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Abstract: Resveratrol, a plant-derived polyphenol, is an intensively studied compound with widely
documented positive effects on health. Antioxidant activity is the property most often mentioned
as responsible for its beneficial effects. Therefore, since the adverse effect of ionizing radiation
is primarily related to the induction of oxidative stress, the question arises of whether the use of
resveratrol could have a radioprotective effect. This paper summarizes the data on the cytoprotective
activity of resveratrol and pieces of evidence for the potential interplay between response to radiation
and resveratrol activity. The paper focuses on changes in the metabolic profile of cells and organisms
induced by ionizing radiation and exposure to resveratrol. The comparison of metabolic changes
induced by both factors provides a rationale for the potential mechanism of the radioprotective effects
of resveratrol.
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1. The Cytoprotective Activity of Resveratrol

Research on new substances that may have beneficial effects on human health is
the objective of numerous studies. Natural compounds, commonly present in certain
amounts in the standard diet, are a frequent subject of studies focused on their use in the
prevention or treatment of various diseases. Among numerous plant-derived compounds,
polyphenolic compounds are of great interest. (Poly)phenolic compounds have various
functions in plants: they can be fragrances and colorants, poisons and feeding deterrents,
allelopathic compounds, signaling molecules, structural components, and finally antifungal
and antimicrobial agents [1]. Extensive literature data suggest that consumption of plant-
derived polyphenols may have beneficial effects in reducing the development of many
diseases, including cardiovascular, neurodegenerative, as well as cancer, which is most
likely related to the antioxidant properties of this group of compounds [1–3]. There are
over eight-thousand known polyphenolic compounds, divided into classes based on the
structure of the carbon skeleton. The main classes include phenolic acids, flavonoids,
stilbenes, tannins, and lignans [1,4].

Resveratrol naturally found in fruits, especially grapes, is probably the most-explored
plant secondary metabolite ever. It belongs to the stilbene class and, like most stilbenes, is a
phytoalexin synthesized by plants in response to damage or pathogens [4–6]. Numerous
studies indicate that administration of resveratrol may result in reduced risk of cardio-
vascular disease (the so-called “French Paradox”) and obesity, exert anti-inflammatory,
neuroprotective, and anti-aging effects, and may even reduce cancer risk and support
cancer therapy [5,7–9].

Various cellular mechanisms putatively contribute to the beneficial effects of resvera-
trol. This includes antioxidant activity with an increase in the activity of enzymes responsi-
ble for counteracting oxidative stress (including glutathione peroxidase, heme oxygenase,
and superoxide dismutase) [10–12]. Resveratrol also possesses the ability to alter the ex-
pression of numerous proteins, of which the most significant seems to be 5’ AMP-activated
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protein kinase (AMPK) and Sirtuin1 [13–17], i.e., proteins associated with lipids metabolism,
ATP production, and overall regulation of cellular defense, including the cell cycle arrest
in stress conditions [14,15,18,19]. Researchers also report the ability of resveratrol to in-
crease the expression of NO synthase (eNOS), which results in vasodilation, reduction
of hypoxia, and blood pressure [6,12,17]. Stone et al., suggest that the protective effect
of resveratrol paradoxically results from its toxic effect on cells: exposure to low doses
leads to the acquisition of stress-induced resilience resulting in the increased efficiency
of self-repair mechanisms and overall improvement in health and longevity [20]. Such a
statement is consistent with reports suggesting that resveratrol may act in hormesis. Lower
doses (associated with oral intake) have beneficial effects, but at higher doses (which are
achievable only in in vitro studies because of its pharmacokinetics) resveratrol displays
toxic effects. Such mechanisms of action may be related to its action as a topoisomerase II
poison [21,22].

2. Resveratrol Is a Radioprotective Compound

The primary mechanism of toxicity of ionizing radiation is its ability to induce ox-
idative stress in tissues, which directly and indirectly leads to damage to cell structures
resulting in their improper functions [11,23,24]. The response of the biological system to
ionizing radiation can be classified into one of three categories depending on the observed
effect. (1) Radiosensitivity is directly attributed to cell damage and death, usually after
exposure to high doses of radiation. (2) Radiosusceptibility describes the susceptibility of
tissue to radiation-induced cancers, the appearance of which is associated with cellular
transformation and genomic instability due to mis-repaired DNA damage. (3) Radiode-
generation is associated with accelerated senescence due to unrepaired and accumulating
DNA damage, which, however, does not induce (instant) cell death or cancer transfor-
mation [25,26]. This third type of response seems to be involved in the phenomenon of
radiation-induced late cardiotoxicity. Even relatively low doses of radiation, with no imme-
diate effect on biological system dysfunction, can increase the risk of cardiac complications,
usually ischemic heart disease, although the time between exposure and the onset of clinical
symptoms can be very long [27–29]. The significance of this phenomenon is growing due
to increased risk of exposure from medical as well as environmental and occupational
sources and increased life expectancy, which in turn translates into an increased probability
of detecting the late effects of radiation [27,28].

At low, “physiological” concentrations, reactive oxygen species (ROS) serve multiple
functions: they act as signaling molecules, regulate physiological processes, participate in
signal transduction, and activate ion channels and pathways involved in the acquisition of
stress-induced resilience [30]. However, the excess of free radicals leads to oxidative stress,
causes inflammatory reactions, lipid peroxidation, damage to cell structures (in particular
cell membranes), and eventually cell death. The literature frequently highlights the damage
to mitochondrial function and structure caused by ionizing radiation and ROS, which in
the case of organs with high energy demands (such as the heart) can affect the proper
functioning of the whole system [31].

Because one of resveratrol’s mechanisms of action is its antioxidant activity, researchers
seek to answer the question of whether it may also have radioprotective properties. In
a study on bone marrow cells isolated from irradiated mice, Carsten et al., showed that
administration of resveratrol reduces the number of chromosomal lesions induced by radi-
ation [19]. A similar result was obtained by Zhang et al., who observed reduced oxidative
stress after total body irradiation (TBI) of mice and significant recovery of hematopoi-
etic progenitor cells and hematopoietic stem cells in bone marrow after administration of
resveratrol [32]. Furthermore, when mice were fed with resveratrol in doses equivalent
to those taken orally as pills by humans (7 and 28 mg/kg), it led to a reduction in the
number of micronuclei induced by radiation in reticulocytes derived from peripheral blood
and bone marrow [11]. In a study on lymphocytes isolated from the blood of irradiated
mice, resveratrol reduced the amount of DNA damage evaluated by comet assay [33].
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Chromosome protection against radiation-induced damage was also observed in human
lymphocytes isolated from irradiated blood samples after incubation with resveratrol at
a dose of 2.2 µM [21]. However, the beneficial effect was no longer seen when a higher
dose of resveratrol was administered (above 20 µM) [22], which may be related to the
resveratrol influence on histone deacetylase activity by modification of Sirt1 expression.
At a dose of 10 µM, resveratrol exerted a protective effect on irradiated mouse embryonic
stem cells by improving their viability and enhancing DNA damage repair [34]. Simsek
et al., showed that “physiological” doses of resveratrol (10 mg/kg) protect rat ovaries
from radiation-induced damage, probably by stimulating the body’s natural antioxidant
mechanisms [35]. The protective effect of resveratrol was also obtained in irradiated mouse
testes [36]. Moreover, administration of resveratrol at 40 mg/kg/d protects the intestines
from radiation damage, which was attributed to the superoxide dismutase 2 activation,
most likely in a Sirt1-dependent manner [16]. Resveratrol also possesses neuroprotective
activity, as demonstrated by Prager et al., who observed a positive effect of resveratrol on
the number of nestin-positive neural progenitor cells following irradiation [37]. Table 1
summarizes the results of studies on the radioprotective activity of resveratrol.

Table 1. An overview of studies on the radioprotective effects of resveratrol.

Research Model Resveratrol Dose Radiation Dose The Observed Effect of Resveratrol Reference

bone marrow cells from
CBA/CaJ

irradiated mice

100 mg/kg/day from
2 days before the

irradiation until the
end of the experiment

3 Gy, γ radiation

2.8-fold reduction of total
chromosome aberrations, including
gaps, dicentrics, and Robertsonian
translocations for the resveratrol +
radiation group compared to the

radiation group

[19]

peripheral blood cells
and bone marrow cells

from irradiated
C57BL/6-Ly-5.1 mice

20 mg/kg/day from
7 days before to 30 days

after irradiation

6.0 Gy or 7.2 Gy, 137 Cs
irradiator, TBI

increased survival after TBI,
decreased acute and long-term bone
marrow damage, reduced oxidative
stress after exposure to 7.2 Gy in the

resveratrol group

[32]

blood and bone
marrow from

irradiated Swiss mice

7 mg/kg/day or
28 mg/kg/day for

2 weeks

5 Gy and 10 Gy total
doses in 0.5 Gy and

1 Gy fractions,
X-radiation, TBI

reduction in the number of
micronuclei in reticulocytes in the

resveratrol + radiation group when
compared to the radiation group

[11]

peripheral blood
lymphocyte from

irradiated NMRI mice

50 mg/kg or
100 mg/kg 2 h

before irradiation
2 Gy, γ radiation

reduction of radiation-induced DNA
damage (assessed by comet assay) in

the resveratrol group
[33]

human peripheralblood
lymphocytes

2.2, 22 or 220 µM 1 h
before irradiation 2 Gy γ radiation

reduction in chromosome
aberrations after irradiation with

maximal protection observed for 2.2
µM dose; however, resveratrol

induced chromosomal aberrations in
the absence of irradiation

[21]

human peripheral
blood lymphocytes

20 µM or 40 µM 3 h
before irradiation

0.5 Gy or 1 Gy,
X-radiation

in the 40 µM resveratrol group
increased level of dicentric

chromosomes induced by radiation;
resveratrol alone did not induce
DNA or chromosome damage

[22]

mouse embryonic
stem cells

10 µM 48 h before
irradiation 5 Gy, X-radiation

improvement of the viability of
irradiated cells and acceleration of

DNA damage repair
[34]
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Table 1. Cont.

Research Model Resveratrol Dose Radiation Dose The Observed Effect of Resveratrol Reference

ovaries from irradiated
Wistar rats

10 mg/kg or
100 mg/kg 24 h before

irradiation
720 cGy, photon, TBI

increased follicle count in ovaries
after irradiation and increase of

antioxidant enzymes activity in the
resveratrol group

[35]

testes from irradiated
NMRI mice

100 mg/kg/day for
two days before

irradiation
2 Gy, γ radiation, TBI

reduction of spermatogenic arrest,
thickening of the basal lamina,
decreased sperm density and

vacuolation in the resveratrol group;
resveratrol increased atrophy of

seminiferous tubules

[36]

small intestines of
irradiated

C57BL/6 N mice

40 mg/kg/day1 day
before and 5 days after

irradiation

7 Gy, 137 Cs irradiator,
partial-body irradiation

normalization of the intestinal cell
morphology in irradiated mice

(enhanced regeneration of intestinal
crypt cells, increased villi length,

shorter basal lamina length)

[16]

organotypic entorhinal–
hippocampal slice
cultures generated

from nestin-CFPnuc
C57BL/J6 mice

15 µM 2 h before
irradiation until 48 h

after irradiation

4.5, 8, 12, or 16 Gy,
X-radiation

increased number of nestin-positive
neural progenitor cells in the

resveratrol + radiation group when
compared to the radiation group

[37]

Noteworthy, the potential cardioprotective activity of resveratrol is also addressed.
Questions related to the putative radioprotective activity of resveratrol in cardiac tissue
may be of great importance since even low doses of radiation, though considered harmless
for decades, may have adverse health effects due to increased risk of cardiovascular
malfunction [38]. However, surprisingly little is known about the cardioprotective potential
of resveratrol when radiation is the harmful factor. Only a few studies analyzed the effect
of resveratrol (or resveratrol-containing mixtures) on cardiovascular damage induced
by ionizing radiation. This includes the study of DeFreitas et al., who described the
effect of black grape juice on heart damage after total body irradiation on rats [24]. The
authors have found that supplementation with black grape juice significantly reduced
lipid peroxidation and mitochondrial damage in hearts after acute irradiation. However,
because black grape juice is a mixture of several components with documented biological
activity (including resveratrol, quercetin, rutin, caffeic and gallic acids, and catechin), it is
impossible to conclude whether the protective effect was the result of a single compound
(e.g., resveratrol) or a mixture.

3. Metabolomics and Radiation-Induced Changes in Cellular Metabolism

Metabolomics is a technique that allows the identification and quantitative measure-
ment of metabolites in biological systems. It is one of the most effective methods to detect
cellular response to various endogenous and exogenous (environmental) factors, including
ionizing radiation [39]. Several metabolomics studies showed that even putatively harmless
doses of radiation (up to 2 Gy) induce molecular changes that affect the metabolic profile. In
general, radiation-induced changes involve disturbances in energy production (likely due
to radiation-induced damage to mitochondria), lipid metabolism, and protein degradation.
Moreover, levels of metabolites associated with oxidative stress and inflammation also
change in irradiated tissues [31].

The analysis of radiation-altered metabolites allows the identification of specific
metabolic pathways affected by radiation exposure. Table 2 summarizes available infor-
mation about metabolic pathways whose changes were detected in different experimental
models. In general, alterations in glutathione metabolism, amino acid metabolism, tau-
rine/hypotaurine metabolism, and glyoxylate/dicarboxylate metabolism are the most
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frequent in irradiated cells and tissues. Moreover, disruption of the citrate cycle (TCA cycle)
and lipid metabolism is usually observed in irradiated organisms. The detailed information
on radiation-related changes in cellular metabolism could be found in other review papers
(including [31]).

Table 2. Radiation-induced modulation of metabolic pathways. Pathways were identified using the
MetaboAnalyst 5.0 software based on radiation-affected metabolites.

Experimental Model Radiation Dose and
Experimental Design Affected Metabolic Pathway Reference

murine liver
3 Gy and 7.8 Gy,

proton and gamma,
4 and 11 days

GSH metabolism; Ala/Asp/Glu metabolism;
Gly/Ser/Thr metabolism; TCA cycle;

Glycerophospholipid metabolism; Pyruvate metabolism
[40]

rat jejunum, spleen, liver
and plasma

2 Gy and 6 Gy X-ray, 1,
2, and 3 days

Gln/Glu metabolism; Phe/Tyr/Trp biosynthesis; Taurine
and hypotaurine metabolism; Ala/Asp/Glu metabolism;

GSH metabolism; Phe metabolism; Gly/Ser/Thr
metabolism; Glyoxylate and dicarboxylate metabolism;

Arg biosynthesis; TCA cycle; Arg/Pro metabolism;
Glycerophospholipid metabolism; Primary bile

acid biosynthesis

[41]

cardiomyocytes 2 Gy, photons, 2 days

Taurine and hypotaurine metabolism; Gln/Glu
metabolism; GSH metabolism; Gly/Ser/Thr metabolism;
Ala/Asp/Glu metabolism; Glyoxylate and dicarboxylate

metabolism; Arg biosynthesis;
Glycerophospholipid metabolism

[42]

murine hearts 2 Gy, photons, 2 days,
20 weeks

Gln/Glu metabolism; Phe/Tyr/Trp biosynthesis;
Ala/Asp/Glu metabolism; Gly/Ser/Thr metabolism;

Glyoxylate and dicarboxylate metabolism; Arg
biosynthesis; GSH metabolism; Inositol phosphate

metabolism; Tyr metabolism

[43]

murine hearts 2 Gy, photons,
20 weeks Glycerophospholipid metabolism; Lipids metabolism [44]

whole mice, 31P NMR
MRI 7 Gy, X-ray, 0–14 days Arg/Pro metabolism; Gly/Ser/Thr metabolism [45]

murine urine 8 Gy, X-ray, 7 days

Taurine and hypotaurine metabolism; TCA cycle;
Ala/Asp/Glu metabolism; Butanoate metabolism;

Gly/Ser/Thr metabolism; Gln/Glu metabolism; Phe
metabolism; Arg biosynthesis; Propanoate metabolism;

Glyoxylate and dicarboxylate metabolism;
Glycerophospholipid metabolism; Arg/Pro metabolism;

Primary bile acid biosynthesis

[46]

fibroblasts 1 Gy and 5 Gy, gamma,
1, 2, and 3 days

Lipids metabolism; Phe/Tyr/Trp biosynthesis; Phe
metabolism; GSH metabolism; Arg/Pro metabolism;
Glycerophospholipid metabolism; Arg biosynthesis;

Aminoacyl-tRNA biosynthesis; Ubiquinone and another
terpenoid-quinone biosynthesis; Pantothenate and CoA

biosynthesis; Ether lipid metabolism; Gly/Ser/Thr
metabolism; Cys/Met metabolism; Trp metabolism;

Tyr metabolism

[47]

fibroblasts, B
lymphoblastoid cells

0.02 Gy, 0.1 Gy, and
1 Gy, X-ray, 1 and 10 h. Purine metabolism; Cys/Met metabolism [48]

murine urine 1.1 Gy and 4.4 Gy,
X-ray, 2 days

intermediates in the Trp metabolism and Ile catabolism;
TCA cycle; Pyruvate metabolism;

Glycolysis/Gluconeogenesis; Ala/Asp/Glu metabolism;
Glyoxylate and dicarboxylate metabolism;

Cys/Met metabolism

[49]
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Table 2. Cont.

Experimental Model Radiation Dose and
Experimental Design Affected Metabolic Pathway Reference

murine liver 8.5 Gy, gamma, 1 and
4 days

Lipids metabolism; GSH metabolism; Porphyrin and
chlorophyll metabolism; Pyrimidine metabolism;

Glycerophospholipid metabolism; Primary bile acid
biosynthesis; Purine metabolism

[50]

murine intestines 2 Gy or 1.6 Gy, gamma
or heavy-ion, 2 months

Phe/Tyr/Trp biosynthesis; Phe metabolism;
Ala/Asp/Glu metabolism; beta-Ala metabolism; His

metabolism; Pyruvate metabolism; GSH metabolism; Trp
metabolism; Pyrimidine metabolism;

Glycolysis/Gluconeogenesis; Pantothenate and CoA
biosynthesis; TCA cycle

[51]

bone marrow, ileum, liver,
muscle, lung, serum, urine

of mice
6 Gy, gamma, 12 h

Gln/Glu metabolism; Taurine and hypotaurine
metabolism; Phe/Tyr/Trp biosynthesis; GSH metabolism;

Ala/Asp/Glu metabolism; Phe metabolism; Purine
metabolism; Arg biosynthesis; Pyrimidine metabolism;

Arg/Pro metabolism; Glycerophospholipid metabolism;
Amino sugar and nucleotide sugar metabolism; Primary

bile acid biosynthesis; Pentose and glucuronate
interconversions

[52]

urine and serum of
rhesus monkeys

4 Gy, gamma, up to
60 days

Phe/Tyr/Trp biosynthesis; TCA cycle; Phe metabolism;
Glyoxylate and dicarboxylate metabolism [53]

GSH—glutathione; CoA—coenzyme A; amino acids; Ala—alanine; Arg—arginine; Asn—asparagine; Asp—
aspartate; Cys—cysteine; Gln—glutamine; Glu—Glutamate; Gly—glycine; Ile—isoleucine; Met—methionine;
Phe—phenylalanine; Pro—proline; Ser—serine; Tyr—tyrosine, Trp—tryptophan.

4. Resveratrol-Induced Changes in Cellular Metabolism

The vital importance of radiation-affected metabolic pathways it is important to ad-
dress the question: what is the influence of resveratrol on cellular metabolism? However,
the actual effect of resveratrol on the metabolism of cells and tissues remains a poorly
studied field. The knowledge of mechanisms of radiation injury suggests that the potential
radioprotective effect of resveratrol would likely involve the protection of mitochondrial
function and energy metabolism. Hence, one might expect that the resveratrol administra-
tion would affect the metabolites associated with increased efficiency of energy production
or improved antioxidative mechanisms since such changes will potentially antagonize the
toxic effects of radiation.

The few papers addressing this topic focus primarily on rodents. Mass spectrometry
of plasma from rats subjected to trauma-hemorrhage (TH) revealed that resveratrol ad-
ministration improves energy metabolism and reduces protein degradation. The specific
changes included an increase in carnitine and a decrease in acetylcarnitine, butyrylcar-
nitine, trimethyl lysine, pipecolic acid, 3-ketobutyrate, 3-hydroxybutyrate, lactate, and
citrate levels in TH with resveratrol supplementation group when compared to TH only
group [54]. Another study in rats identified changes in the urinary metabolites using NMR
spectroscopy. Within the first 12 h after resveratrol treatment, a decrease in hippurate, gly-
coproteins, taurine pantothenate, 2-oxoglutarate, alanine, creatinine, phenyl acetyl glycine,
and trimethylamine N-oxide was observed, while levels of dimethylglycine and proline-
betaine increased. Later on, 24 h after resveratrol administration, changes in metabolic
profile were reduced and included a decrease in levels of hippurate and 2-oxoglutarate,
as well as an increase in dimethylglycine, transaconitate, and taurine. Observed changes
were linked to the resveratrol influence on the intestinal microbiome and associated with
the reduction of oxidative stress and inflammation [55]. Another in vivo study addressed
metabolite profiles in abdominal muscles of mice fed with a high-fat diet complemented
with resveratrol. Mass spectrometry analysis revealed that resveratrol treatment influenced
carbohydrate, amino acid, and lipid metabolisms (affected metabolites were involved in
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galactose, alanine, aspartate, glutamate, glyoxylate, and dicarboxylate metabolism). Note-
worthy, reduced lipid accumulation was also observed in animals whose high-fat diet was
complemented with resveratrol, which suggested the potential of resveratrol to protect
against the development of atherosclerosis [56].

A particularly interesting human study explored the effects of resveratrol on metabolic
profile in men with metabolic syndrome [57]. After 4 months of resveratrol supplemen-
tation, metabolic profiles of blood, urine, adipose tissue, and skeletal muscle tissue were
measured using mass spectrometry. Changes in steroid hormones, sulfated androgen
precursors, and long-chain saturated, monounsaturated, and polyunsaturated fatty acids
were the most pronounced after resveratrol administration. The authors suggested that the
observed changes may indicate the ability of resveratrol to influence the gut microbiome
and to stimulate the conversion of fatty acids (mainly alpha-linolenic acid and linoleic
acid) to polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid) by
decreasing the amounts of androgen precursors due to their increased urinary excretion.

The influence of resveratrol on cellular metabolism was also analyzed using in vitro
models. The study on fibroblasts with mitochondrial Complex I disorder revealed that
resveratrol administration resulted in a reduction in polyunsaturated fatty acids, phospho-
choline, lactate, myo-inositol, and taurine levels, while the content of glutamate/glutamine,
glycine, alanine, and BCAA increases [58]. Another study addressed resveratrol-induced
changes in human breast cancer cell lines. The authors observed an increase in serine,
methionine, arachidonic acid, tryptophan, serotonin, and kynurenine concentrations, cell-
line-dependent changes in aspartic acid, glutamine, glycine, ornithine, putrescine, and
spermidine levels as well as and reduction of prostaglandin E2 level [59].

Table 3 summarizes available information about metabolic pathways whose changes
were detected in different experimental models upon the resveratrol stimulation. The
most significant changes induced by resveratrol treatment concerned taurine/hypotaurine
metabolism, amino acid metabolism, glyoxylate/dicarboxylate metabolism, glutathione
metabolism, lipid metabolism, and citrate cycle (TCA cycle).

Table 3. Resveratrol-related changes in metabolic pathways. Pathways were identified using the
MetaboAnalyst 5.0 software based on resveratrol-affected metabolites.

Experimental Model Resveratrol Dose and
Experimental Design Affected Metabolic Pathway Reference

plasma from Sprague
–Dawley rats subjected to
trauma-hemorrhagic shock

30 mg/kg administered
30 min after hemorrhage

Synthesis and degradation of ketone bodies;
His metabolism; Butanoate metabolism; TCA

cycle; Glyoxylate and dicarboxylate
metabolism; Lys degradation;

Aminoacyl-tRNA biosynthesis; Biotin
metabolism; beta-Ala metabolism; Pyruvate

metabolism; Ala/Asp/Glu metabolism;
Val/Leu/Ile degradation;

Glycolysis/Gluconeogenesis; Tyr metabolism

[54]

urine and feces of Wistar rats 50 mg/kg or 250 mg/kg after
12 h of food deprivation

Taurine and hypotaurine metabolism;
Pyruvate metabolism; TCA cycle; Gly/Ser/Thr

metabolism; Ala/Asp/Glu metabolism;
Glycolysis/Gluconeogenesis

[55]

abdominal muscle tissue from
ApoE-/- mice fed with a high

fat diet
10 mg/kg/day for 24 weeks

Pentose phosphate pathway; pentose and
glucuronate interconversions; galactose

metabolism; fructose and mannose
metabolism; Ala/Asp/Glu metabolism;

Glyoxylate and dicarboxylate metabolism

[56]
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Table 3. Cont.

Experimental Model Resveratrol Dose and
Experimental Design Affected Metabolic Pathway Reference

blood, urine, adipose tissue,
and skeletal muscle from men

with metabolic syndrome

150 mg/day or 1 g/day for
4 months

Linoleic acid metabolism; Ubiquinone and
another terpenoid-quinone biosynthesis; His
metabolism, Tyr metabolism; Trp metabolism;

Biosynthesis of unsaturated fatty acids;
Phe/Tyr/Trp biosynthesis

[57]

fibroblasts with mitochondrial
Complex 1 disorder 50 µM for 24 h

Lipids transformations; Gln/Glu metabolism;
Taurine and hypotaurine metabolism;

Ala/Asp/Glu metabolism; Gly/Ser/Thr
metabolism; Glyoxylate and dicarboxylate

metabolism; Arg biosynthesis; GSH
metabolism; Inositol phosphate metabolism;

Arg/Pro metabolism; Aminoacyl-tRNA
biosynthesis; Val/Leu/Ile biosynthesis;

Val/Leu/Ile degradation;
Nitrogen metabolism

[58]

MCF-7 and MDA-MB-231
breast cancer cells 100 µM for 72 h

Phe metabolism; Arg biosynthesis;
Ala/Asp/Glu metabolism; Gln/Glu

metabolism; Arg/Pro metabolism; Taurine and
hypotaurine metabolism; Phe metabolism; Trp
metabolism; Arachidonic acid metabolism; His
metabolism; Gly/Ser/Thr metabolism; GSH
metabolism; Glyoxylate and dicarboxylate

metabolism; Cys/Met metabolism; Tyr
metabolism; Aminoacyl-tRNA biosynthesis;

Val/Leu/Ile biosynthesis; beta-Ala
metabolism; Lipids transformations

[59]

hearts from irradiated
C57Bl/6NCrl mice

5 mg/kg/day or
25 mg/kg/day from 4 weeks

before until 2 weeks
after irradiation

Lipids transformations; Gly/Ser/Thr
metabolism; Taurine and hypotaurine

metabolism; Glyoxylate and dicarboxylate
metabolism; Glycerophospholipid metabolism;

GSH metabolism; Primary bile
acid biosynthesis

[44]

GSH—glutathione; CoA—coenzyme A; amino acids; Ala—alanine; Arg—arginine; Asn—asparagine; Asp—
aspartate; Cys—cysteine; Gln—glutamine; Glu—Glutamate; Gly—glycine; His – histidine; Ile—isoleucine; Leu—
leucine; Met—methionine; Phe—phenylalanine; Pro—proline; Ser—serine, Tyr—tyrosine; Trp—tryptophan;
Val—valine.

5. The Combined Effects of Ionizing Radiation and Resveratrol on
Cellular Metabolism

There is only one report yet that addressed the influence of resveratrol administration
on the metabolic profile of murine heart irradiated in vivo. The authors documented by
NMR profiling that resveratrol supplementation changed levels of several metabolites in
murine hearts 20 weeks after irradiation with a single 2 Gy dose. The administration of
resveratrol mitigated the radiation-induced decline in the content of choline-containing
compounds and unsaturated lipids, which might reflect the stabilization of cell membrane
structure against radiation-related damage. Moreover, resveratrol itself affected metabolites
associated with maintaining the balance of energy production—increased glycine and
hypotaurine and decreased lactate levels. Obtained results fit the concept that resveratrol
supplementation may prevent metabolic changes related to radiation-induced damage to
the heart [44].

Nevertheless, when the comparative analysis of metabolic pathways altered by ex-
posure to radiation and resveratrol was performed, several common pathways could be
identified that are illustrated in Figure 1. Mechanisms commonly affected by radiation and
resveratrol involve the metabolism of lipids, including the metabolism of fatty acids and
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phospholipids. However, it has been suggested that irradiation leads to lipid degradation,
whereas resveratrol is believed to have beneficial effects on fatty acid metabolism and the
stability of lipid membranes. Both ionizing radiation and resveratrol affect glutathione
metabolism, which translates into the antioxidant potential of cells. Moreover, both factors
changed levels of compounds participating in the citrate cycle, which affected energy pro-
duction in the cell. These basic mechanisms related to radiation toxicity and radioprotective
action of resveratrol are schematically presented in Figure 2. The other pathways affected
by both ionizing radiation and resveratrol include the metabolism of different amino acids
(alanine, aspartate, arginine, glutamine, glutamate, glycine, serine, threonine, etc.,) as well
as the metabolism of taurine/hypotaurine, glyoxylate, and dicarboxylate. It seems probable
that the “common part” of cellular metabolism is involved in the radioprotective properties
of resveratrol. However, more experimental data are required to confirm that radiation and
resveratrol affected the same metabolic pathways in defined biological models having the
opposite influence on key metabolites involved in cell homeostasis, energy production, and
antioxidant potential.
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6. Conclusions

Resveratrol, a well-recognized dietary compound, possesses numerous beneficial
health properties. An important area of its possible application is radioprotection, that is,
counteracting and protecting against the negative effects of radiation exposure. To date,
resveratrol has been shown to have radioprotective effects on bone marrow and germ cells,
as well as on neuronal cells. There are also single reports of radioprotective effects of resver-
atrol in the context of the heart muscle. However, molecular mechanisms of radioprotective
activity of resveratrol remain to be identified. The use of metabolic profiling techniques—
NMR spectroscopy and mass spectrometry—enables the detection of molecular changes
induced either by radiation or natural products. Therefore, a metabolomics approach could
be implemented to explore the detailed mechanisms of resveratrol bioactivity. The results
of available metabolomic studies indicate that the beneficial effects of resveratrol could be
associated, at least in part, with the “counteracting” metabolic effects of radiation (which
is schematically presented in Figure 2). For example, ionizing radiation disrupts proper
mitochondrial function, whereas resveratrol may have beneficial effects on the function
and structure of mitochondria. However, specific mechanisms responsible for the protec-
tive action of resveratrol require further metabolomic studies that would address several
important yet unanswered questions. For example, it is unclear whether a hypothetical
effect of resveratrol is associated solely with prior preconditioning or administration of
this compound after irradiation would also produce any effect, which is crucial from the
perspective of resveratrol used in radioprotection.
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