can also uncover evidence for a previously hidden locus that would be difficult to
undetect with a standard approach.

Because the method worked well for simple two-locus epistatic models, we tested it on a
more complex model, Additive2 (ADD2). This model requires the existence of two loci, but
unlike the EPI models, ADD2 requires that there be a minimum count of 2 disease-related
alleles at the two loci in order to cause disease. Thus, the inheritance is neither dominant nor
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recessive. In the past, we had examined an ADD2 model in the context of detecting linkage [5]
and determining gene location [6]. In those works, we saw that, when such underlying inheri-
tance models obtain, one can detect linkage, although the apparent mode of inheritance
derived from the linkage data depends on the gene frequencies of the disease alleles at the two
loci.

The core of the method we developed requires “stratifying” or “pruning” the data in such a
way that only gene carriers of a known causative, or associated, disease-related allele (at the
“known” locus) be included in the data. Then the resulting linkage analysis of the pruned data-
set is contrasted with the linkage evidence using the unstratified data. In the FPAH case (noted
above), the known gene was BMPR2; alleles of that gene have proven to carry disease-causing
mutations [7]. In applying our approach, family members not carrying this causative allele
were eliminated (or “pruned”) from the data [3], and the analysis of those pruned data showed
strong evidence for another locus. Further, the results suggested that presence (or absence) of a
disease allele at this second locus was the reason the disease-causing BMPR2 mutations showed
only 20% penetrance.

In Corso & Greenberg [4] we developed and tested the INT statistic as an indicator of inter-
action. INT is defined as the difference in the maximum multipoint LOD scores between the
linkage analysis of the full dataset and the linkage analysis of the stratified, or “pruned”, dataset.
We had expected that INT would work as well for the ADD2 model. To our surprise, INT
proved an unreliable indicator of interaction for ADD2. Thus, we wanted to understand why
INT failed for the case of additive inheritance and to devise a new approach that would retain
the reliability of the INT statistic but could be successfully applied to a wider range of inheri-
tance models.

1.2. Scope of the current project
We have developed a new statistic, designated INT2. Our testing indicates that INT2 yields
very few false positives, that is, it rarely indicates interaction when none exists. The false nega-
tive rates are low when the data are generated under two-locus epistatic and heterogeneity
models, and for the additive2 model when gene frequencies at the two loci are (approximately)
equal. Our testing is done under a wide variety of population parameters and different forms of
gene-gene interaction, or non-interaction, between two loci. In this report, we describe the
development and extensive testing of this interaction indicator. We emphasize that the object
of the work is to reliably detect gene-gene interaction. This is not a test of linkage. Our
approach assumes there is a known allele at a locus that is a necessary (or at least major), but
not sufficient, cause of the disease, and the method tests for interaction between that locus and,
for example, another linkage signal. (By “major” genotype we mean that that all affected indi-
viduals, or at least the great majority of affected individuals, have the at-risk genotype, or one
of the at-risk genotypes, if more than one.)

If the method detects interaction when the true model is heterogeneity, that is a false posi-
tive; if it fails to detect interaction when the true model is epistasis, or the additive model, that
is a false negative.

Methods

2.1. Generating models
We generated data under several inheritance models (described in Corso & Greenberg [4]). All
models were two-locus models, with the loci unlinked to each other. The first disease locus (the
“known” locus) is tightly linked to a single marker and the disease allele at that locus is in
strong linkage disequilibrium (r2 = 1) with allele 1 of marker 4 (see Fig 1). Thus, the presence

Linkage Analysis and Interaction

PLOS ONE | DOI:10.1371/journal.pone.0146240 January 11, 2016 3 / 18



of this marker allele signals the presence of the disease allele at the disease locus, as we explored
in Corso & Greenberg [4]. The second locus was the “test” or unknown, locus. The disease
allele at the test locus was not in LD with any marker allele. We tested epistatic (EPI), heteroge-
neity (HET), and additive2 (ADD2) models. We tested different kinds of epistatic interaction
between the loci as well as models in which the loci did not interact, i.e., produced disease inde-
pendently of each other. The values of θ (recombination fraction) are shown in Fig 1.

2.1.1. Genetic structure of the “chromosome”. We generated multipoint linkage data for
a disease caused by two unlinked, epistatically-interacting loci (A and B), or caused by two
independent heterogeneous loci, using a modification of the program Caleb [8]. Caleb gener-
ates multipoint family data in which two disease loci produce the disease, through interaction
or independently (details below). In addition to the two disease loci, the program allows the
user to specify up to 18 single nucleotide polymorphisms (SNP) marker loci of arbitrary gene
frequency and also allows specification of pairwise linkage disequilibrium (LD) between loci.
For all simulations we fixed the first disease locus (locus A) at position 5 and the second disease
locus (locus B) at position 13 on the simulated “chromosome” (see Fig 1). These loci were not
linked to each other (recombination fraction (θ) = 0.5). We then calculated the LOD score at
each position around the test locus B.

The genetic distances between loci (i.e., recombination fraction θ) used to generate the link-
age data are shown in Fig 1. Some of the marker loci between disease locus A and disease locus
B were separated by recombination fractions that ensured A and B were unlinked. Recombina-
tion fractions between pairs of markers directly surrounding the disease loci were fixed at
0.001, approximating θ = 0 [4].

The LD measure, D’, between the disease allele at locus A and marker allele 1 at locus 4 was
set to 1 and the gene frequency of the disease allele matched that of allele 1; thus, allele 1 at the
marker always occurred together with the disease allele (r2 = 1) at locus A and never with the
normal allele. The recombination fraction between the disease allele at locus A and the locus 4
marker was set to 0 (see Fig 1). There was no LD between any other alleles.

The LD block included markers 1 through 6 of the chromosome map. Marker 4, which was
used to prune the pedigrees, had the same allele frequency as the disease gene. For all other
markers in this section, the allele frequency was fixed at 0.5.

2.1.2. Models. Epistatic (EPI) models—We examined four EPI models: dominant-domi-
nant (DD), dominant-recessive (DR), recessive-dominant (RD), and recessive-recessive (RR)
(described in detail in Greenberg et al. [9] and Corso & Greenberg [4]). In these models, an
individual must have the disease genotype at both loci in order to be affected. Moreover, having
the disease genotype at both loci is sufficient as well as necessary. Thus, once the genotype is
known there is no random component to being affected (although from the viewpoint of either

Fig 1. Schematic representation of the “chromosome” used in the simulations. Locus A (position 5) is
the already known disease locus; locus B (position 13) is the test locus. Markers at positions 4 and 6 are
linked to A with recombination fractions of essentially 0 (θ = .001 in the simulations); similarly, markers at 12
and 13 are tightly linked to B.

doi:10.1371/journal.pone.0146240.g001
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locus alone penetrance appears to be reduced). There were no sporadics. The EPI models are
the ones that display interaction.

Heterogeneity (HET) models–Heterogeneity exists when the two loci independently cause
disease. Inheritance can be either dominant or recessive at either locus. The penetrance at each
locus is set to 50%. We refer to the HET models as D+D, D+R, R+D, and R+R, following previ-
ously published notation [5]. The HET models do not display interaction.

Additive Model–The Additive2 (ADD2) model requires at least two disease alleles, total, at
the two loci to cause the trait [5]. Thus this model combines aspects of the DD plus two simple
recessive models. Having the disease genotype is sufficient as well as necessary (as with the EPI
models). The ADD2 displays interaction, although less so than the EPI models. Fig 2 summa-
rizes the 9 models.

2.2. Analyses
2.2.1. Stratification. The core of the method is described in Corso & Greenberg [4]. The

method re-structures the family data by “stratifying” or “pruning” the data, eliminating from
the analysis those family members who do not carry the disease mutation/associated allele at
the known locus. (Connecting individuals, i.e., parents, were always included.) Thus, only gene
carriers of the known causative, or associated, disease-related allele (the “known” locus) are
included in the data. When interaction exists, the effect of this pruning is to raise the apparent
“penetrance” of the disease by eliminating those who cannot be affected because they do not
have the disease genotype at one of the necessary/contributing loci.

The datasets were analyzed twice, once before stratification, in which all family members
were included, and once after. The linkage results for the two analyses are then used to calculate
the statistic INT2 (see below), which indicates the presence of interaction.

2.2.2. Simulation parameters. We examined the effects of changing the relative contribu-
tions to disease of the A and B loci. For the HET models, we set penetrance to 0.5 and disease
prevalence to .05. We defined r as the ratio of A’s prevalence contribution to B’s prevalence
contribution. For the EPI models, prevalence was .01 and penetrance was full. Here r was
defined analogously to the definition for the het models. For the ADD models, prevalence was
set at an intermediate value of .03, penetrance was full, and we defined r as the ratio of A’s allele
frequency to B’s allele frequency. See S1 Appendix for the formulas. We compared results for r
= .5, 1, 2 in all cases.

We also experimented with dataset sizes of 20, 50, 100, and 200 nuclear families. We simu-
lated two-generation families with a minimum of 2 offspring, and at least one affected off-
spring. The family size distribution followed that of Cavalli & Bodmer [10] Each simulation
consisted of 1,000 datasets.

2.2.3. Analysis parameters. The same genetic map was used for the simulation and the
analysis. The analysis gene frequency was assumed to be that of the second locus, locus B (the
“test” locus). GENEHUNTER was used to compute LOD and HLOD (heterogeneity lod) scores
[11] Each dataset was analyzed assuming both dominant and recessive modes of inheritance, at
assumed penetrances of 0.5 [12] [13], for both HLOD and LOD scores.

2.3. Test statistic INT2
The previously described test statistic INT [4] had been calculated for each dataset as

INT ¼ ðmax stratified multipoint LODÞ � ðmax unstratified multipoint LODÞ ð1Þ
When we found that INT produced too many false negatives for the ADDmodels and too
many false positives for some of the het models, we devised a new statistic, INT2. To begin, we
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maximized the LODs over the two analysis models, dominant with 50% penetrance and reces-
sive with 50% penetrance (MMLS = maximized max lod score). Define

U ¼ max unstratified MMLS multipoint LOD

S ¼ max stratified MMLS multipoint LOD

INT 0 ¼ S� U

ð2Þ

This INT0 (“INT prime”) is analogous to our original INT statistic as in Eq (1), but uses MMLS.
However, experience shows that the statistic still needs “scaling.”We determine whether S has
the same sign as the just-defined INT’ or not. When yes, INT’ is multiplied by (2 + S)/U; other-
wise, INT’ is multiplied by (2 –S)/U. Thus:

INT2 ¼
INT 0 � ð2þ SÞ

U
ðINT 0 and S have same signÞ

INT 0 � ð2� SÞ
U

ðINT 0 and S have opp: signsÞ
ð3Þ

8>><
>>:

We also calculated the stratified max MMLS HLOD (called Shet). We used this score for ini-
tial screening: We eliminated datasets for which Shet was less than 1 and did not include them

Fig 2. Penetrance structure of the nine two-locus genetic models described in the text. The number in
each box gives the penetrance for that genotype, i.e., P[affected|genotype].

doi:10.1371/journal.pone.0146240.g002
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in further analysis (see Sec. 3.1). Note that for eliminating datasets we used the HLOD, but for
the test statistic INT2 we used the LOD score without heterogeneity, as in Eq (2).

By definition, datasets that survived this initial screen (Shet > 1) and whose subsequent
INT2 score was greater than or equal to zero are interpreted as giving evidence of interaction.

2.4. Summary of test procedure
To calculate INT2:

Step 1. Eliminate datasets with insufficient information: Determine MMLS HLOD scores [6]
for the stratified version of each dataset, and discard/eliminate those datasets with
(Shet< 1). Experience showed that applying this cutoff reduced the number of false
positives. (In Corso & Greenberg [4], we had used a cut-off of stratified LOD< 1.5.)

Step 2. Estimate mode of inheritance: Calculate the MMLS scores (using the LOD, not
HLOD) for the unstratified datasets that survived Step 1. The LOD score at the test
locus for each unstratified version was maximized with respect to mode of inheri-
tance. That mode of inheritance that led to the higher LOD score was then used to
(re-)calculate the LOD score for the stratified version of each dataset.

Step 3. Compute stratified (S) and unstratified (U) max MMLS LOD scores, and use them to
calculate INT0 and INT2, as in Eqs (2) and (3).

For each simulation, the distribution of the statistic INT2 was then plotted as a histogram,
in increments of 0.2 on the INT2 axis, in the range [–10, 15]. Occasionally some values fell out-
side that range, which was noted and recorded.

Results

3.1. The Shet > 1 cutoff criterion
In extensive simulations, many datasets generated under the HET and ADD models yielded
unacceptably high error rates. Most frequently, the datasets that led to false positives or false
negatives were those in which the stratified MMLS HLOD score (Shet) was less than 1 (Sec.
2.3). Thus, as described in Methods, we first determined whether a dataset’s Shet was greater
than 1. Table 1 shows that no EPI datasets, and only few ADD2 datasets, failed to met this
Shet criterion, but that failure was very frequent for the HET datasets (between 95.5% and
97% of datasets for the 4 het models we examined). Thus it seems reasonable to interpret
Shet < 1 as representing prima facie evidence against interaction. We return to this point in
the Discussion.

3.2. Comparing INT2 to INT
In numerous simulations, we determined that INT2 consistently yielded error rates that were
at least as low as those from INT for all models, and were much superior to those from INT for
the ADD models and for D+R. We illustrate with the distributions of INT and INT2 for three
representative models (Figs 3, 4 and 5). Figs 3 and 5 show results for, respectively, one of the
EPI models (RD) and one of the ADD models (ADD2). These are models where the statistic
should be positive because the models have gene-gene interaction. (In the case of the ADD2
model, the extent of positivity depends on the gene frequency of the disease alleles at the two
loci; see below.) In both cases, INT2 has a more positive distribution than INT. This difference
is most striking for the ADD2 model, where INT was overwhelmingly negative and INT2 is pri-
marily positive. Fig 4 shows results for one of the Het models (R+D), where we want the
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Table 1. Distribution of INT2 values, for all 9 models. The table shows the number of datasets, out of
1,000, in each category.

Epistatic models

Model Shet < 1 INT2 < 0 (error rate) INT2 > 0

DD 0 0 (0%) 1,000

DR 0 2 (0.2%) 998

RD 0 4 (0.4%) 996

RR 0 25 (2.5%) 975

Heterogeneity models

Model Shet < 1 INT2 < 0 INT2 > 0 (error rate)

D+D 959 41 0 (0%)

D+R 955 39 6 (0.6%)

R+D 971 25 4 (0.4%)

R+R 970 20 10 (1.0%)

Additive model

Model Shet < 1 INT2 < 0 (error rate) INT2 > 0

Add2 1 46 (4.6%) 953

r = 1 for all entries in this table.

Dataset size = 100 families/dataset

Number in each cell gives the number of datasets out of 1,000 datasets (% in parentheses).

Shet = max stratified MMLS HETLOD (Sec. 3.1)

doi:10.1371/journal.pone.0146240.t001

Fig 3. Distributions of INT and INT2 for the RDmodel, among the datasets that met the Shet > 1 cutoff
criterion (Sec. 3.1). For the EPI models, the statistic should have positive values. The ratio r equals 1, and
the graph shows results from 1,000 datasets. INT and INT2 values that were < –10 or > 15 do not show in the
graphs but are noted here: For INT, all datasets are included in the graph; for INT2, 3 datasets had values < –

10; 48 had values > 15.

doi:10.1371/journal.pone.0146240.g003
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Fig 4. Distributions of INT and INT2 for the R+Dmodel, among the datasets that met the Shet > 1 cutoff
criterion (Sec. 3.1). For the HETmodels, the statistic should have negative values. The ratio r equals 1, and
the graph shows results for 29 datasets. INT and INT2 values that were < –10 or > 15 do not show in the
graphs but are noted here: For INT, all datasets are included; for INT2, 1 dataset had a value < –10.

doi:10.1371/journal.pone.0146240.g004

Fig 5. Distributions of INT and INT2 for the ADD2model, among the datasets that met the Shet > 1
cutoff criterion (Sec. 3.1). For the ADD2 model, the statistic should have positive values. The ratio r equals
1, and the graph shows results for 999 datasets. INT and INT2 values that were < –10 or > 15 do not show in
the graphs but are noted here: For INT, all datasets are included; for INT2, 2 datasets had values < –10, and 3
had values > 15.

doi:10.1371/journal.pone.0146240.g005
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statistic to be negative. Only 29 out of 100 datasets satisfied the Shet cutoff criterion. Of these,
INT yielded 8 false positives and INT2 only 5. Since INT2 was consistently as least as reliable as
INT overall, we report only INT2 for the remainder of this study.

3.3. Effects of relative allele frequencies
The gene frequency effects for the EPI and HET models were relatively minor and did not
qualitatively affect the ability of INT2 to detect interaction. The ADDmodels, in contrast,
were sensitive to the ratio r described above (Sec. 2.2.2). We address this observation in the
Discussion.

Figs 6, 7 and 8 shows three representative examples of the effects of changing relative gene
frequencies on the distribution of INT2. For the rest of the study we report results with r = 1.
S1 Appendix shows the allele frequencies corresponding to r = 1, for all models examined.

3.4. INT2 results
Table 1 gives the error rates for INT2, for all the models we examined. We define error rate as
the proportion of datasets, out of 1,000, that supported interaction when there was none (false
positives), or that failed to support interaction when interaction was present (false negatives).
Thus, for datasets generated under HET models, positive INT2 scores count as false positives,
whereas for the EPI and ADDmodels, negative INT2 scores are false negatives. The table rec-
ords first how many datasets had Shet < 1 and were therefore eliminated from further analysis
(see Sec. 3.1). Among the remaining datasets, we tabulated whether INT2 was positive (sup-
porting interaction) or negative (not supporting interaction).

For the EPI and ADD models, essentially no datasets were eliminated in the initial screen
(i.e., there were no datasets with Shet < 1), and for the EPI models, error rates (INT2 < 0,
false negatives) were low, ranging from 0 to 2.5%. For the ADD model, the situation is more

Fig 6. For the RDmodel, distribution of INT2, as a function of r (see Sec. 2.2.2 and Tables B and C in
S1 Appendix). For the EPI models, the statistic should have positive values. There were 1,000 datasets for
all values of r. INT2 values that were < –10 or > 15 do not show in the graphs but are noted here: For r = .5, 90
datasets had values > 15; for r = 1, 3 had values < –10, and 48 had values > 15; for r = 2, 22 datasets had
values > 15.

doi:10.1371/journal.pone.0146240.g006
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nuanced. Error rates were good (0.5% to 4.6%) when the allele frequencies at the two loci
were equal. But these errors rose sharply as the two allele frequencies diverged. See Discus-
sion (Sec. 4.3).

For the het models, over 95% of the datasets had Shet < 1, and most of the remaining data-
sets had INT2< 0. Both of these outcomes support lack of interaction; only INT2> 0 sup-
ported interaction, leading to error rates of less than 1% in our simulations.

Fig 7. For the R+Dmodel, distribution of INT2, as a function of r (see Sec. 2.2.2 and Tables A and C in
S1 Appendix). For the HETmodels, the statistic should have negative values. INT2 values that were < –10
or > 15 do not show in the graphs but are noted here: For r = .5, there were 37 datasets; for r = 1, there were
29 datasets, of which one had a value > 15; for r = 2, there were 33 datasets.

doi:10.1371/journal.pone.0146240.g007

Fig 8. For the ADD2model, distribution of INT2, as a function of r (see Sec. 2.2.2 and Table C in S1
Appendix). For the ADD2 model, the statistic should have positive values. INT2 values that were < –10
or > 15 do not show in the graphs but are noted here: For r = .5, there were 991 datasets, of which 40 had
values < –10 and 39 had values > 15; for r = 1, there were 999 datasets, of which 2 had values < –10, and 3
had values > 15; for r = 2, there were 989 datasets, of which 42 had values < –10 and 39 datasets had
values > 15.

doi:10.1371/journal.pone.0146240.g008
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Discussion

4.1. About INT2
An ideal interaction test statistic should yield positive values for the EPI models and negative
values for the HET models. For the ADD models, it should also yield positive values, although
not as robustly as with the EPI models; we base this criterion/requirement on the fact that the
ADDmodels exhibit interaction, but less straightforwardly than the EPI models do. The origi-
nal statistic, INT in Corso & Greenberg [4], was straightforward and intuitively appealing, and
it met these criteria for most of the EPI and HET models. However, it performed poorly for
ADD2. We wanted a statistic that could detect interaction even in the presence of heterogeneity,
since the presence of both interaction and heterogeneity is a distinguishing feature of ADD2
(see Sec. 4.3). With some fine-tuning, we developed INT2 in Eq (3).

4.2. Simulation conditions (informativeness, prevalence, gene
frequency, dataset size)
Concerning changing the gene frequencies (Sec. 3.3): We fixed the prevalences (0.01 for the
EPI models, 0.03 for the ADD models, and 0.05 for the HET models) and varied only the rela-
tive frequencies at the two loci. We had performed extensive simulation studies exploring gene
frequency, variations of inheritance models, cut-off values, using LOD vs. HLOD, etc. (details
not shown). We found that changing the disease prevalence within a reasonable range (preva-
lence less than 10%) had little effect on the results, except that simulations take longer when
low prevalences are simulated (because the simulator creates entire populations that are then
selected according to ascertainment criteria set by the user).

Setting a minimum HLOD value (Shet > 1) before calculating INT2 eliminated most false
positive and many false negative results.

Table 2 shows the effect of dataset size on identifying the existence of interaction for several
representative models. (Models not shown gave similar results.) It is striking that for the DD
model, even a dataset of only 20 families has a high probability (>98%) of showing evidence
for interaction. The RDmodel has a relatively high rate of false negatives (INT2< 0) for a data-
set size of 20 families (14%), but that drops to<3% with 50-family datasets, and essentially to
zero for 100-family datasets. The ADD2 model is more dependent on large samples to be rea-
sonably sure of detecting interaction. For the ADD2, only with 100-family datasets does the
false negative rate drop below 10%; by 200 families/dataset, the false negative rate essentially
goes to zero. Interestingly, the heterogeneity false positive rates appear not to depend on sam-
ple size; all hover at around 1–2%.

4.3. The ADD2 model
Why does the ADDmodels represent interaction but less strongly than the EPI models? One
way to understand this is to examine the structures of the three types of models, as in Fig 2.
The EPI models have a strictly rectangular (multiplicative) penetrance structure, and the HET
models represent the superposition of two separate rectangles, whereas the ADD2 model has a
“diagonal” structure that falls between those of the EPI and HET models. The ADD2 model
can also be viewed as a composite with both epistatic and heterogeneous components. That is,
ADD2 can itself be considered a kind of heterogeneity model, in that it is a mixture of DD and
two single-locus R models (Fig 9). As a result, as the disease allele frequency at either locus
increases, the data become more “single-locus”-like, and more and more of the datasets show
negative INT2. Also see the next section (4.4).
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4.4. INT2’s effectiveness in detecting interaction
The procedure we developed involves rejecting those stratified datasets with Shet < 1 (Sec. 3.1)
and then determining whether INT2> 0. Removing the Shet < 1 datasets from consideration
eliminates many false positive and false negative INT2s; specifically, for the HET models, the
Shet > 1 criterion appears, by itself, to also be useful as an indicator of interaction. The ADD2
model is a complex model, with both a DD form and two single-locus recessive forms of disease
contributing to the patient population (see Sec. 4.3), and the DD form is a gene-gene interactive
model. We have seen (Table 1) that in the presence of clear epistasis or clear heterogeneity,
INT2 almost always yields a correct result, i.e., detects interaction for EPI models and fails to
detect interaction for HET models.

However, the results with ADD2 were more ambiguous. We asked, How reliably can INT2
detect interaction, in the presence of both gene-gene interaction and heterogeneity, as

Table 2. Number of datasets with and number of datasets yielding false positives (for 2 representative HETmodels) or false negatives (for 2 repre-
sentative EPI models and the ADD2model), as a function of dataset size.

No. of families/dataset

Model 20 50 100 200

D+D Shet > 1 37 (3.7%) 36 (3.6%) 41 (4.1%) 37 (3.7%)

False positives (INT2>0) 8 (0.8) 9 (0.9) 0 (0) 0 (0)

DD Shet > 1 992 (99.2) 1,000 (100) 1,000 (100) 1,000 (100)

False negatives (INT2<0) 17 (1.7) 0 (0) 0 (0) 0 (0)

R+D Shet > 1 36 (3.6) 34 (3.4) 29 (2.9) 27 (2.7)

False positives (INT2>0) 7 (0.7) 13 (1.3) 4 (0.4) 10 (0.1)

RD Shet > 1 890 (89.0) 998 (99.8) 1,000 (100) 1,000 (100)

False negatives (INT2<0) 137 (13.7) 27 (2.7) 4 (0.4) 0 (0)

ADD2 Shet > 1 563 (56.3) 920 (92.0) 999 (99.0) 1,000 (100)

False negatives (INT2<0) 260 (26.0) 223 (22.3) 46 (4.6) 1 (0.1)

Number in each cell gives the number of datasets out of 1,000 datasets (% in parentheses).

r = 1 for all entries in this table.

Shet = max stratified MMLS HETLOD (Sec. 3.1)

doi:10.1371/journal.pone.0146240.t002

Fig 9. Diagrammatic representation of the ADD2model, highlighting the DD contribution and the two
single-locus recessive contributions.

doi:10.1371/journal.pone.0146240.g009
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represented by the ADD2 model? To answer this question, we broke down ADD2 datasets by
the number of families that had affected members exclusively caused by the first recessive
form, i.e., where the A locus is acting recessively; exclusively the second recessive form, i.e.,
where the B locus acts recessively; exclusively the DD form; or mixed, containing (at least) two
forms. We also varied the disease allele frequencies to get a range of interaction detection.

Out of 100,000 ADD2 families with r = 1, 66% had the DD form and 30% had one of the R
forms (only 4% of the families were mixed). Among the 1,000 datasets containing these fami-
lies, the DD interaction was detected (INT2> 0) in 96% of them. When r = 5, only 41% of the
families had members with the DD form, whereas 56% had an R form (3% were mixed). Even
when only 41% of families displayed the DD form, INT2 was able to detect interaction in 15%
of the datasets, suggesting some power to detect interaction even in the presence of substantial
heterogeneity. Thus, even though the contribution of the families exhibiting interaction
dropped from 66% to 41%, INT2 could detect interaction in a notable proportion of the data-
sets, even in a heterogeneous background of single-locus recessive models.

4.5. Why focus on linkage-based methods?
In the post-GWAS age of exome and whole genome sequencing, the obvious question arises:
Why are linkage-based methods important? We compare aspects of association analysis and
linkage analysis (Sec. 4.5.1), and then apply them specifically to this study (Sec. 4.5.2).

4.5.1. Differences between linkage methods and association analysis. These two types of
analysis have different designs, use different types of data, and answer different questions.
Linkage analysis uses family data, thus taking advantage of the rich genetic information con-
tained in the inheritance patterns within families. It determines whether alleles at a locus cose-
gregate with disease, meaning that some allele at that locus consistently gets inherited along
with the disease. (Which allele it is does not matter and may not be the same in different fami-
lies; what matters is that the cosegregation is consistent within a family.) Association analysis,
in contrast, uses data from unrelated individuals in the population. It can determine whether a
given allele or SNP is associated with the disease in the population. For association analysis, the
allele is the focus of interest, and thus it does matter which allele is which. Because of their
design, association methods have high sensitivity for detecting alleles that may have only a
minor effect on disease expression (i.e., that increase disease susceptibility only slightly), but
low specificity for determining whether a detected allele has a major effect and is worth pursu-
ing. See examples in the next section (4.5.2).

Linkage analysis, on the other hand, has high specificity but relatively low sensitivity [14].
Linkage analysis does not detect susceptibility loci that increase disease risk only slightly. Any
gene detected using linkage is virtually certain to have a major influence on disease expression
and is, therefore, worth the effort of identifying and pursuing in order to understand the origins
of the disease.

Association analysis is vulnerable to both allelic and locus heterogeneity. Allelic heterogene-
ity refers to a situation in which different alleles at the same locus can produce the same trait or
disease, including both classical examples, such as the β-thalassemias and phenylketonuria,
and more recent ones, such as our work with FPAH [3]. Since association analysis compares
population frequencies between cases and controls, the existence of multiple alleles weakens
evidence for an effect.

In contrast, linkage analysis, by definition, pays no attention to the identity of marker alleles;
it looks only at whether the marker alleles within each family cosegregate consistently with the
disease. Consider a disease (let it be single-locus for ease of illustration) where alleles “1” and
“2” can each, independently, cause the disease. Some families may segregate the “1” allele and
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others, the “2” allele. In each case, linkage looks only at the cosegregation of that allele with the
disease in that family; whether that allele is the “1” or the “2” is irrelevant to a linkage analysis.

Association analysis faces some additional hurdles. (1) It is also sensitive to locus heteroge-
neity, whereas linkage analysis has methods to compensate for and even detect locus heteroge-
neity [6] [13] [15]. (2) When it comes to studying interaction, association methods can detect
only joint allele frequency differences between collections of unrelated individuals. Such differ-
ences may be only loosely related to inheritance and therefore only loosely correlated with
gene-gene interaction. They can demonstrate correlation but not causation. Also see examples
in the next subsection. (3) Phenotypes: Because association studies need very large samples in
order to detect minor allelic effects on disease expression, they necessarily cannot be as rigor-
ous about phenotype definition as linkage studies are.

4.5.2. Issues specific to our study. In this project we have worked solely with models in
which the at-risk genotypes play a major role in disease causation. By “major role” we mean
that a substantial proportion of affected individuals have (one of) the at-risk genotype(s). For
example, define P as the proportion of affected individuals with the at-risk genotype. For the
models shown in Fig 2, this proportion P is 100%, since the penetrances of all the not-at-risk
genotypes are zero. Increasing those latter penetrances only slightly may have a large effect on
P, since the not-at-risk genotypes are much more frequent in the population than the at-risk
genotype(s). For example, with our dominant-dominant (DD) model, raising all the not-at-
risk genotype penetrances from 0 to 0.01 reduces P to 50%. In essence, such a change reduces
the genetic contribution to the disease. P may serve as a rough tool to characterize models for
which the at-risk genotype(s) play a major role.

These considerations lead to an interesting question: For the purpose of detecting gene-gene
interaction, what is the relationship between genetic models that lend themselves to linkage
analysis and genetic models detectable by association analysis? Or, in operational terms, what
is the relationship between genotype penetrances, on the one hand, and odds ratios (ORs) from
case-control studies on the other? Consider this idealized case-control table, applied to our DD
model. (A and B are the disease alleles at the first and second locus, respectively; a and b are the
normal alleles; AX = AA or Aa; BX = BB or BB; aa– = homozygotes for a without regard to
genotype at the B locus; the pi are the genotype frequencies among cases; the qi are the genotype
frequencies among controls.) Table 3 shows the setup.

Define the marginal OR for A as ðp1þp2Þq3
ðq1þq2Þp3 and the interaction OR as p1ðq2þq3Þ

q1ðp2þp3Þ. Our epistatic

models in Fig 2, with all penetrances equaling 1 or 0, lead to ORs of infinity. More interesting is
to see what happens when we lower the 1s and raise the 0s. For example, consider a DD model
(allele frequencies equal 0.1 for both the A and B alleles), where we reduce the 1s in Fig 2 to 0.9
and increase the 0s to 0.01. This results in a disease population prevalence of ~2%, and of those
affected, ~48% have one of the AXBX genotypes (i.e., P = 0.476). This model is easily handled
by our linkage-based methods. It would also be readily detectable by comparing ORs, since the
marginal ORs for both the A and B loci would equal 10.9, and the interaction OR would be
891.

In contrast, consider a model where we reduce the 1s in Fig 2 to 0.4 and raise the 0s to 0.1.
The ORs still support interaction: marginal OR = 1.3, interaction OR = 6.0. But now not only is

Table 3. Setup of case-control study.

AXBX AXbb aa– Total

Cases p1 p2 p3 1.000

Controls q1 q2 q3 1.000

doi:10.1371/journal.pone.0146240.t003
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the disease more common (population prevalence ~10%), but of those affected, only 3.9% have
one of the AXBX genotypes; 8.7% have AX but not BX; another 8.7% have BX but not AX; and
78.7% do not carry either disease allele A or B at all. Thus, this is more of a heterogeneity, or
even nongenetic, model than an interaction model: Many more affected individuals carry either
A or B alone than carry both A and B, and, further, the overwhelming majority of affected indi-
viduals do not carry either disease allele at all. This example illustrates what we said above, that
association analysis is more sensitive, yet what it detects may not be particularly helpful for
understanding disease causation.

Holzinger et al. [16] provide a more extreme example, similar to our RR model, with the 1
in Fig 2 lowered to .959, and the zero penetrances raised to values ranging from a minimum of
0.01 to a maximum of .382, for the different genotypes. Both disease allele frequencies equal
0.4. The marginal ORs for A and B both equal ~1, but the interaction OR is 60.5; i.e., the ORs
for each of the individual disease alleles show nomarginal effect, yet there is a strong interac-
tion effect. This hypothetical disease has a population prevalence of 29.5%, that is, almost one-
third of the population has the disease. Of these affected individuals, only 8.3% have the inter-
action genotype (AABB); 7.6% are homozygous for A; 7.7% are homozygous for B; and the
majority of affected individuals, 76.3% are not even homozygous for either. Again, this is no
longer really an interaction model, but closer to a heterogeneity model, with the majority of
cases being nongenetic.

In summary, when the genes are of major effect, linkage methods are powerful for detecting
the those genes and, as we have shown, for detecting interaction, but linkage analysis is not
suited for models with very low P. Association analysis, in contrast, is able to detect diseases in
which the interaction OR is greater than the marginal ORs, whether P is high or very low.
However, even though interaction is detectable by association analysis, for diseases with very
low P, interaction may not play much of a role in disease etiology. Additionally, association
analysis presents other problems. To begin, the investigator would likely test the one million or
so available SNPs, correcting for the multiple tests, in order to find those SNPs with significant
marginal ORs. Then, assuming the protocol required testing for interaction only among the
number N that were significant, test the N(N+1)/2 possible pairwise combinations for interac-
tion ORs. (For example, if only a tiny fraction of the first tests were significant, say N = 1,000,
one would then need to test ~500K pairs, again dealing with the multiple test problem.) This
hypothetical association analysis would also be hampered by the issues mentioned above, of
phenotype definition, allelic heterogeneity, and locus heterogeneity. Moreover, those diseases
detectable by association analysis but not linkage analysis tend to be precisely those for which
the disease alleles are just susceptibility alleles, so that even once they are detected, we may be
no closer to knowing what causes the disease.

Finally, we note that the multiplicative interaction models used for GWAS-based detection
of interaction are fundamentally statistical, and thus of necessity assume approximations to the
biology. In contrast, our epistatic models directly express what is happening biologically. (E.g.,
purple flower color in sweet peas, which is DD relative to white; ovoid shape in the seed cap-
sules of sherpherd’s purse, or Bursa, which is RR relative to triangular; or feather color in fowl,
which is DR relative to white.) This is not a criticism of the statistical models, but it highlights
that the statistical models are necessarily approximations to what is happening biologically.

There are many more recently-proposed methods to detect gene-gene interactions from
association data [17] such as Bayesian Neural Networks [18], “reduction approaches” [19], and
Holzinger et al.’s [16] variable selection method for diseases with very low marginal population
risks. These approaches are impressive in their sophistication but still will not overcome the
weaknesses discussed above.
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4.6. Conclusions and future work
Thus, there is ample justification for using the power of linkage analysis to solve genetic prob-
lems and determine clearly inherited influences, as opposed to risk factors that may or may not
lead to understanding the basic mechanisms of human genetic traits. The current popular
genetic research has invested huge resources of time and effort into collecting enormous data-
sets (104–105 cases and controls), achieving minimal advancement in genetic understanding,
while ignoring not only the genetic information (in the form of familial relationships) but also
the detailed phenotypic information that has historically been crucial in differentiating differ-
ent diseases and identifying genetic causes. Such differentiation is crucial to disentangling het-
erogeneity. In that light, the need to ultimately study families to understand inheritance
becomes apparent. Developing and testing robust and powerful methods to detect gene-gene
interaction will make the return to family studies more efficacious to genetic investigators.

In this paper we did not set up symmetric hypotheses of “interaction” vs. “heterogeneity.”
Rather, we have focused strictly on interaction. The task we set ourselves was to reliably iden-
tify interaction when it does exist (EPI and ADDmodels) and to fail to identify interaction
when it does not exist (HET). Our results suggest taking the following approach. First check
the Shet > 1 cutoff criterion (Sec. 3.1.) A dataset that does not satisfy that criterion most likely
does not result from interaction between two genes. If a dataset meets that criterion, calculate
INT2. If the statistic is positive, then the dataset most likely does exhibit interaction. If the sta-
tistic is negative, that points toward lack of interaction but is not reliable for ADD2 models in
which the two genes have different allele frequencies.

As we did in the case of FPAH [3] one could apply the method to the entire genome to
search for possible interactions between the known locus and other loci. In future work we will
examine theoretical underpinnings that make INT2 such a reliable test statistic for detecting
gene-gene interactions, and also study the statistical price to be paid for such whole-genome
testing.

We have shown here that our statistic INT2 can be used to detect evidence of interaction
over a broad swath of genetic models with high reliability. These are models in which a disease-
related allele at a locus has already been identified or is strongly associated with a marker [4],
and where the investigator is trying to determine whether another locus interacts with the first
locus. Our method exploits the fact that stratifying family data on the presence of the known
disease allele will generally increase the apparent “penetrance” (and hence the LOD scores) if
there is interaction, but will not increase the LOD scores otherwise. The INT2 statistic is a mod-
ification of the INT statistic studied in our earlier paper [4], and the current work extends that
paper.
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