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Abstract

Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially
among eukaryotic microorganisms (i.e. protists)—which represent the majority of eukaryotic ‘supergroups’. We surveyed
genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist
Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the
synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes,
including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been
observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit
unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene
homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes
forms a useful ‘‘meiosis detection toolkit’’. Our analyses indicate that these meiotic genes arose, or were already present,
early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely
capable of performing meiotic recombination using near-universal meiotic machinery.
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Introduction

Meiosis is a necessary part of sexual reproduction and a hallmark

of eukaryotes that distinguishes them from prokaryotes, yet we are

only beginning to understand its origin and evolution. Recent work

has revealed that many meiotic genes are conserved not only among

animals, fungi and plants (AFP) and some eukaryotic microorgan-

isms (protists), but also in the putatively early-diverged protist Giardia

intestinalis [1] which is not known to be sexual per se but was recently

shown to have genetic recombination [2,3] and to use orthologs of

meiosis-specific genes in putatively parasexual recombination

processes [4]. The breadth of eukaryotic diversity lies among the

protists [5,6], yet much remains to be elucidated about their meiotic

machinery [1,7,8]. Thus, we have continued and expanded our

search for conserved meiotic genes in public databases and

particularly in the recently completed genome of Trichomonas

vaginalis [9], a member of the Parabasalia.

Parabasalids are a highly diverged eukaryotic lineage in which

the molecular mechanisms of meiosis are unexamined; they are

related (albeit distantly) to diplomonads (e.g. Giardia) [10–17].

Morphological and molecular phylogenetic data, while controver-

sial in details, divide parabasalids into two groups, the hypermas-

tigotes (symbionts of roaches and termites, e.g. Trichonymphida)

and the trichomonads (parasitic and free-living flagellates, e.g.

Trichomonadidae) [18–23]. T. vaginalis is sexually transmitted

between people’s urogenital tracts, and acute infections are

associated with increased risk of pelvic inflammatory disease,

HIV-1 infection, infertility and problems with pregnancy [24,25].

T. vaginalis is estimated to cause 174 million new infections

annually worldwide and is the most common non-viral sexually

transmitted human pathogen [25,26]. Metronidazole is commonly

used to treat T. vaginalis infections, but resistance to the drug is

increasing [27]. It is not known whether genetic exchange occurs

in populations of T. vaginalis; however, genetic exchange could

mediate the proliferation of drug-resistant mutations or increased

virulence in populations of the parasite.

While neither meiosis nor sex has been observed in Trichomonas or

other trichomonads, various observations suggest the presence of

sexual processes in Parabasalids. Using light microscopy, Cleveland

described insect-hormone-induced divisions in hypermastigotes as

one-step meiosis, and suggested that this was a more primitive form of

meiosis than typical two-step meiosis in AFP [28–30]. For

trichomonads, the finding of six genetically identical strains of T.

vaginalis with clonal population structure was taken as evidence

against meiotic recombination [31]. However, recent phylogenetic

analyses of 731 polymorphic molecular markers show genetic

variation among 20 strains of T. vaginalis that may be sufficient to

indicate meiotic recombination [32]. Similar analyses reveal that

closely-related T. vaginalis strains shared the phenotype of resistance to

metronidazole, but this pattern had no correlation with geographical

origin [33], suggesting the genetic spread of resistance by

recombination and strong selection. The recent identification of
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mariner, Maverick and other DNA transposons in high copy number

[34–36] in the highly repetitive .160 Mb genome sequence of T.

vaginalis strain G3 [9,37] could be the result of a predominantly

asexual mode of reproduction or the recent loss of sexual

reproduction [38]. In contrast, the presence of intact retroposons

and reverse transcriptase homologs in the T. vaginalis strain G3

genome sequence [9] is consistent with an expectation that such

elements, that are predominantly vertically transmitted, are only

maintained in sexual lineages [39]. Although meiosis was not

observed in extensive cytological studies of cell division in T. vaginalis

[40,41], it has been noted that its six chromosomes may be synapsed

in 0.1% of cells, suggesting that meiosis may occur transiently in lab

populations [42]. Quadrinucleated cells transiently observed in lab

populations were noted but dismissed as not indicating a develop-

mental stage in T. vaginalis [43]. Thus, with little direct evidence for

meiosis in T. vaginalis, an inventory of meiotic genes will be an

informative tool with which to assess its ability to undergo sexual

processes.

Meiosis remains to be described at the molecular level in

parabasalids and in most other protist lineages. Since parabasalids

could represent one of the earliest diverging lineages on the tree of

eukaryotes [11–14] and they may employ non-canonical meiosis,

their meiotic processes could represent an ancestral state. Thus, an

understanding of the molecular mechanisms underlying meiosis in

these protists is important. Comparative studies of meiotic

machinery (i) may indicate the presence of sexual reproduction

in recent ancestors of organisms that are sexual or truly asexual (vs.

just facultatively sexual), (ii) could indicate the absence of sex, (iii)

will be useful for studies of the evolutionary advantages of sex, and

(iv) can provide data that are valuable for ecological and

epidemiological studies [44]. Surveys of meiotic genes have not

been performed in most protists, making a comparative analysis of

meiosis incomplete due to the limited available gene sequence data

from diverse protists [45]. Thus, the universality of meiotic

machinery in eukaryotes remains an open question.

We surveyed the genomes of Trichomonas vaginalis (strains G3 and

NIH-C1) and other diverse eukaryotes for a previously-described set

of 17 conserved meiotic genes [1] and 12 additional meiotic genes

also conserved among eukaryotes (Table 1 and Figure 1). Our

search included 9 genes that are ‘‘meiosis-specific’’ since they are

only known to function in meiosis in AFP and thus hypothesized to

only be present in organisms with sexual ancestry (Spo11, Hop1,

Hop2, Mnd1, Dmc1, Msh4, Msh5, Mer3, Rec8). We also surveyed 20

additional genes whose products are required for meiosis in AFP but

also have general functions in DNA repair or mitosis (Mre11, Rad50,

Rad1, Rad52, Rad51, Msh2, Msh6, Mlh1–Mlh3, Pms1, Smc1–Smc6,

Rad21, Scc3, Pds5). We searched public databases to find homologs

of meiotic proteins in diverse eukaryotes with complete (at least 76
coverage) genome sequence. Completed and near-complete

genome sequences include AFP and representative apicomplexan,

ciliate, chromist, amoebozoan, trypanosomatid and diplomonad

protists, in addition to T. vaginalis. Meiotic gene sequences from T.

vaginalis strain G3 found by this method were amplified by the

polymerase chain reaction (PCR) from strain NIH-C1 and

sequenced. Homology of the meiotic proteins was validated by

phylogenetic analysis, by which we determined if the homologous

genes were orthologs (related by speciation events) or paralogs

(related by gene duplication). Our results indicate that homologs of

a diverse set of meiotic genes are widespread among eukaryotes.

Results and Discussion

We present our inventory of meiotic genes found in T. vaginalis

in the context of an expanded set of 29 meiotic genes conserved

among over 30 AFP and protist genomes (Table 2). Of the 29

meiotic genes surveyed, 27 have homologs in the T. vaginalis

genome; homologs of the meiosis-specific sister chromatid cohesin

Rec8 and the DNA repair protein Rad52 were not found. The 29

genes surveyed from the five of six major eukaryotic lineages [11]

for which complete genome sequence data are available

(Opisthokonta, ‘Amoebozoa’, ‘Archaeplastida’, ‘Chromalveolata’

and ‘Excavata’) include 17 genes previously reported as ‘‘core

meiotic machinery’’ [1]. The large number of meiotic genes

shared by T. vaginalis, mammals (e.g., Homo) and fungi (e.g.,

Saccharomyces) suggest that putative meiotic processes in T. vaginalis

could resemble those in mammals and fungi. In contrast, Giardia

intestinalis, the other putatively asexual early-branching protist in

our study, lacks eight of 29 meiotic genes, and Drosophila

melanogaster, a sexual organism, is missing ten. G. intestinalis was

recently shown to utilize three of its meiosis-specific protein

homologs (Spo11, Hop1 and Dmc1) to mediate homologous

recombination (but not meiosis) in the nuclei of cysts in a process

named diplomyxis [4]. Together, our data and these observations

suggest that T. vaginalis may be equipped to perform meiotic

recombination or similar parasexual process by using its meiotic

gene homologs.

We found non-identical copies of eleven meiotic genes in T.

vaginalis that are usually found as single copies in other eukaryotes

(Tables 2, 3 and Table S1.1 in Supporting Information
File S1). We cannot discern whether all of the copies are

functional given the limited gene expression information available.

However, our phylogenetic analyses show that these genes have

evolved by recent duplications (within parabasalids) and, in most

cases, one copy is more conserved than the others. Consistent with

that observation, duplications within families of Trichomonas

vaginalis protein-coding genes likely occurred after its divergence

from sister taxon Trichomonas tenax [9]. The frequency of recently

duplicated meiotic genes observed in T. vaginalis approaches that

seen in some plants and fish (Table 2), which are both thought to

have polyploid origins. Six of the eleven genes present in multiple

copies in T. vaginalis (Table 3) are uniquely duplicated in T.

vaginalis and not in any other organism included in our study.

Duplications of chromosomes, segments of chromosomes, and

possibly whole genomes as in some plants and fish might explain

the presence of extra copies of meiotic genes in T. vaginalis. If so,

these genes are putative homeologs or ohnologs – duplicated genes

arising from polyploidization events [46]. Since the T. vaginalis

genome sequence is highly repetitive and consists of 17,290

unordered scaffolds [9], additional data and analyses to better

assemble the genome sequence into a smaller number of longer

and ordered scaffolds are required to understand how chromo-

some- and genome-scale duplication contributed to its genome

architecture. Ten of eleven recently duplicated meiotic genes were

located on separate scaffolds. However, the two Rad50 gene copies

were found in an inverted tandem repeat on the same scaffold of

assembled genome sequence, an arrangement which is inconsis-

tent with polyploidization and that might result from ectopic

meiotic sister chromatid recombination [47]. Our sequences from

T. vaginalis strain NIH-C1 revealed that Rad51b, Scc3b and Pds5

differed in the number of short tandemly repeated sequences

within their coding regions when compared with the genome

sequence of T. vaginalis strain G3. These duplicate genes (Rad51b

and Scc3b) may also be derived from allelic divergence resulting

from the accumulation of mutations during extensive asexual

(mitotic) reproduction [48]. If this is the case, T. vaginalis may be

facultatively sexual or asexual.

To assess if the T. vaginalis meiotic genes are functional, we

queried two expressed sequence tag (EST) databases and found

Meiosis Genes in Trichomonas
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evidence of the transcription of some genes (Table S1.1 in
Supporting Information File S1). ESTs derived from normal

asynchronized cultures were found for Rad50a, Rad1, Dmc1, Msh2,

Smc1b, Smc5b, Smc6, Rad21b and Pds5. In low-iron conditions,

Msh5, Smc1a, Smc5a, Rad21b and Scc3a are transcribed, while ESTs

encoding Rad51a were found from G2/M trophozoites. Cells

exhibiting vaginal epithelial cell mediated cytoadherence ex-

pressed Smc2, and ESTs encoding Smc1b and Smc4b were found

from cold-induced pseudocysts (‘‘compact non-motile forms

without a cyst wall’’ [40]). These data are consistent with the

expression of many (18 of 37) of the genes in our survey. However,

the available ESTs may not represent conditions that promote

meiosis, and their small numbers are consistent with the possibility

that a given gene is expressed at low levels, or even post-

transcriptionally down regulated. Of the 18 meiotic genes found in

ESTs, Dmc1 and Msh5 are the only meiosis-specific gene orthologs

found to be expressed in the available small sample of ESTs. The

expression of Dmc1 and Msh5 orthologs suggests that meiotic

recombination may occur in T. vaginalis in asynchronous cells and

during low iron conditions (stress). In sum, the EST data are

Table 1. Core meiotic genes and some key functions of their encoded proteins in meiosis.

Protein Function

Spo11 Transesterase, creates DNA double-strand breaks (DSB) in homologous chromosomes [103–105].

Mre11 39–59 dsDNA exonuclease and ssDNA endonuclease, trims back broken DNA ends and hairpins [106–108].

Rad50 Dimer, holds broken DNA ends together while Mre11 trims. ATPase, has DNA-binding activity [105,108].

Rad1 (Mei9) Forms a heterodimer with Rad10 (Ercc1) [109]. 59.39 endonuclease, essential for nucleotide excision repair. Required for meiotic crossing
over, normal meiotic chromosome disjunction, to repair mismatches in heteroduplex DNA and to resolve reciprocally exchanged
recombination intermediates in Drosophila [110].

Hop1 Protein that binds DSBs and oligomerizes early during meiotic prophase, and forms axial and lateral elements of the synaptonemal complex
[111].

Hop2 With Mnd1, ensures accurate and efficient homology searching, downstream of Rad51 and Dmc1, during pachytene stage of meiotic
prophase [112].

Mnd1 With Hop2, functions after meiotic DSB formation, and required for stable heteroduplex DNA formation [113].

Rad52 Binds to the ssDNA ends of DSBs and initiates DSB repair by homologous recombination [114]. Stimulates Rad51-mediated strand invasion by
interaction with Rad51 and RPA, and promotes single strand annealing (SSA) [115].

Dmc1 Meiosis-specific homolog of Rad51, has similar function but promotes interhomolog recombination [116–118].

Rad51 Forms helical filaments on single-stranded and double-stranded DNA and catalyzes homologous DNA pairing and strand exchange.
(Intrahomologous recombination) [116,118].

Msh4 Forms a heterodimer with Msh5, interacts with Mlh1/Mlh3 heterodimer. Directs Holliday junction resolution towards crossover with
interference [119].

Msh5 Forms a heterodimer with Msh4, interacts with Mlh1/Mlh3 heterodimer. Directs Holliday junction resolution towards crossover with
interference [119].

Msh2 Forms a heterodimer with Msh3 or Msh6 [119].

Msh6 Forms a heterodimer with Msh2, binds base-base mismatches [119].

Mlh1 Mismatch repair of dinucleotide and trinucleotide sequences, interacts with Msh2, forms heterodimers with Mlh2, Mlh3 and Pms1 [119].

Mlh2 Forms a heterodimer with Mlh1. Interacts with Msh2/3 or Msh2/6 for removal of cisplatin adducts [119].

Mlh3 Forms a heterodimer with Mlh1. Interacts with Msh2/3 or Msh2/6 for frameshift repair in mitosis or meiosis, or with Msh4/5 to promote
meiotic crossovers [119].

Pms1 Mismatch repair. Interacts with Msh2/3 or Msh2/6 as a heterodimer with Mlh1[119].

Mer3 Meiosis-specific DEAD-box helicase that promotes Holliday junction resolution with crossover interference together with ZMM proteins,
including Msh4 and Msh5 [57,58,120–122].

Smc1 Forms a heterodimer with Smc3 to form core sister chromatid cohesin subunits, with ring shape around sister chromatids [123,124].

Smc2 Forms a heterodimer with Smc4 to form core condensin subunits, ring shape, essential for chromosome assembly and segregation. [123]

Smc3 Forms a heterodimer with Smc1 to form core sister chromatid cohesin subunits, with ring shape around sister chromatids [123,124].

Smc4 Forms a heterodimer with Smc2 to form core condensin subunits, ring shape, essential for chromosome assembly and segregation [123].

Smc5 Forms a heterodimer with Smc6 (Rad18) and is involved in DNA repair and checkpoint responses [123].

Smc6 (Rad18) Binds ssDNA, has important role in postreplication DNA repair [125]. Forms a heterodimer with Smc5 and is involved in DNA repair &
checkpoint responses [123].

Rad21 (Scc1) Holds Smc1 and Smc3 heads together by binding N-terminal domain to Smc3 and C-terminal domain to Smc1, thus holding sister
chromatids together during mitosis and meiosis [124].

Rec8 Meiotic homolog of Rad21. Holds Smc1 and Smc3 heads together by binding N-terminal domain to Smc3 and C-terminal domain to Smc1,
thus holding sister chromatids together during meiosis [126].

Scc3 Necessary for sister chromatid cohesion, and required for DSB repair [127]. Interacts with Smc1, Smc3 and Rec8/Rad21 in holding cohesin
ring together.

Pds5 Important for maintenance of sister chromatid cohesion in late prophase [127].

Genes encoding meiosis-specific proteins are highlighted in grey.
doi:10.1371/journal.pone.0002879.t001
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consistent with homologous recombination (and possibly meiosis)

occuring in asynchronous cells, G2/M trophozoites and pseudo-

cysts, as well as during low iron conditions and cytoadherence to

vaginal epithelial cells.

Phylogenetic inference of orthology and paralogy of
meiotic proteins

Our revised inventory of meiotic proteins that spans an additional

breadth of organisms with completely sequenced genomes allows us

to elucidate the sexual status of basal eukaryotes. We have identified

homologs of meiotic genes among organisms that may span most of

the deepest divergences among eukaryotes by using phylogenetic

inference to assess the evolutionary history of each of meiotic

protein homolog. This approach allows evaluation of the origin and

evolution of meiosis in the context of the common ancestor of

eukaryotes (Figure 2 and Table 2).

Many of the meiotic genes analyzed have homologs in

prokaryotes while others are limited to eukaryotes (Table 2).

There are prokaryotic homologs of 21 of the 29 meiotic genes (i.e.,

Figure 1. The double-strand break repair model of meiotic recombination, depicting interactions among proteins included in this
study. The names of meiosis-specific proteins are highlighted in green. Exact stoichiometry is not implied. In meiosis I, cohesins bind to sister
chromatids (A), after which double-strand DNA breaks are made by Spo11 (accessory proteins not shown) and the axial elements (Hop1) of the
synaptonemal complex are formed (B). Double strand break repair is initiated (coupled with (B) in S. cerevisiae) and Hop1 forms lateral elements of
the synaptonemal complex (C). Strand exchange proteins are attracted to the double-strand break (accessory proteins not shown) (D). The resulting
heteroduplex (E) may be resolved by crossovers, which utilize meiosis-specific proteins (F), or by gene conversion, which does not (G, proteins not
shown). This model is based primarily upon details from S. cerevisiae, but includes details from mammals for Msh4 and Msh5, and speculates on the
role of Drosophila Mei-9 (Rad1) in (F) as reviewed by [54,97–100]. Table 1 gives additional details and references.
doi:10.1371/journal.pone.0002879.g001
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Spo11, Mre11, Rad50, Rad1, Dmc1, Rad51, Mer3, Msh2-6, Mlh1-3,

Pms1, Smc1-6 are orthologs of prokaryotic Top6a, SbcD, SbcC, Ercc4,

RecA, Ski2, MutS, MutL, and Smc, respectively). Of these, Spo11,

Dmc1, Rad51, Mer3, Msh2-6, Mlh1-3, Pms1, and Smc1-6 belong to

multigene families that evolved from prokaryotic orthologs by gene

duplication in eukaryotes; Mre11, Rad50 and Rad1 are non-

duplicated genes with prokaryotic orthologs. Eight of the meiotic

genes are apparently limited to eukaryotes (i.e., Hop1, Hop2, Mnd1,

Rad52, Rad21, Rec8, Pds5, Scc3) and either arose during eukaryotic

evolution or diverged markedly beyond recognition from pro-

karyotic ancestors; all eight have experienced gene duplication

events in their eukaryotic evolutionary histories. All 29 meiotic

genes in our inventory are widespread among AFP and protists.

Figure 2 highlights the phylogenies of four of eight meiosis-

specific proteins found in T. vaginalis: Hop2, Mnd1, Spo11 and

Mer3. Hop2 and Mnd1 homologs (Figures 2A and 2B) are

apparently limited to eukaryotes. Spo11 (Figure 2C) has a

prokaryotic ortholog (Top6A) and evolved by early eukaryotic

gene duplications [49]. Mer3 (Figure 2D) also has a prokaryotic

ortholog (Ski2) and belongs to a eukaryotic gene family of DEAD-

box helicases. In these trees, the phylogenetic resolution of some

groups is limited, but our analyses clearly demonstrate orthology of

each gene (Figure 2 and Figures S1.1–S1.33 in Supporting
Information File S1) since T. vaginalis protein homologs

consistently fall into groups that include proteins that were

demonstrated to be meiosis-specific in AFP (as summarized in

Table 1). In this study, we analyze a broader phyletic distribution

of meiotic genes among eukaryotes than previously reported

[1,50].

In many cases, the broad survey of eukaryotes in this study

enabled more precise identification of orthologous meiotic genes

than previous smaller datasets permitted. The phylogeny of Hop1

orthologs rooted by distant paralogs exemplifies this improvement.

Hop1 is a meiosis-specific component of the synaptonemal

complex. In contrast to previous results [1], the current analysis

reveals the absence of a Hop1 ortholog in Drosophila, Anopheles and

Neurospora and the presence of a Hop1 ortholog in Encephalitozoon

and Schizosaccharomyces (Table 2). The absence of Hop1 in these

three sexual animal and fungal species demonstrates that meiosis is

possible without it in animals and fungi, and possibly other

organisms. In contrast, the presence of Hop1 and other meiosis-

specific genes (Spo11, Hop2, Mnd1 and Rec8) in the putatively

asexual microsporidian Encephalitozoon suggests that it may be

sexual. A suite of meiosis-specific genes (Hop1, Hop2, Mnd1 and

Dmc1) apparently missing in Drosophila, Anopheles and Neurospora (all

sexual organisms) was previously revealed as having a patchy

phylogenetic distribution [1,55]. However, our results show that

these genes are generally conserved in most other major lineages of

eukaryotes, and appear to be lost independently in different

lineages, many which are known to be sexual. Caenorhabditis,

nonetheless, is sexual and retains Hop1 homologs but lacks Hop2,

Mnd1 and Dmc1. Interestingly, Hop2 and Mnd1 interact with

Dmc1 to promote interhomolog recombination in Mus and

Saccharomyces [51,52]. The shared absence of Hop1 from Drosophila,

Anopheles and Neurospora suggests that Hop1 might also function

with this suite of interacting proteins. For complexes of interacting

proteins the evolutionarily conserved presence of the components

suggests that their interactions are also conserved. One example of

this principle is the universal presence in eukaryotes of both Mre11

and Rad50 that work together to mediate double strand break

repair (Table 2).

Where previous comparative studies of meiotic genes have been

taxonomically limited [1,50,53,54], the distribution of meiotic

gene homologs across the tree of eukaryotic life can be clarified by

studying more diverse organisms. It is now clear that Smc

homologs are ubiquitous among eukaryotes (Table 2). The MutL

homologs, Mlh2 and Mlh3 are now demonstrably widespread,

being found in AFP and protists. Although previous studies

revealed few protist orthologs of Msh4 and Msh5 [1,55] and

suggested that the genes may have evolved recently, we find them

in the genomes of several protists. Mer3 orthologs are also widely

present in AFP and protists, albeit sporadically. The presence of

protist orthologs of Msh4, Msh5 and Mer3, along with some

apparent absences (Table 2, and Malik and Logsdon unpublished

results) is readily explained by independent gene losses following

the origin of paralogs by duplication. Notably, Msh4, Msh5 and

Mer3 are concomitantly missing from Plasmodium, Drosophila and

Schizosaccharomyces, although all are sexual. Msh4 and Msh5

interact as a heterodimer to promote resolution of meiotic

Holliday junctions with crossover interference [56], in collabora-

tion with ZMM proteins including Mer3 [57,58]. While the

presence of meiosis-specific mutS homologs Msh4 and Msh5

suggests the potential for meiosis in organisms such as Trichomonas,

Trypanosoma, Entamoeba, Arabidopsis, Homo and Saccharomyces, the

absence of Msh4 and Msh5 in sexual organisms indicates that

meiosis can proceed without them. Thus, the presence of meiotic

genes supports the hypothesis of sexuality, but the absence of a

subset of genes does not exclude it.

Some meiotic genes in our survey exhibit patchy distributions

(i.e. Rad52, Msh4, Msh5, Mlh2, Mlh3, Mer3, Rad21, Rec8, Pds5 and

Scc3, see Table 2). While these genes are present in many AFP

and some protist lineages, they are absent from others, begging the

question of whether these absences are due to recent gene loss.

The conserved sister chromatid cohesin proteins Pds5, Scc3, Rec8

and Rad21 all interact in a complex with Smc1 and Smc3, which

in turn are both present in each complete genome surveyed for this

study. The absence of Rec8, Pds5 and Scc3 mainly among some

protists suggests either that other proteins have evolved in these

organisms to function with Smc1 and Smc3 during meiosis, or that

orthologs of these genes have diverged beyond current recognition,

as we previously thought for Hop1 genes from Encephalitozoon and

Schizosaccharomyces [1]. Conserved meiotic recombination genes

(e.g., Rad52, Msh4, Msh5, Mer3, Mlh2, Mlh3) may be missing in

some eukaryotes because they were dispensable in the ancestors of

Table 3. Meiotic genes duplicated recently in T. vaginalis.

Gene name # of copies % nucleotide identity

Hop2 (a, b) 2 63%

Rad50 (a, Y) 2 44%

Smc1 (a, b) 2 45%

Smc3 (a, b, c) 3 53–54%

Smc4 (a, b) 2 56%

Smc5 (a, b) 2 53%

Mlh1 (a, b, c) 3 40–46%

Mlh2 (a, Y) 2 8%

Rad51 (a, b) 2 76%

Rad21 (a, b) 2 17%

Scc3 (a, b) 2 50%

Summarized from Table S1.2 in Supporting Information File S1. All
duplicates trace to within parabasalids since their phylogenies show no
intervening lineages, with three exceptions (Smc1, Smc3, Mlh2) that can be
attributed to rapid rates of evolution.
doi:10.1371/journal.pone.0002879.t003
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Figure 2. Phylogenetic trees for meiosis-specific proteins Hop2, Mnd1, Spo11 and Mer3. All trees shown are the consensus tree
topologies determined from $700 best trees (i.e. those with the highest posterior probabilities) inferred by Bayesian analysis using alignments of
inferred proteins. Animals are indicated in red text, fungi brown, ‘Amoebozoa’ teal, ‘Archaeplastida’ in green, Alveolates plum, ‘Chromista’ purple,
‘Excavata’ blue and prokaryotes shown in black. Branches with the best support – i.e., those with 0.95 to 1.00 Bayesian posterior probabilities – have
thicker lines. Numbers at the nodes indicate Bayesian posterior probability followed by percent bootstrap support from 100 replicates of PROML. An
asterisk (*) denotes topological constraints placed upon the nodes uniting Fungi and Opisthokonts for Bayesian analysis. Scale bars represent 0.1
amino acid substitutions per site. Details for each tree and the accession numbers for all sequences are provided in Figures S1.1–S1.4 in
Supporting Information File S1. (A) Hop2 homologs, unrooted. 167 aligned amino acid sites were analyzed, this consensus topology derived
from 900 trees, a= 3.86 (2.71,a,5.37), pI = 0.014 (0.0004,pI,0.051) and lnL = 28363.01. (B) Mnd1 homologs, unrooted. 202 aligned amino acid
sites were analyzed, this consensus topology derived from 850 trees, a= 2.80 (2.18,a,3.52), pI = 0.01 (0.0005,pI,0.043) and lnL = 211589.94. (C)
Spo11 homologs, rooted with the eukaryotic Top6A paralog outgroup. 148 aligned amino acid sites were analyzed, this consensus
topology derived from 700 trees, a= 1.76 (1.34,a,2.23), pI = 0.10 (0.03,pI,0.17) and lnL = 210624.08. (D) Mer3 homologs unrooted. 610
aligned amino acid sites were analyzed, this consensus topology derived from 950 trees, a= 1.60 (1.39,a,1.83), pI = 0.04 (0.02,pI,0.06) and
lnL = 227086.67.
doi:10.1371/journal.pone.0002879.g002
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those organisms, and perhaps replaced by alternate DNA repair

machinery. However, the general conservation of meiotic genes

among diverse eukaryotes is prima facie evidence that they are

ancient and were present in the common ancestor of eukaryotes,

even if they may be prone to lineage-specific losses or duplications

during eukaryotic evolution.

Evidence for meiosis in T. vaginalis and other eukaryotes
Although T. vaginalis is generally considered to be asexual, our

inventory of meiotic genes suggests that the capacity for meiosis

was present in the last common ancestor of T. vaginalis and other

eukaryotes. Indeed, the presence of 27 of 29 components of the

meiotic machinery in T. vaginalis suggests that the machinery for

meiotic recombination was well established before the divergence

of Parabasalids and Diplomonads (e.g. Giardia). It will be necessary

to determine when in the T. vaginalis life cycle meiosis might occur

and to discern if T. vaginalis uses standard two-step meiosis or a

putative one-step meiosis (as was described in other Parabasalids

[29,30,59]). Such one-step meiosis (if true; see refs. [8,60]) has

been suggested to be ancestral [28–30,59], but could also represent

a derivative form of two-step meiosis. Since meiosis in hypermas-

tigotes is induced in response to an insect hormone, ecdysone [29],

meiosis in T. vaginalis might be similarly induced in response to

hormones of its animal hosts. Such conditions need to be explored

in detailed cytological studies of cell division in trichomonads.

A goal in searching for meiotic gene homologs in T. vaginalis was

also to expand the previous inventory of meiotic genes [1,55] to other

diverse eukaryotes. Organisms included in this expanded phyloge-

nomic inventory of meiotic genes include some in which sexual cycles

have not been observed [61]: Cryptosporidium (an alveolate), Entamoeba

(an amoebozoan), Cyanidioschyzon (a red alga), Encephalitozoon (a

microsporidian, derived from Fungi) and Giardia (a diplomonad).

We found orthologs of meiosis-specific genes in the genomes of each

of these organisms, indicating that they all may have the potential to

undergo meiosis, or that they recently diverged from a sexual

ancestor. Meiosis is well known among some alveolates such as

Plasmodium and Tetrahymena, included here with Cryptosporidium.

Entamoeba has homologs of six of nine meiosis-specific genes,

suggesting that it may be able to initiate double-strand breaks and

promote interhomolog recombination and Holliday junction resolu-

tion with crossover interference. Orthologs of Mre11, Mlh3 and

meiosis-specific Hop2 genes in Entamoeba and Dictyostelium, and of

meiosis-specific Hop1 and Msh4 genes in Tetrahymena were recently

reported to be absent [62,63] according to tBLASTx and other

searches; however, our results of PSI-BLASTp searches and

phylogenetic analyses revealed the presence of these genes. Red

algae other than Cyanidioschyzon exhibit meiosis, as evident from

1.2 billion year old fossilized rhodophyte remains [64]. Homologs of

several meiosis-specific genes, including Spo11, Hop1, Hop2, Mnd1,

Dmc1 and Msh5, were reported in the genome sequence of the green

alga Ostreococcus tauri, suggesting that it has a hitherto undescribed

sexual cycle [65]. Encephalitozoon, which is derived from a sexual

lineage (Fungi [66]), has homologs of several meiosis-specific genes

and only appears to be missing Dmc1, Msh4 and Msh5 among the

meiosis-specific genes in our inventory. This may either indicate a

hitherto unseen sexual cycle in Encephalitozoon or be representative of a

secondarily asexual state, given that meiosis also occurs in some

diplokaryotic microsporidia [67]. Giardia intestinalis was previously

found to contain five of seven meiosis-specific genes surveyed [1]; we

have determined here that Giardia intestinalis has one of two additional

meiosis-specific genes (Mer3, but not Rec8). Recent analyses indicate

that Diplomonads and Parabasalids are closely related [12–16]. The

presence of homologs of some meiotic genes in Giardia intestinalis (and

the absence of others) may suggest that the parasexual process in

which some of these genes were recently shown to act [4] may

represent an intermediate or primitive form of recombination that

evolved prior to the origin of those missing meiotic genes. However,

given the specific relationship of Giardia to Trichomonas and the

presence of most of these meiotic genes in T. vaginalis (27 of 29), it is

more likely that Giardia intestinalis secondarily lost some meiotic genes

and its parasexual homologous recombination [4] is derived from a

more typical meiotic recombination. In sum, this inventory of meiotic

genes suggests the potential for meiosis in Cryptosporidium, Entamoeba,

Cyanidioschyzon, Encephalitozoon and Giardia.

Finally, several other organisms among AFP and protists that are

known to be sexual were also included in this inventory of meiotic

genes (Table 2). Conserved homologs of meiotic genes are present

in the stramenopiles Thalassiosira and Phytophthora. The conserved

meiotic genes found in Trypanosoma brucei and Trypanosoma cruzi and

the recently discovered evidence for genetic exchange in vitro in these

organisms [68,69] together support evidence for a sexual cycle. We

also find that the meiotic genes in Saccharomyces are conserved in

other fungi, though Gibberella (and possibly, Magnaporthe) is missing

the same set of genes that are also absent in its close relative,

Neurospora. The meiotic genes found in mammals are generally

conserved in other vertebrates, as well as invertebrates. Notably,

genes such as Mnd1 and Dmc1 that are found in vertebrates but

missing in Drosophila and Caenorhabditis are present in Schistosoma and

Bombyx, which suggest multiple independent lineage-specific losses

of these genes during the evolution of animals. Plants and the green

alga Chlamydomonas included in our analysis also appear to share a

similar complement of meiotic genes.

Of the nine meiosis-specific genes included in our study, only Rec8

—the meiosis-specific paralog of the Rad21 cohesin— cannot be

found in any protists (Table 2). Additional data from other protist

lineages will be required to ascertain when Rec8 and Rad21 diverged.

In any case, Rad21 may perform the meiotic role of Rec8 for

homologous chromosome cohesion in sexual protists: although

Rad21 is not meiosis-specific, it has a critical meiotic role, which in

the absence of Rec8 may be sufficient for meiosis [70,71].

Conclusions
We found 27 of 29 meiotic genes in Trichomonas vaginalis, and 21

of these 29 genes are also present in Giardia intestinalis. These 27

meiotic genes must have been present in the common ancestor of

Trichomonas and Giardia, and given the highly diverged positions of

these lineages among eukaryotes [12–16], each of the genes also

must have been present in the common ancestor of all eukaryotes.

The conservation of this inventory of meiotic genes across such a

diverse group of sexual and putatively asexual eukaryotes allows us

to infer that the presence of these genes – particularly the meiosis-

specific genes – in putatively asexual eukaryotes indicates the

potential for meiosis, at least in their recent ancestors.

The widespread presence of the meiotic genes indicates that the

core meiotic machinery is largely universal among extant

eukaryotes. Our results show that a substantial fraction of the

meiotic machinery has evolved early in eukaryotes (Table 2). The

evolution of each of the components of the meiotic machinery early

during eukaryotic evolution implies that the interactions among the

proteins included in our inventory also predate the divergences of

the organisms included here. The proteins inventoried here are

involved in creating meiotic double-strand DNA breaks and in

subsequent meiotic DNA repair, crossing over, and cohesion of

sister chromatids and homologous chromosomes, which when

found together are compelling evidence for their potential

interaction in processes resembling meiotic recombination. We

can use this inventory of conserved meiotic genes as a ‘‘meiosis

detection toolkit’’ with which to look in the genomes of putative
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asexuals for homologs of the meiotic machinery. This makes useful a

priori data with which to further investigate the occurrence of sexual

or parasexual processes in the life cycles of organisms for which sex

has not been observed, which may have important ecological and

epidemiological implications for some organisms such as abundant

or parasitic eukaryotic microorganisms.

Materials and Methods

Database mining
Searches through the literature and keyword searches of the

National Center for Biotechnology Information (NCBI) protein

database revealed homologs of 29 meiotic proteins from various

organisms. These protein sequences were used as queries for

BLASTp, PSI-BLASTp and tBLASTn searches [72] of the NCBI

nonredundant and genomic sequence databases between October

2003 and May 2006. Similarly, meiotic protein homologs were

retrieved from the protist genome sequence databases of Giardia

intestinalis ([73,74], http://www.mbl.edu/Giardia), Trypanosoma

brucei [75], Trypanosoma cruzi [76], Entamoeba histolytica [77],

Tetrahymena thermophila [78] and Trichomonas vaginalis strain G3 [9]

at The Institute for Genomic Research (TIGR, www.tigr.org/tdb/

euk), Cyanidioschyzon merolae ([79], http://merolae.biol.s.u-tokyo.ac.

jp/blast/blast.html), and Thalassiosira pseudonana [80], Phytophthora

ramorum and Phytophthora sojae [81] and Chlamydomonas reinhardtii [82]

at the Joint Genome Institute (JGI, http://genome.jgi-psf.org/) by

either BLAST or keyword searches of annotated proteins. Between

November 2003 and May 2006, unannotated nucleotide sequenc-

es of meiotic genes were extracted from the genome of Trichomonas

vaginalis strain G3 [9] by tBLASTn searches of the database of

unannotated sequences (http://tigrblast.tigr.org/er-blast/index.

cgi?project = tvg) with meiotic protein homologs from other

eukaryotes as the queries. Once the sequences for each T. vaginalis

gene (Table 2) were mined from the database, putative start and

stop codons were inferred on the basis of the inferred translation

with reference to pairwise comparisons (BLASTx of GenBank) and

multiple sequence alignments of homologous proteins. Sequences

were assembled and putative open reading frames annotated using

SequencherTM 4.6 (Genecodes, Ann Arbor MI, USA). We used

meiotic gene homologs from T. vaginalis strains NIH-C1 or G3 as

queries to search public databases of T. vaginalis strain G3

expressed sequence tags (ESTs) by BLASTn (http://cgbc.cgu.edu.

tw/est/, now at http://www.trichdb.org/trichdb) and dbEST at

NCBI http://www.ncbi.nlm.nih.gov/blast/) in August and Octo-

ber 2005 using BLASTn e-value cutoffs zero to 2185. T. vaginalis

meiotic genes were also mapped back to whole genome shotgun

(WGS) scaffolds at NCBI by BLASTn in August 2005. Vertebrate

orthologs of Mer3 were identified by BLASTp searches of NCBI

in May 2007. Pairwise comparisons of the nucleotide sequences

and inferred translations of T. vaginalis duplicated genes were made

using the LAlign and PRSS3 programs (http://www.ch.embnet.

org/software/LALIGN_form.html [83] and http://www.ch.emb-

net.org/software/PRSS_form.html [84,85]).

PCR amplification
Amplification primers designed from the Trichomonas vaginalis

strain G3 genome project sequences were used to amplify products

for regions including the entire gene of interest and roughly 100–

200 nucleotides of flanking sequence on either end when possible

(Table S1.2 in Supporting Information File S1). In some

cases, gene fragments were discovered in the first release of the

genome (November 2003) and PCR was used to link the fragments

together. Miklós Müller (Rockefeller University, New York)

generously provided genomic DNA from Trichomonas vaginalis

strain NIH-C1. Genes were amplified from this DNA by PCR

with Eppendorf MasterTaqTM DNA polymerase (Hamburg,

Germany) or Stratagene Easy-ATM DNA polymerase (La Jolla

CA, USA), as recommended by the manufacturers, with 10–50 ng

DNA, 250 mM each dNTP (Invitrogen, Carlsbad CA, USA) and

1 mM each primer (synthesized at Integrated DNA Technologies

(IDT, Coralville IA, USA)) per reaction. Reaction conditions were

95uC for 3 minutes followed by 35–40 cycles at 92uC for 40–

90 seconds, 35–55uC for 60–90 seconds and 72uC for 90–

120 seconds+6 seconds/cycle, then ending at 72uC for 5–

7 minutes. PCR products were fractionated and isolated from

1% low melt: 1% NuSieveTM GTG agarose (Fisher [Pittsburgh

PA] and BioWhittaker [Walkersville MD]) in 16 TAE buffer.

DNA bands were excised from the gel and cloned directly into the

pCR4.0-TOPOTM vector (Invitrogen) according to the manufac-

turer’s instructions. PCR screening with T3 vs T7 primers was

used to identify putative clones by the size of their plasmid inserts,

cycling at 94uC for 2 minutes followed by 30 cycles at 94uC for

1 minute, 57uC for 1 minute and 72uC for 2–3 minutes, then

ending at 72uC for 5 minutes (reagents from Invitrogen, Promega

[Madison WI, USA] and Fisher) [86]. At least two clones per PCR

product were isolated (Eppendorf FastPlasmid KitTM) and

sequenced (ABI BigDyeTM 3.1 and ABI 3730TM, Applied

Biosystems, Foster City CA, USA) on both strands using M13

forward/reverse and gene-specific primers (Invitrogen and IDT).

All sequences have been deposited in GenBank, accession

numbers DQ321757–DQ321785 and DQ485348, as listed in

Table S1.2 in Supporting Information File S1. We used the

TIGR database predicted translations of July 2005 for Smc1, Smc2,

Smc3, Smc4 and Smc5 homologs from T. vaginalis strain G3 for our

analyses and did not sequence these from strain NIH-C1.

Phylogenetic analysis
Phylogenetic inference of the evolutionary relationships of each

set of putative meiotic proteins present in T. vaginalis and its

homologs obtained from public databases was used to assign

orthology to the T. vaginalis meiotic protein homologs. Multiple

alignments of amino acid sequences from complete proteins were

initially constructed using ClustalX 1.83 [87], then inspected and

adjusted manually using MacClade 4.08 [88]. Only unambigu-

ously aligned amino acid sites were used for phylogenetic analyses.

For the alignment of eukaryotic and prokaryotic MutS homologs,

sites were selected with GBLOCKS ([89], http://molevol.ibmb.

csic.es/Gblocks_server/index.html). Phylogenies are unrooted and

also rooted by outgroups when possible using either non-meiotic

paralogs in a eukaryotic multigene family, or prokaryotic

orthologs. Additional analyses in which systematically problematic

sequences were removed were also performed (not shown).

MrBayes3.0b4 [90,91] was used for analyses of each meiotic

protein alignment. MrBayes was run for 106 generations, with four

incrementally heated Markov chains, a sampling frequency of 103

generations and the temperature set at 0.5. Among-site substitu-

tion rate heterogeneity was corrected using an invariable and eight

gamma-distributed substitution rate categories and the WAG

model for amino acid substitutions [92], abbreviated herein as

WAG+I+8G. The consensus tree topology, the arithmetic mean

log-likelihood (lnL) for this topology, and branch support were

estimated from the set of sampled trees with the best posterior

probabilities. The number of trees included in this set varied

among analyses. Means and 95% confidence intervals for the

gamma distribution shape parameter (a) and the proportion of

invariable sites (pI) were also estimated for each alignment that

was analyzed. These analyses were repeated in MrBayes3.1.2 for

the Hop2, Mnd1 and Spo11 datasets with two topological
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constraints that group fungi and opisthokonts (animals+fungi).

Bootstrap support for the Hop2, Mnd1, Spo11, Mer3 and Msh

datasets was estimated with PROML (with SEQBOOT and

CONSENSE in PHYLIP 3.6a3 [93]) for 100 bootstrap replicates

using the JTT substitution model [94] and eight categories of

gamma-distributed and invarying sites (abbreviated herein as

JTT+I+8G), with the coefficient of variation calculated from the

alpha parameter estimated by MrBayes3.0b4 for each dataset.

Prior to the Bayesian analyses shown (Figure 2 and Figures
S1.1–S1.33 in Supporting Information File S1), preliminary

analyses (results not shown) were carried out using parsimony and

distance methods for the purposes of monitoring the progress of

the project and for examining partial sequence data

(PAUP*4.0b10 [95] and SEQBOOT, PROTDIST, NEIGHBOR

and CONSENSE in PHYLIP 3.6a3 [93]). Using Tree-Puzzle 5.2

[96] we generated maximum-likelihood distance matrices in which

among-site substitution rate heterogeneity was corrected using the

JTT+I+8G model (results not shown). Neighbor-joining trees were

constructed using NEIGHBOR.

Supporting Information

Supporting Information File S1

Found at: doi:10.1371/journal.pone.0002879.s001 (0.96 MB

PDF)
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