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Increased elasticity of melanoma 
cells after low-LET proton 
beam due to actin cytoskeleton 
rearrangements
Katarzyna Jasińska-Konior1, Olga Wiecheć1, Michał Sarna1, Agnieszka Panek2, Jan Swakoń   2, 
Marta Michalik3, Krystyna Urbańska1 & Martyna Elas   1

Cellular response to non-lethal radiation stress include perturbations in DNA repair, angiogenesis, migration, 
and adhesion, among others. Low-LET proton beam radiation has been shown to induce somewhat different 
biological response than photon radiation. For example, we have shown that non-lethal doses of proton 
beam radiation inhibited migration of cells and that this effect persisted long-term. Here, we have examined 
cellular elasticity and actin cytoskeleton organization in BLM cutaneous melanoma and Mel270 uveal 
melanoma cells. Proton beam radiation increased cellular elasticity to a greater extent than X-rays and both 
types of radiation induced changes in actin cytoskeleton organization. Vimentin level increased in BLM cells 
after both types of radiation. Our data show that cell elasticity increased substantially after low-LET proton 
beam and persisted long after radiation. This may have significant consequences for the migratory properties 
of melanoma cells, as well as for the cell susceptibility to therapy.

Direct photon irradiation of a tumor from radioisotopes such as 125I or 106Ru is the main form of treatment in 
the management of uveal melanoma known as brachytherapy. It allows functional preservation of the eye in 52% 
of patients1, although it deteriorates in time and 10 years after therapy 68% of patients have poor visual acuity2. 
In the case of large tumors, or tumors located close to the optic nerve, proton beam irradiation may also be 
employed3,4. The main advantage of proton beam therapy over photon radiation is highly localized energy dep-
osition at the end of protons range. Despite the fact that uveal melanoma is usually well controlled by radiation 
therapy, approximately 50% of patients develop metastases within 7 years of  5 diagnosis. Uveal melanoma metas-
tases are found primarily in the liver (90%), but also in lung (24%) and bone (16%). Within 2 years of developing 
metastatic disease, 70% of patients die, as there is no effective treatment6–8. Although radiation therapy has long 
been used in clinics5, little is known about the effect it has on key cellular properties such as cell elasticity.

Cellular elasticity is strongly connected to cancer invasion and migration during metastasis9, and its signif-
icance was recently demonstrated in the case of melanoma10. It was shown that melanoma cells that had higher 
Young modulus (less elastic) were less capable to penetrate different barriers than cells with lower Young modu-
lus11 (more elastic), i.e. higher elasticity of a cell is related with increased invasiveness. Cell elasticity is strongly 
connected to the cytoskeleton of the cells and very little data focusing on the connection of cell elastic properties 
and their cytoskeleton after radiation, especially after proton beam radiation exist.

So far it has been reported that photon radiation, such as X-rays (5–20 Gy) caused visible reorganization of 
actin cytoskeleton, manifested as an increase of the peripheral actin fibers and stress fibers appearance12. A sim-
ilar effect was also observed in the case of endothelial cells irradiated with X-rays, in which these modifications 
lead to lower motile activity of the cells13. An example study of the cell biomechanical properties performed on 
squamous carcinoma cells after photon radiation demonstrated that irradiated cells had higher elasticity than 
non-irradiated cells. This was linked to the alterations in the cytoskeleton organization14. Likewise, spatial reor-
ganization of cytoskeleton was detected in endothelial cells in response to shear stress, even 12 hrs after exposure, 
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manifesting in a larger number of thicker and longer stress fibers15. None of the studies reported longer time-scale 
changes.

Despite being claimed that both types of radiation generate comparable biological effects, there are several 
reports to the contrary, showing differences in cellular response exerted by photon or proton beam radiation, 
including DNA damage, cell cycle inhibition and cell migration among others16–19.

We have shown previously that sublethal doses of proton beam (low-LET), in contrast to photon irradiation 
slightly inhibited cellular movement in primary uveal melanoma cells and metastatic cutaneous melanoma cells18. 
Here we show that the reported differences in cellular motility may result from alterations in the cell cytoskel-
eton organization and corresponding mechanical properties of the cells that persist long-term after irradiation. 
Biomechanical analysis, as well as F-actin and vimentin staining have shown that both low-LET proton beam and 
X-rays induced higher elasticity due to perturbed cytoskeleton in melanoma cells.

Results
Irradiation inhibits cell proliferation long-term.  Cell proliferation was checked immediately after irra-
diation, and as expected, a substantial inhibition of cell growth was observed after both types of radiation, with 
low-LET proton beam eliminating more highly-proliferating colonies than X-rays18. At longer times after treat-
ment, i.e. 20 and 40 days both Mel270 and BLM cells still exhibited decreased proliferation rate at 30–70% of 
control after low-LET proton beam (Fig. 1). Cells treated with X-rays displayed similar tendency at 20 days, but 
at 40 days post-treatment a stimulation of Mel270 proliferation was observed with its maximum at 3rd day after 
seeding, reaching 139% and 155% for groups irradiated with 1 and 3 Gy, respectively. The impact of X-rays was 
subtler in BLM cells, with slight inhibition seen at 20 days, and variations around the control at 40 days (Fig. 1). 
These results confirm that cellular response to low doses of radiation is seen long-term after the treatment in both 
Mel270 and BLM cells.

Slower Mel270 and BLM cell migration after proton beam.  Single cell migration was determined at 
20 and 40 days after radiation by tracking individual cells using time-lapse microscopy. Proton beam irradiation 
inhibited multiple parameters of Mel270 migration both at 20 and 40 days after treatment (Fig. 2A), whereas 
X-rays had very little effect. In contrast, irradiation of BLM cells resulted in migration inhibition after X rays at 20 
days, and after proton beam at 40 days post-treatment (Fig. 2B).

Cells are much more elastic after low-LET proton beam.  Cellular elasticity was determined at 20 
and 40 days post-irradiation. Untreated Mel270 and BLM cells exhibited a normal distribution of the Young’s 
modulus values, although the mean value of Mel270 cells was almost two times higher than that of BLM cells 
(1.5 vs 0.8 kPa, respectively, Fig. 3A,B). This shows that Mel270 are much stiffer than BLM cells and confirms the 
widely accepted paradigm that metastatic cells are more elastic than cells from the primary tumor. In general, a 
substantial decrease of the Young’s modulus values was observed in both cell lines after low-LET proton beam. 
For the highest dose of the low-LET proton beam, Mel270 were approximately 1.5-times more elastic and BLM 5 
times more elastic than control (at 20 days post-radiation). In the case of X-rays and proton beam at 40 days the 
elasticity of Mel270 was not changed significantly. On the other hand, BLM cells displayed a noticeable decrease 
in the Young’s modulus values at both 20 and 40 days after X-ray radiation. The histograms (Suppl. Fig. A1) show 
more random distribution at 40 days post-treatment than at 20, especially for Mel270 cells. BLM cells at 20 days 
after low-LET proton beam exhibit very narrow distributions, especially for the dose of 5 Gy. Moreover, morpho-
logical changes could be observed by AFM imaging in the examined cells (Fig. 4). As evident from the images, 

Figure 1.  Cell counting of Mel270 (A) and BLM (B) cells performed 20 and 40 days after treatment with proton 
beam radiation or X-rays. Cells were irradiated, cultured at standard conditions and then seeded at 20 and 40 
days post-treatment and the assay was conducted during five next days. Experiment was performed in triplicate 
and for every repetition, cells from 4 wells were counted. Results are presented as the percent of the untreated 
control. Mean values ± SEM. #p < 0.05; *p < 0.01; **p < 0.001.

https://doi.org/10.1038/s41598-019-43453-7


3Scientific Reports |          (2019) 9:7008  | https://doi.org/10.1038/s41598-019-43453-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 2.  Cellular migration properties of Mel270 (A) and BLM (B) cells treated with proton beam radiation 
or X rays. Individual cell movements were evaluated at 20 and 40 days after irradiation with either proton beam 
or X-rays and three parameters were calculated: ‘Mean rate of displacement’, i.e. the distance from the starting 
point direct to the cell's final position/time of recording; ‘Distance’, i.e. the total cell trajectory (μm) and CME 
(coefficient of movement efficiency), i.e. the ratio of cell displacement to the cell trajectory length. Mean values 
presented as percent of control; *p < 0.05, **p < 0.01, ***p < 0.001. Data partially presented in Jasinska et al.18.

Figure 3.  Impact of proton beam radiation and X-rays on the elastic properties of Mel270 (A) and BLM cells 
(B). Mean of Young modulus measured from 325 cells ± SEM values; *p < 0.05; **p < 0.01; ***p < 0.001, 
against untreated control.
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Mel270 after both types of radiation became more constrict with no cytoskeleton features being pronounced. On 
the other hand, in BLM cells after proton irradiation less actin fibers were present in the center region of the cell, 
whereas in BLM cells after X-rays thick marginal actin fibers were visible. Furthermore, BLM cells displayed more 
fibroblastoid-like phenotype with higher number of internal actin fibers, known as stress fibers, combined with 
numerous protrusions being visible (Fig. 4B).

Alterations in marginal and internal actin fiber thickness following radiation.  Analysis of actin 
cytoskeleton revealed disintegration of internal actin fibers in both types of cells (Fig. 5A,B). The thickness of 
internal actin fibers decreased in all groups in both cell lines at 20 and 40 days, with values in the range of 36–69% 
of the control level. The change in thickness of marginal actin fibers following radiation treatment varied based 
on cell line treated. In Mel270 at 20 days only proton beam leads to increase in thickness (with maximum value 
of 171% of control for 1 Gy), and at 40 days the effect is similar for both types of radiation (Fig. 5A, left). In BLM 
cells there was an increase in thickness of marginal fibers after proton beam, and a decrease after X rays (Fig. 5A, 
right). In summary, the effect on internal fibers was similar for both types of radiation and the effect of proton 
beam on marginal fibers was more pronounced. Actin aggregates were also seen in Mel270 cells (Fig. 4B). Taken 
together, these changes mark substantial alterations in the cytoskeleton structure.

Increased vimentin level in cutaneous melanoma after radiation.  Vimentin is an intermediate fila-
ment that maintains cell and tissue integrity and confers resistance to mechanical stress20, but also have complex 
regulatory functions21. In order to determine the level of vimentin in the cells, the corrected total cell fluorescence 
(CTCF) was calculated from confocal microscopy images of cells stained for vimentin (Fig. 6). In Mel270 cells, a 
decrease of vimentin was seen at 20 days post-treatment with the lowest values of 49% and 38% after 5 Gy of the 
low-LET proton beam and X-rays, respectively. At 40 days there was no change, except for an increase of up to 
134% for 1 Gy of the proton beam. However, in BLM cells an increased level of vimentin was seen, especially at 40 
days after proton beam and 20 days after X-rays. BLM cells treated with 3 Gy of X-rays displayed an increase of the 
level of this protein to 206% of control. At 40 days we observed values above the control only in the groups treated 
with 1 or 3 Gy of the low-LET proton beam. These results correspond well with our previous analysis of vimentin 
levels performed by western blot analysis18.

Figure 4.  (A) AFM amplitude images of the BLM and Mel270 cells. (B) Confocal microscopy images of the 
same cells stained for actin (red), vimentin (green) and nucleus (blue). Scale bars in all images represent 10 um. 
Cells were treated with 3 Gy of either proton beam or X-rays and cultured for 20 days.
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Adhesion and migration proteins.  Radiation did not change the level of three adhesion and migration 
proteins studied: TNC, LAMB3 and ICAM1, except for an increase seen in the level of LAMB3 in BLM cells 
20 days after X-rays. Decreasing trends in LABM3 and ICAM1 in Mel270 cells were not statistically significant 
(Fig. 7).

Discussion
In this work we have examined two types of melanoma cells: uveal melanoma Mel270 and cutaneous melanoma 
BLM cells, differing in their genetic phenotype. Cutaneous melanoma is generally not managed with radiation, 
except for lentigo malignant melanoma or as a palliative treatment22. Uveal melanoma, on the other hand, is 
routinely treated with both photon brachytherapy and low-LET proton beam radiation5,8,23,24. Since both types 
of melanoma metastasize, during which the cells undergo significant deformation of their body; the influence of 
radiation on their mechanical properties and thus their metastatic capabilities had to be addressed.

In our study, untreated BLM cells, originating from a metastasis of cutaneous melanoma, were twice more 
elastic than uveal Mel270 cells, originating from a primary uveal tumor. Irradiation led to an increased elasticity 

Figure 5.  (A) Thickness of actin fibers in Mel270 and BLM cells treated with low-LET proton beam radiation or 
X-rays. Measurements of 15 cells in each experimental group were taken at 20 and 40 days following radiation. 
Two types of fibers were measured: marginal and internal also called stress fibers with 15 measurements for 
each type of fibers per cell. Results are presented as the percent of the untreated control. Mean values ± SEM. 
*p < 0.05; **p < 0.01; ***p < 0.001. (B) Representative images of actin cytoskeleton stained in Mel270 and 
BLM cells after treatment with low-LET proton beam radiation or X-rays. Cells were stained with phalloidin 
conjugated with Alexa 546. Scale bar: 10 μm.
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– in BLM cells after both types of radiation, whereas in Mel270 cells only after low-LET proton beam radiation. It 
has been reported that modifications of the actin cytoskeleton affect the mechanical properties of the cells to the 
highest extent25–30, therefore, in this study we have focused primarily on this cytoskeleton component.

Even though the total levels of actin were not changed after irradiation, actin cytoskeleton rearrangements 
were detectable long-term after the treatment. Significant decrease in thickness of inner actin stress fibers in all 
treated groups and an increase in the thickness of marginal fibers in all proton-beam treated groups was observed. 
The internal actin fibers seem to be more relevant to cellular elasticity9,31. Both Young modulus decrease with 
dose as well as migration parameters decrease with dose was accompanied with a decrease in thickness of internal 
fibers. These parallel changes were seen in Mel270 cells after proton beam radiation, and in BLM cells for both 
types of radiation (see Suppl. Fig. A2). Therefore, we concluded that the observed actin rearrangements may be 
partially responsible for higher elasticity in the treated cells. Of course, it should be noted that other cell constitu-
ents that build up the cytoskeleton of a cell such as intermediate filaments and microtubules could also be affected 
by radiation. However, their contribution to cell mechanics is less important than that of actin cytoskeleton32. 
Cellular elasticity is an end-result of many factors, including the length and thickness of the stress fibers, which 
are anchored to the adhesion focal points, as well as the number of internal fibers/arcs in the subcortical part of 
the cell33. Moreover, higher vimentin level in BLM cells might also play a role, as vimentin has been shown to 
enhance cellular elasticity20. Further elucidation of the mechanism of cellular softening after low-LET proton 
beam radiation might be provided by studying the changes in the expression of vinculin, myosin and microtu-
bules organization of irradiated cells.

The increase in cell deformability directly correlates with progression from normal to transformed malignant 
cell34, as well as towards more metastatic phenotype25,35,36. Higher elasticity of cells is linked to weaker actin fila-
ment polarization and therefore leads to lower migration abilities37. Furthermore, migrating cells generally have 
thicker stress fibers than non-motile cells37 and thicker stress fibers correspond with higher values of the Young’s 
modulus of cells30. Mechanical softening of cancer cells and modification of their adhesion to extracellular matrix 
increased their capacity to escape the primary tumor38. It is worth pointing out that a substantial increase in elas-
ticity might be connected to loss of membrane viability and cellular well-being, however, in our experiments cells 
were viable and proliferating.

Higher elasticity is thought to ease invasion and migration11,28. It should be noted that elasticity is a general 
parameter describing cell mechanical properties, which results from different factors such as: cytoskeleton organ-
ization, in particular actin organization, osmotic pressure, adhesion, etc31. Indeed, higher elasticity of a cell is 
related with increased invasiveness, because it is thought that the softer and more deformable a cancer cell is, the 
more likely it will invade different tissue barriers11,25,39. Accordingly, number of studies have shown that cells with 
similar migration capabilities but differing in their elasticity had different invasion capabilities35. However, in our 
study, we show that changes in the elasticity of the cells were accompanied by the disruption of actin cytoskeleton. 
Taking into consideration that actin cytoskeleton is one of the most important components of a cell for migration, 
it is very unlikely that cells could become more invasive when they have disrupted cytoskeleton. On the contrary, 
one may speculate that such substantial decrease in cellular stiffness as seen in BLM cells (up to 5 times) may 
completely unable cellular movement and result in decreased migratory properties.

Figure 6.  Representative images of vimentin stained in Mel270 (A) and BLM (B) cells after treatment with 
proton beam radiation or X-rays. The corrected total cell fluorescence (CTCF) was measured in Mel270 (C) and 
BLM (D) cells. For each experimental group 15 cells were measured. Results are presented as the percent of the 
untreated control. Mean values ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. Scale bar: 10 µm.
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The effect of X-rays on elasticity and migratory properties was very much cell line dependent, i.e. the elasticity 
and migration of Mel270 cells were only slightly affected. In contrast, we observed a decrease in the Young’s mod-
ulus values in BLM cells after X-rays (Fig. 3), and slight changes in migration potential of BLM cells after X-rays 
(Fig. 2). This points out that the same range of doses leads to slightly different effects in the tested cell lines. In 
general, the changes in cellular elasticity in Mel270 choroidal melanoma were much less pronounced. This may 
stem out from the fact that Mel270 cells origin from the primary tumor, and BLM from a metastasis of a cutane-
ous melanoma. Along with higher cell elasticity, BLM cells also exhibited a higher level of vimentin (after X-rays 
at 20 days and low-LET proton beam at 40 days), which may suggest the possibility of EMT transition switching 
phenotype in melanoma cells post-radiation. However, we have not detected any N-cadherin in the cells, which 
would be a confirmation of the switching phenotype (data not shown). Moreover, the effect of irradiation on the 
tumor microenvironment and interactions between cancer and other types of cells, should be further studied in 
this context, as it affects cellular elasticity and migratory properties as well40.

Radiation is known to enrich cellular population with cancer stem-like cells. The changes that we have 
observed at 20 and 40 days after radiation might represent an average over several cell subpopulations. We have 
shown previously the existence of three distinct cell populations in the untreated BLM and Mel270 cells, with a 
shift towards less-proliferative populations after irradiation. Therefore, the observed effects might be even higher 
if isolated subpopulations were studied. Other authors showed that the Young’s modulus of tongue carcinoma 
cells was decreased in a dose-dependent manner in 24 hrs after X-rays (1–4 Gy) with over 3-fold decrease for the 
highest dose, with accompanying decrease in actin filaments and increased migration14. The increased thickness 
of peripheral actin fibers was also shown in endothelial cells in response to photon radiation12. Other authors 
suggest that the effects of radiation undergo intensive time changes up to 7 days post-radiation41. However, long 
term effects that are more suitable in terms of a life span of a patient have not been described in literature yet, and 
thus were examined in this study.

We have checked the level of three proteins involved in adhesion and migration, TNC, LAMB3 and ICAM1, 
but did not found any significant changes in the protein level, except for an increase in LAMB3 20 days after 
X-radiation. Our previous proteomic study revealed increase in several proteins involved in migration and metas-
tasis, i.e. moesin (actin remodelling, motility), actinin 4 (migration and metastasis), FAB-2 (migration, microtu-
bule destabilizer), lamine A/C (PI3K/AKT/PTEN, adhesion, motility), lamine B (motility)42. In the same study 
we also observed a decrease in annexin 7 (motility) and vimentin. The latter might result from post-translational 
modifications, as here we have seen a clear increase in the vimentin level (Fig. 6).

Although the exact mechanisms of the observed elasticity and cytoskeleton changes are not fully clear, there 
are some indicators in the literature, which prompt further research. Several actin-associated proteins have been 
implicated in cytoskeleton changes after radiation. For example, ankyrin-1 (ANK1) alters the structure of the 
actin cytoskeleton and sustains limited cell migration during DNA damage43. Similar alterations in the arrange-
ment of actin microfilaments and detachments from junctions were seen in HeLa cells exposed to IR and to 
ROS44. Such actin filaments rearrangements might be induced by RhoA, as rapid formation of actin filaments 
accompanied by redistribution of VE-cadherin adherent junctions in microvascular endothelial cells after radia-
tion was mediated by RhoA/ROCK12.

It was shown that GNAQ mutation, one of the driver mutation in uveal melanoma, is present in Mel270 
cells45. GNAQ mutation induces viability and migration of uveal melanoma cells via Notch signaling activation, 
which is mediated by YAP dephosphorylation and nuclear translocation46. Gαq activates YAP by acting on a 

Figure 7.  TNC, LAMB3 and ICAM1 protein expression determined with Western Blot in Mel270 and BLM 
cells after treatment with different doses (1, 3, 5 Gy) of proton beam or X rays. Cells were lysed 20 and 40 
days after irradiation. Protein bands were densitrometrically analyzed and adjusted against GAPDH. Results 
represent average of 3 independent experiments. Mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001. Samples 
were analyzed together as indicated by the frames (only TNC control was taken from another blot, see 
Suppl. Fig. A3).
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Hippo-independent signaling network initiated by actin polymerization. Disruption of the actin cytoskeleton, 
e.g. due to ROS generated by radiation, diminishes both the basal activity of YAP and YAP hyperactivation47.

Interestingly, clinical data gathered from patients with uveal melanoma, do not indicate any significant differ-
ence in the mortality rate between radiation-treated patients and patients that undergone surgery48,49. This may 
suggest that irradiation of the tumor in the eye does not affect the process of metastasis. However, most authors 
would argue that metastases are seeded before the treatment or even before the diagnosis and remain dormant for 
many years50. Still, radiation may influence the cells seeding from the tumor after the treatment. Low, non-lethal 
doses tested may be relevant in the margin of the tumor treated with radiation.

A low-LET proton beam and photon radiation led to considerable rearrangements in the cytoskeleton of cells, 
affecting strongly their mechanical properties. Cellular elasticity increased more after proton beam irradiation. 
These changes were persistent long-term after the treatment and may be connected to an inhibition in cellu-
lar migratory properties. Taken together, these results suggest that low-LET proton beam radiation might have 
inhibitory effects on the migratory properties of melanoma cells. The exact molecular mechanism and signaling 
pathways leading to these effects require further studies.

Methods
Cell culture.  Two melanoma cell lines were used: Mel270 - a primary human uveal melanoma cell line51,52, 
and metastatic BLM cells, derived from the lung metastases of skin melanoma52. Cells were cultured at 37 °C, 5% 
CO2 in RPMI media (Sigma-Aldrich, St. Louis, MO). Media were supplemented with 10% fetal bovine serum 
(Biological Industries, Cromwell, CT) and penicillin/streptomycin (Polpharma, Poland). The Mel270 cells were 
a gift from prof. M. Jager from Leiden University (The Netherlands) and BLM cells from Dr. G.N.P. van Muijen, 
Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen (The Netherlands).

Irradiation.  Cell irradiation was performed at the Institute of Nuclear Physics, Polish Academy of Sciences 
(IFJ PAN), Cracow, Poland. For X-ray irradiation, Phillips MCN-323 tube operating at a voltage of 250 kVp and 
the dose rate of 1.8 Gy/min was applied. Proton beam irradiation took place at the Cyclotron Centre Bronowice at 
IFJ PAN. The 230 MeV proton beam was produced at the IBA Proteus C-235 cyclotron53. During the irradiation, 
the doses 1, 3, or 5 Gy have been delivered with a dose rate of 1 Gy/min, 2 Gy/min, and 6.6 Gy/min, respectively. 
At the center of cell container position i.e. at the depths 15.8 mm of the SOBP, the calculated Continues Slowing 
Down Approximation (CSDA) dose averaged LETd was 2.8 keV/µm. A detailed description of the irradiation 
and dosimetry can be found elsewhere18. Doses between 1 and 5 Gy were chosen as they allowed long term 
post-treatment studies.

Cell counting.  The cells were seeded into 24-well plates (104 cells per well), and cell numbers were deter-
mined at each consecutive day during the five days duration at 20 days (4th passage) and 40 days (7th passage) 
following radiation. Cells were trypsinized and counted using Bürker hemocytometer. The experiment was con-
ducted three times and for each repetition, cells were counted from 4 wells.

Cell migration.  Time-lapse monitoring of individual cell movements was used as an indicator of cellular 
migration properties. The individual trajectories of cells were assessed 20 days and 40 days after irradiation in 
both Mel270 and BLM cells. Cells were plated at a density of 72 cells/mm2. After 48 hours the migration of cells 
was recorded at 37 °C for 10 h, at 10 min intervals. The trajectories of individual cells were evaluated from the 
changes in cell centroid location, as described previously54. For each cell, the following variables were deter-
mined55: (i) distance - the total length of the cell trajectory (µm), (ii) the total length of cell displacement (µm), i.e. 
the distance from the starting point direct to the cell’s final position; (iii) mean rate of displacement (μm/h), i.e. 
the distance from the starting point direct to the cell’s final position/time of recording; (iv) the mean speed of cell 
movement, i.e. the total length of cell trajectory/time of recording. The value of CME (Coefficient of Movement 
Efficiency) was calculated as the ratio of the total cell displacement to the total length of cell trajectory. For each 
value, 50 cells were analyzed from 3 different wells.

Immunofluorescence staining and images analysis.  Cells were plated on to microscope slides 
(Menzel-Glaser, Germany) in 3 cm dish (TPP, Switzerland) at a density of 15 × 104 cells. After 24 hours, the cells 
were fixed with 4% paraformaldehyde (Sigma-Aldrich, USA) at room temperature. Permeabilization and block-
ing steps were performed using 0.1% Triton X-100 (Avantor Performance Materials, Poland) and 3% bovine 
serum albumin (Sigma-Aldrich, USA), respectively. The primary antibodies used for staining were Vimentin 
(D21H3) Rabbit mAbs (Cell Signaling Technology, USA) in 0.1% BSA at a concentration 1:300. In the second 
step, a secondary solution in 0.1% BSA was used which contained Alexa Fluor® 546 phalloidin (Thermo Fisher 
Scientific, USA), Alexa Fluor® 488 goat anti-rabbit IgG (H + L) (Thermo Fisher Scientific, USA) and Hoechst 
33258 (Thermo Fisher Scientific, USA). The cells were incubated at room temperature in the dark. Glass cover 
slides were placed on basic microscope slides (Elektromed, Poland) using fluorescent mounting medium (Dako, 
USA). Samples were kept in dark at 4 °C until analyzed with a scanning laser confocal microscope (Zeiss LSM 880 
with Airyscan). The experiment was done at two time-points, 20 and 40 days after irradiation.

The corrected total cell fluorescence (CTCF) was measured using ImageJ v.1.43U (Wayne Rasband, National 
Institute of Health, USA). Fluorescence intensity was measured from maximum intensity projection of the stack 
images according to the formula56: CTCF = Integrated Density − (Area of selected cell × Mean fluorescence of 
background readings). For each group, 15 cells were analyzed. Thickness of actin fibers in the cells was deter-
mined based on fluorescent images of the cells with stained F-actin using ImageJ v.1.43U (Wayne Rasband, 
National Institute of Health, USA). Two types of fibers were determined: marginal fibers and internal fibers also 
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called stress fibers. From each experimental group, including the untreated control, the fibers of 15 cells were 
quantified with 15 measurements for each type of fibers per cell.

Atomic force microscopy.  Atomic force microscopy (AFM) analysis of the cells was conducted using a 
Bruker BioScope Catalyst AFM coupled with an inverted optical microscope (Axio Observer Z1 from Zeiss). 
Measurements were performed on cells maintained in culture medium at 37 °C. Mechanical analysis of the cells 
was made in force spectroscopy mode. Before the measurements, the AFM probe was positioned on top of an 
individual cell and aligned at the center of the cell body using bright field optical microscopy live view at ×400 
magnification. Once aligned, force curves from a grid of 5 × 5 points were collected at a rate of 1 Hz. 15 cells per 
each condition were analyzed. Mechanical measurements were conducted using soft cantilevers with a nominal 
tip radius of 20 nm and spring constant of 0.01 N/m. For precise mechanical characterization, spring constants of 
the used cantilevers were routinely determined based on the thermal tune procedure57. Analysis of force curves 
was made using AtomicJ software58. In brief, the collected force-displacement curves were first converted into 
force-indentation curves and fitted with the Sneddon model. A detailed description of the mechanical analysis 
used in this work can be found elsewhere59.

Western blot.  Cell monolayers were lysed in RIPA buffer (Thermo Fisher Scientific) protease inhibitor cock-
tail (Roche, Switzerland), PMSF and sodium orthovanadate. The amount of protein was measured using the BCA 
kit (Sigma-Aldrich, St. Louis, MO) and stored at −80 °C until used. Equal amounts of protein (20 μg) were run on 
Bolt1Bis-Tris Plus gels (Thermo Fisher Scientific) and transferred to a nitrocellulose membrane. The membranes 
were blocked with 5% skim milk or in 5% BSA in a TBS buffer with 1% of Tween 20 for 1 h and incubated with 
primary antibodies against ICAM-1 and Tenascin C (D16C4) (Cell Signaling Technology, MA, USA), LAMB3 
(CL3363) (Thermo Fisher Scientific) at 4 °C overnight. Membranes were washed 3 times in TBS and incubated 
with suitable secondary antibodies and then washed 3 times in TBS. Signals were detected using SuperSignal West 
Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific).

Statistical analysis.  Statistical analysis was carried out using Statistica v12 (StatSoft. Inc.). Due to the com-
parison of more than three experimental groups, statistical significance was estimated using evaluation of homo-
geneity of variances with Levene’s Test followed by one-way analysis of variance (ANOVA). The differences were 
considered to be statistically significant at probability levels of p < 0.05, p < 0.01 and p < 0.001.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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