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Abstract
Purpureocillium lilacinum of Ophiocordycipitaceae is one of the most promising and

commercialized agents for controlling plant parasitic nematodes, as well as other insects

and plant pathogens. However, how the fungus functions at the molecular level remains

unknown. Here, we sequenced two isolates (PLBJ-1 and PLFJ-1) of P. lilacinum from

different places Beijing and Fujian. Genomic analysis showed high synteny of the two iso-

lates, and the phylogenetic analysis indicated they were most related to the insect patho-

gen Tolypocladium inflatum. A comparison with other species revealed that this fungus

was enriched in carbohydrate-active enzymes (CAZymes), proteases and pathogenesis

related genes. Whole genome search revealed a rich repertoire of secondary metabolites

(SMs) encoding genes. The non-ribosomal peptide synthetase LcsA, which is comprised

of ten C-A-PCP modules, was identified as the core biosynthetic gene of lipopeptide leuci-

nostatins, which was specific to P. lilacinum and T. ophioglossoides, as confirmed by phy-

logenetic analysis. Furthermore, gene expression level was analyzed when PLBJ-1 was

grown in leucinostatin-inducing and non-inducing medium, and 20 genes involved in the

biosynthesis of leucionostatins were identified. Disruption mutants allowed us to propose

a putative biosynthetic pathway of leucinostatin A. Moreover, overexpression of the tran-

scription factor lcsF increased the production (1.5-fold) of leucinostatins A and B com-

pared to wild type. Bioassays explored a new bioactivity of leucinostatins and P. lilacinum:

inhibiting the growth of Phytophthora infestans and P. capsici. These results contribute to

our understanding of the biosynthetic mechanism of leucinostatins and may allow us to

utilize P. lilacinum better as bio-control agent.
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Author Summary

Purpureocillium lilacinum, a well-known bio-control agent against various plant patho-
gens in agriculture, can produce antibiotic leucinostatins—peptaibiotic with extensive bio-
logical activities, including antimalarial, antiviral, antibacterial, antifungal, and antitumor
activities, as well as phytotoxic. We have sequenced the genomes of two P. lilacinum iso-
lates, and compared them with other fungi, focusing on their bio-control characteristics.
We discovered a rich repertoire of CAZymes, proteases, SMs and pathogenesis related
genes. We also identified a gene cluster containing 20 genes involved in the leucinostatins
A and B biosynthesis by gene deletion, qRT-PCR and RNA-seq analyses. A transcription
factor in the pathway was overexpressed, resulting in the upregulation of the related genes
and a 1.5-fold increase in leucinostatins A and B. A new bioactivity of leucinostatins, inhi-
bition of the growth of the notorious Phytophthora, was identified in this study by con-
fronting incubation with P. lilacinum. These results provided new strategies for the
agricultural development of leucinostatins and improving P. lilacinum strains.

Introduction
Plant parasitic nematodes with wide host ranges cause enormous crop and economic losses
amounting to $157 billion annually worldwide [1, 2]. Biological control by fungi has become
increasingly popular due to nematicides’ risks of environmental toxicity and adverse effects on
human health [3]. One of the most promising and commercialized agents, Purpureocillium lila-
cinum, has been evaluated to assess its bio-control activity against plant nematodes in a num-
ber of studies [2, 4]. In particular, P. lilacinum has been reported to effectively control such
species as the cotton aphid Aphis gossypii [5], the greenhouse whitefly Trialeurodes vaporar-
iorum, the glasshouse red spider mite Tetranychus urticae [6], and the leaf-cutting ant Acro-
myrmex lundii [7].

The genus Purpureocillium was recently proposed for of Ophiocordycipitaceae, based on
the internal transcribed spacer (ITS) and translation elongation factor 1-α (TEF) sequences of
P. lilacinum, although it was originally classified in the genus Paecilomyces [8]. P. lilacinum is
commonly isolated from soil, plant roots, nematodes and insects, and it occasionally infects
people. This fungus employs flexible lifestyles, including soil-saprobes, plant-endophytes and
nematode pathogens. Opportunistic infection occurs when nematode eggs encounter P. lilaci-
num; therefore, parasitism can be a mechanism for nematode bio-control (Fig 1A). It has now
been confirmed that a serine protease [9], a cuticle-degrading protease [10] and chitinase [11]
play important roles in infection by degrading nematode eggshells.

Recently, the production of SMs has been shown to be a mechanism that kills nematodes.
For example, culture filtrates of P. lilacinum, in which leucinostatins were produced, caused
strong mortality and inhibited nematode reproduction [12]. In addition to leucinostatins, a few
other SMs have been isolated from P. lilacinum. The novel pyridone alkaloid paecilomide, an
acetylcholinesterase inhibitor, was produced when this fungus was co-cultured with Salmonella
typhimurium [13]. Two xanthone-anthraquinone heterodimers, acremoxanthone C and acre-
monidin A, were isolated in the course of a search for calmodulin ligands [14].

The leucinostatins (Fig 1B) are a family of lipopeptide antibiotics isolated from P. lilacinum
[15], Paecilomyces marquandii [16–18] and Acremonium sp. [19]. Leucinostatin A contains
nine amino acid residues, including the unusual amino acid 4-methyl-L-proline (MePro),
2-amino-6-hydroxy-4-methyl-8-oxodecanoic acid (AHyMeOA), hydroxyleucine (HyLeu), α-
aminoisobutyric acid (AIB), β-Ala, and a 4-methylhex-2-enoic acid at the N-terminus as well
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as an N1,N1-dimethylpropane-1,2- diamine (DPD) at the C-terminus. Twenty-four different
structures have been described in the leucinostatin series[20]. Leucinostatin A significantly
suppressed prostate cancer growth in a coculture system in which prostate stromal cells stimu-
lated the growth of DU-145 human prostate cancer cells through insulin-like growth factor I
[21]. When screening for antitrypanosomal compounds among several peptide antibiotics, leu-
cinostatins showed the most potent activity against trypanosomes. Trypanosome infection
causes human African trypanosomiasis, which is one of the world’s most neglected diseases
lacking satisfactory drugs [22]. Furthermore, leucinostatins have displayed broad bioactivity
against bacteria and fungi. These antibiotics’ functions are based on their ability to inhibit ATP
synthesis in the mitochondria as well as different phosphorylation pathways [23]. These find-
ings drew our attention to the relationships between the bio-control function of P. lilacinum
and leucinostatins. Furthermore, genetic and molecular information regarding the biosynthesis
of this family of lipopeptide antibiotics, of which little was known to date, could contribute to
increasing its production and screening for more efficient derivative compounds.

Genome sequences have shed light on the mechanism of the endoparasitic lifestyle or nema-
tode control beyond biological research. During the preparation of our manuscript, the genome
sequence of P. lilacinum was published [24]. Two other plant nematode endoparasitic fungi,
Pochonia chlamydosporia [25] and Hirsutella minnesotensis [26], were recently sequenced.
Genome sequencing revealed that P. chlamydosporia encoded a wide array of hydrolytic
enzymes and transporters expressed at the mRNA level, which supported its multitrophic life-
style, andH.minnesotensis, which mainly invades juvenile stage cyst nematodes, putatively
conducted its parasitic process through lectins, secreted proteases and SMs. Thus, the genome
sequence of P. lilacinum provides an opportunity to better understand its mechanism in con-
trolling plant nematodes, and it would be useful to enhance its capabilities as a bio-control
agent. At the same time, the genome sequence has the potential to solve the biosynthetic puzzle

Fig 1. Lifestyles of nematophagous P. lilacinum and the structures of leucinostatins. (A) Microscopic
conidiophores and conidia (c) of P. lilacinum. Scale bar = 10 μm. The soil saprophyte (s) P. lilacinum
colonizes plant roots as an endophyte (e), and the parasite (p) can occur in nematode eggs in the egg mass
(em) generated after the infection with the plant nematode (n). (B) Chemical structure of leucinostatins A and
B.

doi:10.1371/journal.ppat.1005685.g001
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of leucinostatins as well as to detect novel genes and metabolites that might be of value in agri-
culture and medicine.

Here, we present the results of genome sequencing of the PLBJ-1 and PLFJ-1 strains of the
bio-control agent P. lilacinum, and we increased our knowledge of its bio-control capabilities by
comparing the sequences of P. lilacinum with those of other fungi. The genome revealed a reper-
toire of SM-encoding genes that illustrated the potential for using this fungus to discover natural
products. Furthermore, we identified the leucinostatin gene cluster (lcs cluster) and proposed a
hypothetical pathway for biosynthesis through genetic manipulation. In the course of screening
for new activities of leucinostatins, we found that they inhibited the most notorious oomycetes P.
infestans, which causes potato late blight and results in global yield losses of 16% [27].

Results

General structure of the P. lilacinum genome
Two P. lilacinum isolates, PLBJ-1 and PLFJ-1, were sequenced to ensure the accuracy of the
genome information and the subsequent analysis. PLBJ-1 and PLFJ-1 were assembled into 144
and 163 scaffolds, respectively, with total sizes of 38.14 and 38.53 Mb, while the published
TERIBC I was assembled into 301 scaffolds with a total size of 38.82 Mb (Table 1). The com-
parative genome sizes of related fungi species are listed in S1 Table. A total of 11,773 and
11,763 gene models were predicted in both genomes, respectively, parallel to other ascomycetes
fungi (S1 Table). BLASTN analysis was performed between the two genomes and demon-
strated that 83.56% of the PLBJ-1 genome and 82.79% of the PLFJ-1 genome shared high syn-
teny (Fig 2A). According to the syntenic relationship of PLBJ-1 and PLFJ-1, we reconstructed
10 super-scaffolds (S2 Table), which illustrated the physical ubieties of the assembled scaffolds;
e.g., scaffold 00006, scaffold 00016 and scaffold 00015 in PLFJ-1 were combined into a super-
scaffold (Fig 2B). The overall syntenic relationship of PLBJ-1 and TERIBC 1 showed that
76.52% of the PLBJ-1 genome and 75.12% of the TERIBC 1 genome shared high synteny (S1
Fig). Approximately 6.07% of the repeat sequences that included transposon elements (TEs)
(~4.37%) and tandem repeats (~1.70%) were identified in PLBJ-1. The Class I

Table 1. Genome feature of the three P. lilacinum isolates.

Feature PLBJ-1 PLFJ-1 TERIBC 1

Accession number LSBH00000000 LSBI00000000 LOFA00000000.1

Length (Mb) 38.14 38.53 38.82

Scaffold number 144 163 301

Contig number 596 818 301

Max scaffold length (Mb) 6.69 5.70 3.7

Scaffold N50 3.77 3.20 1.79

G+C contents (%) 58.5 58.4 58.6

Repeat sequence (%) 6.07 6.00 1.68

Protein-coding genes 11,773 11,763 13,266

tRNA genes 90 90 91

Secreted proteins 1410 1448 1276

Glycoside hydrolases 239 253 249

Carbohydrate esterases 32 32 106

Protease 430 443 480

PHI genes 2844 2892 1953

SMs 41 41 46

Strains PLBJ-1 and PLFJ-1 of P. lilacinum are obtained in this study, strain TERIBC 1 was sequenced in [24] recently.

doi:10.1371/journal.ppat.1005685.t001
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Fig 2. Genomic synteny of PLBJ-1 and PLFJ-1. (A) The syntenic genome sequences of PLBJ-1 and PLFJ-1 were analyzed by BLASTN, with
an E-value cutoff of 1e-5. The red semicircle represents the scaffolds of PLBJ-1, while the blue semicircle represents the scaffolds of PLFJ-1.
Scaffold lengths of� 100 Kb were used for this analysis, and the threshold of matched blocks was� 1000 bp, which are connected by lines of the
same color. (B) An example of a super-scaffold inferred by syntenic analysis.

doi:10.1371/journal.ppat.1005685.g002
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(retrotransposons) and Class II (DNA transposons) TEs occupied ~1.80% and ~0.76% of the
genome, respectively. The PLFJ-1 isolate harbored a similar number of repeat sequences
(6.00%). The distribution of the TE families was similar in the two isolates, with the exception
of certain families, e.g., I, Gypsy, Penelope, Tc1-Mariner and hAT (S3 Table). In total, the two
isolates of P. lilacinum contained a larger number of retrotransposons than DNA transposons.
P. lilacinum exhibited expansion of repeat content comparable to other ascomycetes fungi,
with the exception of H.minnesotensis, Ophiocordyceps sinensis and Fusarium oxysporum (fol),
in which the repeat sequences accounted for more than one quarter of the genome (S1 Table).
In TERIBC 1, approximately 1.68% of the genome sequence was identified as repeat content.

Among the predicted genes of PLBJ-1, 90.4% were supported by RNASeq data from mycelia
cultured in PDB. Both strains exhibited a consistent KOG pattern. Except for the category
“General function prediction only”, which was ambiguously sorted to a certain group, the most
abundant KOG categories were “Signal transduction mechanisms”, “Posttranslational modifi-
cation, protein turnover, chaperones”, “Lipid transport and metabolism”, and “Intracellular
trafficking, secretion, and vesicular transport” (S2 Fig). A signal peptide analysis showed that
1,410 genes of PLBJ-1 and 1,448 genes of PLFJ-1 encoded putatively secreted proteins.

CAZymes that cleave and build polysaccharides could be required when P. lilacinum
degraded the structural polysaccharide armor of nematode eggshells, such as chitin, during the
course of its parasitism. The protease could stop the development of nematode eggs and drasti-
cally alter the eggshell structures when applied individually or in combination with chitinases
[28, 29]. A detailed examination of the CAZymes and proteases of P. lilacinum was performed
and compared with other fungi, including nematode parasitic fungi (P. chlamydosporia and H.
minnesotensis), nematode-trapping fungi (Arthrobotrys oligospora andMonacrosporium hap-
totylum), entomopathogenic fungi (T. inflatum, Beauveria bassiana, Cordyceps militaris,
Metarhizium robertsii, and O. sinensis), a mycoparasitic fungus (T. ophioglossoides), a sapro-
trophic fungus (T. reesei) and a plant pathogenic fungus (F. oxysporum). We identified 53 fami-
lies containing 239 genes in PLBJ-1 and 55 families containing 253 genes in PLFJ-1 that
encoded glycoside hydrolases (GH), which was more than the other fungi (an average of 213)
(S4 Table). The most abundant family in PLBJ-1 and PLFJ-1 was GH18, which was represented
by 32 and 41 chitinases, respectively, that degrade the chitin present in the chitin protein com-
plex of the nematode eggshell [30]. Consistent with GHs, PLBJ-1 and PLFJ-1 contained rela-
tively more carbohydrate-binding modules (CBMs) (59 and 64, respectively) (S5 Table), which
were frequently appended to the enzymes involved in polysaccharide depolymerization. A
series of carbohydrate esterase (CE)-encoding genes were also detected in the P. lilacinum
genomes (33 and 32, respectively), including the most abundant sterol esterases (CE10) and
cutinases (CE5), which are virulence factors of some plant pathogens [31] (S6 Table). Another
major class of CAZymes, the glycosyltransferases (GT), establish natural glycosidic linkages
across a broad range of small and macromolecules, and they were represented in the PLBJ-1
genome with 115 members in 32 families and in the PLFJ-1 genome with 124 members in 32
families (S7 Table). These enzymes’ classification demonstrated that they exhibited less vari-
ability in ascomycetes than did GHs, a trend that was maintained in a previous analysis [32].
The P. lilacinum genome contained more proteases (430 and 443, respectively) than other
fungi (an average of 396). The largest category of proteases encoded in PLBJ-1 and PLFJ-1
were serine proteases (194 and 198, respectively) (S8 Table), 76 and 81 of which were secreted
proteins, respectively. Among the serine proteases, we identified 34 subtilisins (S8) and ten ser-
ine carboxyproteases (S10) in the PLBJ-1 genome (36 and 11, respectively, in PLFJ-1), which
were reported to be involved in infection and the lethal activity of nematodes [28, 33]. The
metalloprotease (108 in PLBJ-1 and 109 in PLFJ-1) and cysteine protease (66 in PLBJ-1 and 68
in PLFJ-1) families also accounted for a significant proportion of the proteases.
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A whole genome analysis was conducted against the pathogen-host interaction (PHI) gene
database to identify potential virulence-associated genes, under the assumption that the homo-
logue of an experimentally validated pathogenic gene suggested that it played a pathogenic role
[34]. We demonstrated that 2,844 (24.1%) and 2,892 (24.6%) proteins of PLBJ-1 and PLFJ-1,
respectively, showed sequence similarity to those in the PHI database. Among these proteins,
299 and 317 proteins of PLBJ-1 and PLFJ-1, respectively, were classified as putatively secreted
proteins. The KOG functional class distribution of genes related to PHI showed a similar pat-
tern to the whole genome KOG analysis (S2 Fig). The PHI database search yielded 195
CAZymes in PLBJ-1 and 217 in PLFJ-1, 28 and 36 of which were chitinases (GH18), respec-
tively. Of the proteases, 125 in PLBJ-1 and 132 in PLFJ-1 were pathogenic genes according to
the PHI database, of which 64 and 72 were identified as secreted proteins, respectively, and
these proteins were more likely to function during the infection process [35].

Phylogenomic relationship and orthologous analysis
A phylogenomic tree was constructed based on 855 single-copy orthologues of P. lilacinum
and 34 other filamentous fungi, with Saccharomyces cerevisiae as the outgroup. The results ver-
ified that P. lilacinum belongs to Ophiocordycipitaceae, as described by Jennifer Luangsa-ard
[8], and it formed a clade with T. inflatum, T. ophioglossoides, O. sinensis [36], O. unilateralis
[37] and H.minnesotensis (Fig 3A). The inferred phylogeny illustrated that T. inflatum and T.
ophioglossoides were most closely related to P. lilacinum, and they diverged after their split with
O. sinensis, H.minnesotensis and O. unilateralis. This phylogeny also reinforced the previous
analysis that found that the split between Cordycipitaceae (including B. bassiana and C.mili-
taris) and Clavicipitaceae (including P. chlamydosporium andM. anisopliae) occurred before
Ophiocordycipitaceae diverged from Clavicipitaceae (Fig 3A). The three nematode parasitic
fungi P. chlamydosporium,H.minnesotensis and P. lilacinum clustered with insect pathogens,
indicating that nematode and insect pathogens might share a common ancestor.

A comparative genomic analysis was performed between P. lilacinum and other nematode-
related fungi (the nematode parasites P. chlamydosporia andH.minnesotensis and the nema-
tode-trapping fungi A. oligospora andM. haptotylum). A total of 17,995 orthologous clusters
consisting of 76,151 proteins were identified, of which 4,652 clusters containing 35,972 pro-
teins were mapped to all four of the fungi types (Fig 3B). On the whole, the nematode-trapping
fungi, which capture nematodes through an entirely different mechanism compared to P. lilaci-
num [26], possessed the largest number of unique gene clusters, although they had a more dis-
tant phylogenetic relationship with the other fungi in Hypocreales (Fig 3B). P. lilacinum
contained a large number (3651) of species-specific clusters, while P. lilacinum shared 7,700,
6,673 and 5,253 clusters with P. chlamydosporia,H.minnesotensis and the nematode-trapping
fungi, respectively.

Analysis of paralogous gene families
Lineage-specific expansions could provide material for the evolution of a specific functional
system or adaptation in eukaryotes [38]. To study gene family expansions in P. lilacinum, a
comparative genomic analysis of 15 fungal species (PLBJ-1, PLFJ-1, P. chlamydosporia strain
123, P. chlamydosporia strain 170,H.minnesotensis, A. oligospora,M. haptotylum, T. inflatum,
B. bassiana, C.militaris,M. robertsii, O. sinensis, T. ophioglossoides, T. reesei, and F. oxysporum)
was performed. In total, 1,963 gene families with more than one gene expansion were identified
in both PLBJ-1 and PLFJ-1, of which 1,761 gene families were only present in P. lilacinum,
and some gene families with significant expansion are listed in S9 Table. However, most fam-
ilies were annotated as reverse transcriptases and transposases, and the others were related to
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transporters or lyases. When the nematode parasitic fungi P. chlamydosporium and H. min-
nesotensis were considered, 2,936 orthologous clusters showed expansion in the five isolates.
The largest paralogous expansion contained protein families associated with SMs, such as
cytochrome P450s, oxidoreductases, and transporters. In addition, these families also con-
tained transcription factors, glycosyl hydrolases, the hAT family, the majority of which are
listed in S10 Table.

Fig 3. Phylogenomic relationships and orthologous gene clusters. (A) Maximum likelihood phylogeny was computed from a
concatenated alignment of 855 groups of single-copy orthologues. Bootstrap values are shown beside the nodes. (B) The number of gene
clusters shared by P. lilacinumwith other major associated ecologies. Gray = P. lilacinum isolates PLBJ-1 and PLFJ-1; blue = nematode egg
parasite P. chlamydosporia isolates 123 and 170; pink = nematode parasiteH.minnesotensis; and yellow = nematode-trapping fungi A.
oligospora andM. haptotylum.

doi:10.1371/journal.ppat.1005685.g003
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SMs analysis based on the sequence of the P. lilacinum genome
To evaluate the capability of P. lilacinum to produce SMs, we searched the genome of PLBJ-1
and PLFJ-1 for biosynthetic genes encoding the four classes of the main SM-associated synthe-
tases, including polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), terpene
synthase (TS) and dimethylallyl tryptophan synthase (DMATS) [26]. A uniform SM profile
with parallel categories and numbers was presented in the two genomes (S11 Table). In total,
13 PKSs, 10 NRPSs, two PKS-like enzymes, 10 NRPS-like enzymes, one DMATS, 4 TSs and
one PKS-NRPS hybrid were identified in the PLBJ-1 genome, as described in S11 Table. Com-
pared to sequenced species in Ophiocordycipitaceae, the number of SMs in P. lilacinum (41)
was similar to the 45 SMs in T. ophioglossoides, 39 SMs in O. unilateralis, more than 30 SMs in
Ophiocordyceps sinensis, fewer than 55 SMs in T. inflatum [39], and 101 SMs in the nematode
endoparasitic fungus H.minnesotensis [26]. These core backbone genes were dispersed among
39 clusters with other enzymes, such as transcriptional regulators, P450s and transporters, as
predicted by antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) [40] (S11
Table). According to the BLAST results from the NCBI NR database, no homologues of func-
tionally characterized SMs were detected. Among them, we detected the expression of 29 core
genes with FPKM (fragments per kilobase of transcript per million mapped fragments)
values> 0.5, using an RNA-seq analysis of PLBJ-1 cultured in PDB medium for 8 days.

A phylogenetic tree was constructed based on the KS domain amino acid sequence of the
PKSs in P. lilacinum and the products of known PKSs, which were divided into three main
clades: non-reducing (NR) PKSs, partially reducing (PR) PKSs and highly reducing (HR) PKSs
(S3 Fig). VFPBJ_05021, VFPBJ_09342, VFPBJ_09755, and VFPBJ_10843 were predicted as NR
PKS-encoding genes, and they shared the highest homology with the non-reducing biosynthetic
genes, such as citrinin [41] and griseofulvin [42]. VFPBJ_00212, VFPBJ_02527, VFPBJ_02532,
VFPBJ_03442, VFPBJ_05962, VFPBJ _06473, VFPBJ _07567 and VFPBJ_09314 were distributed
in the HR PKS clade in close relationship with HR polyketides, such as fumonisin synthase
Fum1p [43]. The phylogenetic analysis was consistent with the domain structure analysis of
degree of reduction, in which the HR PKS contained the reductive domains KR (keto-reductase),
ER (enoyl reductase) and DH (dehydratase), while the NR PKS did not contain these domains
(S3 Fig, S11 Table). VFPBJ_05021 and VFPBJ_09342 were grouped with the antibiotics griseoful-
vin and citrinin with a bootstrap value of 100%, and they shared a common domain structure.
This finding suggested that griseofulvin/citrinin or structurally related compounds could be pro-
duced by P. lilacinum. However, we did not detect these compounds when P. lilacinum was cul-
tured in PDB for 8 days.

Among the 10 NRPSs, six contained one module or an incomplete module, which could
encode products with one amino acid. Four NRPSs were multi-module enzymes, which could
encode products composed of more than one amino acid. To examine the potential NRPS
orthologues of P. lilacinum and to detect the feasible NRPS evolutionary mechanism in the
family Ophiocordycipitaceae, a genealogy was created based on the A-domains from the NRPS
of fungi in Ophiocordycipitaceae and several functionally characterized products (S4 Fig).
The tree depicted an intricate evolutionary relationship for the NRPS genes. A general trend
throughout the tree was that, in Ophiocordycipitaceae, many A-domains clustered with ortho-
logues in other species than with in the same protein. Notably, the 11 A-domains of the cyclo-
sporine synthetases from T. inflatum clustered separately (S4 Fig, node 3), indicating that other
species were incapable of encoding cyclosporine and that its evolution occurred after T. infla-
tum diverged from these fungi in Ophiocordycipitaceae.

This phylogenetic analysis of the A-domains for P. lilacinum detected a series of homologous
A-domains: four of the mono-module NRPSs had functionally uncharacterized homologues.
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VFPBJ_05068 was identified as siderophore synthetase, of which three of the A-domains were
grouped with homologues to form a sub-clade (S4 Fig, node 2). The three A-domains of VFP
BJ_06596 were grouped with TINF2556, annotated as an ergot alkaloid in T. inflatum, while
TINF2556 contained four modules.

The peptaibiotics, a class of linear NRPSs that are abundant of AIB [44], were clustered into
one sub-clade (S4 Fig, node 1), mainly including the peptaibiotics from T. ophioglossoides [45],
T. inflatum and P. lilacinum. The ten A-domains from VFPBJ_02539 (identified as the leuci-
nostatin biosynthetic gene lcsA in this study), clustered with the ten A-domains from the peptai-
biotic TOPH_08469 in T. ophioglossoides, with bootstrap values of 100%, and a global BLAST
analysis revealed that the sequence identity of the two homologues was 65%. Neither orthologue
was identified in other species of Ophiocordycipitaceae. The single A-domain of lcsA was scat-
tered in the peptaibiotic sub-clade of the tree, while A2, A5 and A6, which activated Leu or
related amino acids, were identified in the subsequent study and were grouped together with a
bootstrap value of 60%, suggesting that both lineage-specific changes and module duplication
contributed to the evolution of the leucinostatin metabolites. In the previous study, A4, A7 and
A8 of TOPH_08469 were distributed in a sub-clade enriched in A-domains encoding AIB [45],
and our study demonstrated that A4, A7 and A8 of lcsAwere encoded for AIB.

In T. ophioglossoides, the TOPH_08469 gene cluster was predicted to contain 28 genes
from TOPH_08452 to TOPH_08478 that were located in an ~124 kb region [45]. A compar-
ative analysis of genes surrounding lcsA and TOPH_08469 cluster revealed a high synteny
(Fig 4A). VFPBJ_02521 (designed as lcsG) shared 68% sequence identity with TOPH_08452,
and lcsA shared 66% sequence identity with TOPH_08469. Interestingly, no homologues
of the genes next to the cluster, VFPBJ_02510 to VFPBJ_02520 and VFPBJ_02540 to VFP
BJ_02550, were identified in the T. ophioglossoides genome. Within the lcs cluster, two genes,
cytochrome P450 lcsI and a protein with unknown function, lcsM, did not possess homo-
logues in the TOPH_08469 cluster, while all of the leucinostatin biosynthetic genes in T.
ophioglossoides (TOPH_08452 to TOPH_08469) had homologues within the lcs cluster.
These results suggested that this nearly 100 kb region might have been horizontally trans-
ferred from other fungal or bacterial species. However, leucinostatins have not been reported
to be produced by T. ophioglossoides to date.

Identification of the NRPS gene lcsA, which is involved in the
leucinostatin biosynthesis pathway
The lipopeptide leucinostatin A contains ten amide bonds that divide the molecule into 11
moieties, including 4-methylhex-2-enoic acid, 9 amino acid residues and DPD. The property
of the mixture of the polyketide and peptide moieties in the leucinostatins indicated a PKS,
NRPS or hybrid PKS-NRPS origin. It is logical to consider that a single reducing PKS encodes
the 4-methylhex-2-enoic acid, and a NRPS enzyme encodes the remaining portion, as in the
models for emericellamide synthesis in Aspergillus nidulans[46] and pneumocandin in Glarea
lozoyensis[47]. Among the multi-module NRPSs in P. lilacinum, VFPBJ_05068 contains 13
domains grouping into 3 modules, VFPBJ_06596 contains seven domains grouping into three
modules, and VFPBJ_11400 contains six domains grouping into two modules. These enzymes
were insufficient for the assembly of nine amino acids of leucinostatins. Thus, VFPBJ_02539
was left as the only plausible candidate. VFPBJ_02539 (LcsA) consists of 11,872 amino acids
and was encoded by a gene with five introns. The domain structure of LcsA was comprised of
10 C-A-PCP modules and carried the correct number of amino acids for the assembly of leuci-
nostatins. The NRPSpredictor2 [48] offered little insight into the substrates except that the sub-
strates of A1 and A3 were proline and leucine, respectively (S12 Table). Two PKSs, lcsB and
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lcsC, located not far upstream of lcsA, which could encode 4-methylhex-2-enoic acid, indicated
that this cluster is responsible for leucinostatin production. Furthermore, lcsD (VFPBJ_02533),
located between lcsA and the PKSs, was annotated as an acyl-CoA ligase, offering a conceivable
route for connecting the fatty acid and peptide.

To verify the associations between the putative lcsA and leucinostatins, a gene deletion
method was developed for P. lilacinum based on the previous method for Fusarium oxysporum
[49], with the G418 sulfate-resistance gene neo as the selection marker. A portion of lcsA (2,613
bp, including 236 bp upstream of the ORF) was knocked out by double homologous deletion
cassettes with the neomarker via PEG-mediated transformation, and the resulting G418 sul-
fate-resistant isolates (S5A and S5B Fig) were verified by diagnostic PCR, using the primers in
neo and outside the knockout cassette (S5C Fig) (S13 Table). Finally, one mutant (ΔlcsA) of
PLBJ-1 was isolated with correct PCR amplification products from 320 G418 sulfate-resistance
mutants (S5C Fig), and the remaining isolates resulted from ectopic integration of the neo gene
cassette into the genome. The wild type of P. lilacinum and the ΔlcsAmutant of PLBJ-1 were
cultured in PDB medium for 8 days, and the ethyl acetate extracts were analyzed by HPLC-MS.
The MS spectrum of the wild type displayed two overlapping peaks at 15.6 and 16.0 min, with
m/z [M+H]+ of 1218.9 and 1204.9, respectively, which were assigned to leucinostatins A and B
and were absent in the ΔlcsAmutant (Fig 5, S6 Fig). A comparison with the authentic standard
confirmed that the missing compounds of the ΔlcsAmutant were indeed leucinostatins A and
B (Fig 5, S6 Fig). As expected, these results demonstrated the essential roles of lcsA in the bio-
synthesis of the leucinostatins.

Fig 4. The boundary of the lcs cluster in P. lilacinumwith its homologues in T. ophioglossoides. (A) Horizontal
arrows of the same color represent the orthologous genes. The sequence identity between the homologous genes
from two fungi is shown by shaded areas with different colors. TO, T. ophioglossoides; PL, P. lilacinum. The bars
indicate boundaries of the lcs cluster predicted by antiSMASH, SMURF, and qRT-PCR. (B) The expression ratio of the
genes around lcsA when expression in PLBJ-1 cultured in leucinostatin-inducing medium was compared to expression
in non-inducing medium. The ratios for different genes demonstrated an extensive range, so the breakpoint was
inserted into the Y axis.

doi:10.1371/journal.ppat.1005685.g004
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The boundary determination of the leucinostatin biosynthesis gene
cluster
Different boundaries of the lcs cluster were defined by the SMURF and antiSMASH programs
(Fig 4A). Nine genes flanking lcsA from VFPPL_02532 to VFPPL_02540 spanning 62 Kb were
predicted to be in the cluster by SMURF (Secondary Metabolite Unique Regions Finder) [50],
while a larger cluster comprising 26 genes from VFPBJ_02521 to VFPBJ_02546, spanning 120
Kb, was predicted by antiSMASH. Therefore, it was necessary to explore the genes that were
involved in the pathway using a biological approach.

Changes in the culture medium could impact the general metabolic profile of an organism,
based on the “OSMAC” (one strain-many compounds) hypothesis[51]. Indeed, we found that
P. lilacinum produced leucinostatins A and B when cultured with our lab recipe of PDB but did
not produce leucinostatins when cultured in PDB-BD (see the Materials and Methods section).
This result provided clues to identify the boundary of the lcs cluster using producing versus
non-producing media. qRT-PCR analysis was conducted to compare the expression patterns
of genes flanking lcsA when PLBJ-1 was grown in the two types of media for 8 days. Further-
more, RNA-Seq of PLBJ-1 under leucinostatin-inducing conditions (PDB medium) was
performed.

As expected, the expression level of NRPS lcsA when P. lilacinum was grown in leucinosta-
tin-inducing medium was upregulated 95-fold, compared to those grown in non-inducing
medium (Fig 4B). The genes downstream of lcsA, including the putative transporter ABC gene
VFPBJ_02540, did not display a higher expression level in the leucinostatin-inducing medium,
indicating that they were not involved in the leucinostatin biosynthesis pathway. Correspond-
ingly, the RNA-Seq expression profile during leucinostatin production showed a low FPKM
value of VFPBJ_02540 (2.01) (S7A Fig), while the FPKM value of lcsA was 65.4. These results
indicated that the 3’ edge of the cluster was lcsA. The genes upstream of lcsA from
VFPBJ_02520 to VFPBJ_02538 (lcsT) were upregulated at different levels in the leucinostatin-
inducing medium. A 16- to 2692-fold increase in expression was observed (Fig 4B), except for
three genes, VFPBJ_02520, LcsM, and lcsQ, which showed less than 10-fold increase and low
FPKM values in the transcriptional data (S7A Fig). VFPBJ_02520 was annotated as a phospho-
hydrolase that appeared to be involved in nucleic acid metabolism and signal transduction,
instead of secondary metabolism[52]. Thus, we speculated that the 5’ boundary of the cluster
was VFPBJ_02521 (lcsG). To support this hypothesis, the expression patterns of the genes

Fig 5. HPLC profiles (UV 210 nm) of culture extracts from the wild type P. lilacinum strain andmutants
when grown in PDBmedium. Leucinostatins A and B were detected in the wild type isolate, while they were
abolished in ΔlcsA, ΔlcsC, ΔlcsD and ΔlcsE.

doi:10.1371/journal.ppat.1005685.g005
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flanking the cluster were analyzed using qRT-PCR analysis in wild type PLBJ-1 and ΔlcsA grown
in leucinostatin-inducing medium.We observed an increase in the expression of wild type P. lila-
cinum ranging from four- to 79-fold (S7B Fig). Thus, a series of genes from VFPBJ_02521 to
VFPBJ_02539, designated as lcsA to lcsT, included the core enzymes, modifying enzymes and
transporter enzymes coding for the biosynthesis of leucinostatins (Fig 4A, Table 2).

Identification of the leucinostatin biosynthetic pathway
Considering the structural similarities of leucinostatin A with emericellamide A [53] and pneu-
mocandin [47], we reasoned that a similar biosynthetic mechanism might be required to form
the skeletons of lipopeptides and peptides. As reported, a single module polyketide synthase
iteratively catalyzes the formation of the linear polyketide chain; in daptomycin [54] and echi-
nocandin B [55], acyl-CoA ligase converts the fatty acid to fatty acyl CoASH; in compound
W493 B [56], a thioesterase was proposed to hydrolyze the thiol bond and shuttle the product
to the first module of NRPS. To determine whether the same enzymes play critical roles in the
leucinostatin biosynthesis pathway, we disrupted the PKS (lcsC), ligase (lcsD) and thioesterase
(lcsE)-encoding genes in the cluster by homologous recombination (S5A Fig) and verified the
mutants by PCR amplification (S8A Fig). After culturing the fungi in PDB medium and com-
paring the extracts with the PLBJ-1 wild type and ΔlcsA by HPLC-MS, we showed that leuci-
nostatins A and B disappeared in ΔlcsC, ΔlcsD and ΔlcsE, similar to ΔlcsA (Fig 5, S6 Fig).

Table 2. Description of the genes in the leucinostatin biosynthetic cluster.

Gene ID Name Length Conserved domain Deduced function

VFPBJ_02519 270 PhyH Epoxidase subunit

VFPBJ_02520 214 HD Phosphohydrolase

VFPBJ_02521 lcsG 468 Methyltransf_2 O-methyltransferase

VFPBJ_02522 lcsH 1552 ABC_tran ABC transporter

VFPBJ_02523 lcsI 516 p450 Cytochrome P450

VFPBJ_02524 lcsJ 309 4HBT_2 Thioesterase-like

VFPBJ_02525 lcsK 548 p450 Cytochrome P450

VFPBJ_11786 lcsL 228 bZIP Transcriptional regulator

VFPBJ_02526 lcsM 82 Hypothetical protein

VFPBJ_02527 lcsB 2507 KS-AT-DH-MET-ER-KR PKS

VFPBJ_02528 lcsN 336 p450 Cytochrome P450

VFPBJ_02529 lcsO 593 ABC1 ABC transporter

VFPBJ_02530 lcsP 387 Aminotran_4 Aminotransferase

VFPBJ_02531 lcsF 552 Transcriptional regulator

VFPBJ_02532 lcsC 2332 KS-AT-DH-MET-ER-KR-ACP PKS

VFPBJ_02533 lcsD 386 AMP-binding domain Acyl-CoA ligase

VFPBJ_11787 lcsQ 389 tRNA-synt_2c tRNA synthetases

VFPBJ_02534 lcsR 400 Lactamase_B Zn-dependent hydrolases

VFPBJ_02535 lcsE 316 Thioesterase Thioesterase

VFPBJ_02536 lcsS 243 Hypothetical protein

VFPBJ_02538 lcsT 269 CC3_like_SDR_a Epimerase

VFPBJ_02539 lcsA 11872 PCP-(C-A-PCP)*10-NAD NRPS

VFPBJ_02540 1444 ABC2_membrane ABC transporter

VFPBJ_02541 594 Sec14p-like Phosphatidylinositol transfer protein

VFPBJ_02519, VFPBJ_02520, VFPBJ_02540 and VFPBJ_02541 are genes flanking lcs cluster.

doi:10.1371/journal.ppat.1005685.t002
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Overexpression of the transcription factor lcsF
A powerful approach to enhancing the production of leucinostatins was to express transcrip-
tion factors constitutively that were used for other SMs [57]. lcsF encodes a putative transcrip-
tion factor with a bZIP domain structure, and it is associated with secondary metabolism [58].
To assess the function of lcsF, we cloned it into the KSTNP vector under the control of the
TrpC promoter. The resulting plasmid, KSTNP-OElcsF, was randomly integrated into the
genome of wild type P. lilacinum (S8B Fig). The positive transformants were screened by G418
sulfate and were diagnosed by PCR amplification of the expression cassette (S8C Fig). Trans-
formants with an intact overexpression cassette were cultured in leucinostatin-inducing PDB
medium for 8 days. The expression level of lcsF in the mycelia was analyzed by qRT-PCR, and
six of ten transformants demonstrated more than 20-fold upregulation. Finally, three transfor-
mants without changes in their physiological indices were selected for the downstream test. As
expected, all 20 genes in the cluster were upregulated to some extent by lcsF, with the exception
of lcsL and lcsP, which were downregulated three- and five-fold (S9A Fig). In addition to the
30-fold increase in lcsF expression, the expression of the three PKS/NRPS synthase encoding-
genes (lcsB, lcsC and lcsA) were increased by ~3- to 4-fold. For O-methyltransferase (lcsG), ABC
transporter (lcsH and lcsO), thioesterase (lcsE), epimerase (lcsT) and the unknown function genes
lcsM and lcsS, we observed ten-fold or higher upregulation. The other genes in the cluster dis-
played a two- to ten-fold increase in expression. Genes adjacent to the lcs cluster, VFPBJ_02520
and VFPPL_02540, were downregulated three-fold. After the wild type and OE::lcsF P. lilacinum
were grown in PDBmedium with shaking for 8 days, the resulting HPLC profile showed that the
titers of leucinostatins A and B were elevated by at least 50% (S9B Fig). These results provided
evidence that the pathway-specific transcription factor lcsFwas capable of regulating the entire
gene cluster and leucinostatin biosynthesis, further verifying the boundary of this cluster.

Antagonism against the oomycetes of P. lilacinum depending on
leucinostatins
The deletion and overexpression of the genes in the lcs cluster had no apparent effects on the
fungal hyphae or spore phenotypes of P. lilacinum and did not cause any growth defects. It is
well known that leucinostatins are antibiotics used to combat fungi and bacteria. Here, we
found that leucinostatins contributed to the inhibition of oomycetes, which had not previously
been reported. The growth of P. infestans and P. capsici was inhibited in a confronting incuba-
tion with wild type P. lilacinum and OE::lcsF, while the inhibition disappeared when they were
grown in a confronting incubation with ΔlcsA (Fig 6). Similar to ΔlcsA, P. infestans could grow
normally in a confronting incubation with ΔlcsC, ΔlcsD and ΔlcsE (S10 Fig). The results indi-
cated that leucinostatins A and B inhibited the growth of some oomycetes. A gradient inhibi-
tory zone was explored with leucinostatins A and B in different concentrations to find
quantitative evidence of inhibition against P. infestans (S11 and S12 Figs).

Discussion
P. lilacinum is one of the most important endo-parasites of plant nematodes. We obtained the
genome sequence of two P. lilacinum strains and compared them with other nematode para-
sites, nematode-trapping fungi, insect parasites, a mycoparasitic fungus, a saprotrophic fungus
and a plant pathogen. This method provided insights into the life strategy and evolution of
nematode endoparasites.

Major gene families (GH, protease, SMs) could corroborate each other for the three P. lilaci-
num strains (PLBJ-1, PLFJ-1 and the published TERIBC 1). However, TERIBC 1 was predicted
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to encode more CEs and fewer PHI genes in contrast with PLBJ-1 and PLFJ-1 (Table 1). The
lcs cluster was also detected in the TERIBC 1 genome. The genomic sequence identity of the lcs
cluster (lcsG to lcsA) between PLBJ-1 and TERIBC 1 was 98.0%, and the sequence identity was
99.0% between PLBJ-1 and PLFJ-1, with the syntenic relationships shown in S13 Fig.

Although fungi have been screened for activity as bio-control agents against P. infestans, the
biological control of late blight is dominated by bacterial antagonists. Microbial compounds
known as biosurfactants [59] are believed to participate in the process. For example, the cyclic
lipopeptide massetolide A produced by Pseudomonas fluorescens exhibited destructive effects
on the zoospores of oomycetes [60]. The inhibition of P. infestans by leucinostatins provided
the basis for their chemical application in agriculture and for further biological studies of the
antagonist P. lilacinum on oomycetes, which had not been researched previously. Leucinosta-
tins also demonstrated inhibition against P. capsici [61], another oomyceteous plant pathogen,
while the antagonism of P. lilacinum against P. capsici seemed inferior to that against P. infes-
tans, as shown in Fig 6.

The phylogenomic analysis revealed that P. lilacinum was a member of Ophiocordycipita-
ceae, Hypocreales, which includes fungi engaged in various lifestyles, and it was not related to
the previously considered Paecilomyces in Sordariales. This species’ closest relatives, T. infla-
tum and T. ophioglossoides, are insect and fungal parasites (Fig 3A), supporting the viewpoint
that parasitism might occur due to the formation of novel genes that could be acquired through
horizontal transfer or gene duplication and could play specific roles during host infection [62].
Moreover, these results indicated that the nematode pathogens had a strong link with insect
pathogens and were distantly related to nematode-trapping fungi, as previously described in
[25] and [26]. The large number of hydrolytic enzymes, particularly GHs and proteases, puta-
tively secreted proteins and pathogenesis-related proteins in P. lilacinum support its various
lifestyles as it encounters diverse nutrient resources [63]. Chitin and proteins comprise a signif-
icant proportion of the nematode and insect surface, the degradation of which requires serine
proteases and chitinases.

The development of natural compounds from bio-control fungi have recently attracted con-
siderable interest because the production of nematode-toxic SMs could also be a strategy for
fungi to infect nematodes [64]. Next-generation sequencing technologies are becoming an
essential tool for identifying novel genes for metabolite biosynthesis in fungi. The genome
sequence of P. lilacinum revealed the potential to produce a rich repertoire of SMs, including

Fig 6. The role of leucinostatins in antagonism between P. lilacinum and Phytophthora. (A)
Cocultivation of P. infestans and wild type, ΔlcsA and OE::lcsF P. lilacinum on rye agar medium. (B)
Cocultivation of P. capsici and wild type, ΔlcsA and OE::lcsF P. lilacinum on PDAmedium.

doi:10.1371/journal.ppat.1005685.g006
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41 core enzymes. Most of the PKS enzymes could be clustered with the PKS enzymes encoding
bioactive polyketides when the PKS tree was constructed based on the KS domains (S3 Fig).
The NRPS enzyme tree based on the A-domains demonstrated that some of NRPSs of P. lilaci-
num possessed homologues in closely related species (S4 Fig). However, none of the enzymes’
biosynthetic function have been validated previously. The polyketide compounds acremox-
anthone C and acremonidin A belong to the xanthone−anthraquinone heterodimer that was
recently isolated from P. lilacinum. Structurally related heterodimeric compounds, such as
acremoxanthones A and B [65] and xanthoquinodin B3 [66], have been isolated from the gen-
era Acremonium and Humicoma. This category of compounds and their derivatives have
remarkable biological and medicinal activities, and their total synthesis has garnered attention
worldwide. Unfortunately, there still exist limitations in the current synthesis methods [67],
and metabolite regulation based on molecular biosynthesis is not available because the biosyn-
thetic genes have not been identified. One or more non-reducing PKSs (S3 Fig) might be
involved in the biosynthesis of acremoxanthone C and acremonidin A, according to their
structures.

By analyzing the genes located in the leucinostatin biosynthetic cluster, combined with the
HPLC-MS analysis of gene deletion mutants (Fig 5), we were able to propose a putative

Fig 7. A putative biosynthetic pathway for leucinostatin A.

doi:10.1371/journal.ppat.1005685.g007
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biosynthetic pathway for leucinostatins (Fig 7). This hypothetical biosynthesis initiated with
the assembly of 4-methylhex-2-enoic acid by a reducing PKS. However, two reducing PKS
encoding genes with 38% sequence identity are present in the cluster, and both contained KS,
AT, DH, cMT, ER, KR and ACP domains. We excluded the possibility of a partnership
between the two PKSs in a sequential manner or a convergent manner, as has been reported
for asperfuranone [68] and azaphilone A [69], based on their structures. Moreover, in the bio-
synthesis of chaetoviridins and chaetomugilins from Chaetomium globosum, a PKS cazF
(KS-AT-DH-cMT-ER-KR-ACP) encoded an intermediate 4-methylhex-2-enoic acid [70]. The
protein sequence identities between cazF and lcsB/lcsC were both 29%; thus, we could not esti-
mate which PKS was responsible for 4-methylhex-2-enoic acid. The results of RNA-seq and
qRT-PCR indicated that both genes contributed to leucinostatin synthesis. The deletion of lcsC
interrupted leucinostatin biosynthesis, which confirmed that lcsC is essential for the synthesis
of leucinostatins. Due to the difficult genetic manipulation, we failed to obtain lcsB deletion
mutant.

The lipopeptide pathways and organizations of their clusters have some striking commonal-
ities. We got clues from the lipopeptides echinocandin B [55], pneumocandin [47] and emeri-
cellamide [53]. The polyketide residue might be transferred to the NRPS LcsA, mediated by
two additional putative enzymes, acyl-CoA ligase (LcsD) and thioesterase (LcsE). The linear
polyketide carboxylic acid, which was released from PKS, was converted to a CoA thioester by
LcsD, and then LcsE hydrolyzed the thiol bond and shuttled the polyketide intermediate to
LcsA. 4-Methylhex-2-enoic acid was not detected in the culture of the ΔlcsD isolate, indicating
that the triketide might be sticked in the PKS enzyme to prevent its release until the ligase is
added for the reaction.

The phylogenetic analysis of the ten A-domains of LcsA revealed that LcsA_A2, LcsA_A5,
LcsA_A6 and LcsA_A3 were grouped into one clade, and LcsA_A4, LcsA_A7 and LcsA_A8
were grouped into another clade (S14 Fig). The conserved domains are believed to have evolved
through module duplication, and they activate similar amino acid structures [71]. In the plausi-
ble model for leucinostatin synthesis, A5 and A6 incorporated leucine, A2 incorporated AHy-
MeOA, the structure of which is equal to a hydroxyl-3-pentone extending at the leucine, and
A3 incorporated 3-hydroxyl leucine. A4, A7 and A8 incorporated AIB. Thus, the structural
similarity of amino acids activated by conserved A-domains verified that the 4-methylhex-
2-enoic acid moiety in the leucinostatins was assembled by a discrete enzyme, instead of LcsA.
The C domain of the first module catalyzed the condensation of 4-methylhex-2-enoic acid and
MePro carried by domain A1, followed by successive condensations of nine amino acids to
trigger the elongation of the linear peptide. Next, the peptide scaffold would be released by the
NAD(P)H-dependent R domain (thioester reductase) at the C-terminal region of LcsA.

In the leucinostatin biosynthetic pathway, it is intriguing that the DPD residue at the C-ter-
minus of leucinostatin A was neither an amino acid nor a carboxy acid, which are incapable of
being activated by the A-domain and converting to amino acyl adenylate [72]. The DPD seems
to be a modified form of amino acids, whereas the primary form of this moiety cannot be deter-
mined based on the domain sequence. However, we could deduce a possible pathway for the
modification of the last amino acid according to the structure and the function of the genes in
the cluster (Fig 7). Originally, an Ala was likely incorporated into the decapeptide skeleton by
the A10 domain, which was attached to LcsA via a thioester bond; subsequently, the R domain
released this intermediate product. The NAD(P)H-dependent R domains reductively catalyzed
to produce linear aldehyde 1 by off-loading peptide thioesters, following completion of the
peptide skeleton, as presented in previous studies [73, 74]. Linear aldehydes frequently
occurred as intermediates and underwent subsequent reactions, such as macrocyclization, to
yield the imine product koranimine [75]; further reduction yielded myxochelin A or
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transamination to form an amine myxochelin B by aminotransferase [76]. Regarding the leuci-
nostatins, we speculated that aldehyde 1 would go through a transamination reaction to form
compound 2, which was accomplished by the putative aminotransferase lcsP.

In this pathway, the unhydroxylated leucine of intermediate 2 undergoes hydroxylation to
form compound 3. Three putative cytochrome P450-encoding genes (lcsI, lcsK and lcsN) within
the cluster alternatively might catalyze this modification. Another scenario equivalent to this
pathway for leucinostatin A synthesis was that a leucine was hydroxylated prior to its incorpo-
ration into the peptide. In all likelihood, the varying extents of methylation of compound 3 cat-
alyzed to form leucinostatins A and B. It is worth mentioning that, had the methylation
reaction not occurred, compound 3might be the ultimate precursor of leucinostatin C, which
is compound in leucinostatin family isolated from P.marquandii.

The AHyMeOA in leucinostatin A activated by the A2 of lcsA was regarded as a ramifica-
tion of leucine because leucine is located at this position in leucinostatins C, T, F, D and H,
although these compounds were not detected in the PLBJ-1 culture. Based on its structure and
the presence of redundant PKSs within the cluster, alternative PKS could be involved in synthe-
sizing the carbon chain. In addition, the leucinostatins contained the nonproteinogenic MePro,
incorporated in the synthesis of nostopeptolides in Cyanobacteria [77]. A zinc-dependent
dehydrogenase, nosE, and a P5C reductase, nosF, were involved in the oxidation and subse-
quent cyclization of leucine to formMePro, and the presence of nosE and nosF recently led to
screening for novel MePro-containing peptides [78]. In the pneumocandins from Zalerion
arboricola, feeding experiments established that leucine was cyclized to produce 3-hydroxy-
4-methylproline, whereas MePro might be an intermediate [79]. It was reasonable to assume
that the MePro in the leucinostatins originated from leucine cyclization. Although homologues
of nosE nor nosF were not present in the lcs cluster, it was plausible that MePro biosynthesis,
engaged in a separate pathway, was independent of leucinostatin synthesis. Another nonprotei-
nogenic amino acid, β-Ala, was present in leucinostatins and activated by the A9 of lcsA. A pre-
vious study of the destruxins inMetarhizium proposed that the aspartic acid decarboxylase
dtxS4 triggered the decarboxylation of aspartic acid into β-Ala, as a substrate for the assembly
line [80]. A genome-wide blast search for genes encoding aspartic acid decarboxylases in PLBJ-
1 revealed the presence of two candidate genes, VFPBJ_01400 and VFPBJ_10476, with 68%
and 61% sequence identity to dtxS4, respectively, which could have catalyzed the biosynthesis
of β-Ala in leucinostatins.

Conclusions
The genomes of P. lilacinum strains PLBJ-1 and PLFJ-1 were sequenced, completely assembled,
annotated, and comparatively analyzed with related fungi. Phylogenomic analysis showed that
P. lilacinum was most closely related to T. inflatum and T. ophioglossoides, and the cluster of
nematode parasitic fungi and insect pathogens indicated their common origin. PKS and
NRPS-encoding genes were thoroughly characterized and analyzed by phylogenetic analysis,
from which we found that lcsA was specific to P. lilacinum and T. ophioglossoides. Furthermore,
lcsA was proved to be responsible for leucinostatin biosynthesis by homologous deletion. The
boundary of the lcs cluster was identified by comparison of gene expression levels when P. lila-
cinum was cultured in leucinostatin-inducing and non-inducing medium as well as RNA-Seq
analysis. Disruption of lcsC, lcsD and lcsE demonstrated the critical roles of PKS, acyl-AMP
ligase and thioesterase in the biosynthetic pathway of leucinostatins. Overexpression of the
transcription factor lcsF increased the production of leucinostatins A and B through regulated
expression levels of genes in the lcs cluster. We also demonstrated that leucinostatins could
enable the fungus with antagonistic activity against the oomycetes.
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Materials and Methods

Fungal strains, vectors and reagents
The leucinostatin-producing P. lilacinum strain PLBJ-1 (CGMCC3.17492) was isolated from
tomato roots in Beijing, China, and PLFJ-1 (CGMCC3.17493) was isolated from tomato roots
in Fujian, China. Both strains were sequenced to obtain the common features of P. lilacinum
and to ensure the information accuracy of the lcs cluster. PLBJ-1 was used as the wild type
recipient for the subsequently genetic manipulations because PLFJ-1 was insensitive to the
antibiotics used as selection markers. P. infestans and P. capsici were maintained at the Chinese
Academy of Agricultural Sciences. The pKOV21 vector used for homologous deletion and the
KSTNP vector used for overexpression came from Prof. Youliang Peng, China Agricultural
University. The leucinostatin A standard came from Bioaustralis, Inc. (NSW, AUS). G418 sul-
fate was purchased from Amresco, Inc. (OH, USA).

Medium and culture conditions
The non-inducing PDB-BD medium (Potato Dextrose Broth) came from Becton, Dickinson
and Company (NJ, USA). Leucinostatin-inducing PDB medium was prepared in the lab.
Briefly, 200 g of potatoes were boiled for 30 min, and then 20 g of glucose were dissolved into
the filtrate and diluted to 1 L. The rye agar medium contained 50 g of crushed rye, 20 g of
sucrose and 15 g of agar per liter. PDB cultures with 1×105 conidia per mL of PLBJ-1 were
grown at 28°C on a shaker at 150 rpm for 8 days before DNA/RNA isolation.

DNA and RNA isolation
The mycelium tissues of the PLBJ-1 and PLFJ-1 isolates were harvested via filtration. Genomic
DNA was isolated using a Qiagen DNeasy kit, according to the manufacturer’s protocol. The
PLBJ-1 tissue for RNA isolation was grown in the leucinostatin-inducing medium. RNA was
extracted using TRIZOL reagent (Invitrogen, USA) following the manufacturer’s protocol.

Genome assembly, gene prediction and RNA-seq analysis
The raw sequencing data (Illumina HiSeq 2000) from the PLBJ-1 and PLFJ-1 strains were gen-
erated by BGI-Shenzhen (China) and Berry Genomics Co., Ltd. (China), respectively. A total
of 13.27 Gb bases for the PLBJ-1 strain from three libraries, with average insert sizes of 165 bp,
758 bp and 5,490 bp, were obtained, and 5.88 Gb bases for the PLFJ-1 strain from two libraries
with the average insert sizes of 175 bp and 4,760 bp were obtained. Both of the genomes were
assembled using ALLPATHS-LG revision 42305 [81]. The repeat sequences were identified as
previously described [82], based on de novo and homology methods. For the de novomethod,
Piler [83] and RepeatScout, version 1.0.5 [84], were used to construct the repeat sequence fami-
lies; then, RepeatMasker, version 4.0.5, was used for repeat analysis. For the homology method,
the sequence families from Repbase, version 19.06 [85], were used for annotation by perform-
ing RepeatMasker analysis.

For gene prediction, the Augustus algorithm, version 2.7 [86], identified 11,404 and 11,554
complete genes for the PLBJ-1 and PLFJ-1 strains, respectively, and the GeneMark-ES algo-
rithm, version 2.3f [87], discovered 11,001 and 11,070 complete genes for the PLBJ-1 and
PLFJ-1 strains, respectively. The comparison showed that 9,509 and 9,562 genes of the PLBJ-1
and PLFJ-1 strains were predicted by both Augustus and GeneMark-ES. These consensus
genes were considered to be high quality predicted genes and were used in this study. The addi-
tional 2,264 and 2,201 genes of the PLBJ-1 and PLFJ-1 strains were obtained according to the
method in [82]. EuGene, version 4.1 [88], was used to integrate multiple sources, including
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transcription start sites identified by Netstart [89], homologous proteins identified from the
Swiss-Prot database, version 2015-07-22, by BLAST, version 2.2.26, the assembled transcripts
generated by IDBA-tran, version 1.1.1 [90], and the exon junctions identified from RNA-seq
by Tophat, version 2.0.13 [91]. The gene expression values were presented by the expected
FPKMs using Cufflinks, version 2.2.1 [92], based on the Tophat [91] analysis.

Protein family classification
Proteins were annotated by aligning their sequences to the NCBI fungi refseq, version 2015-
07-10, and SwissProt, version 2015-07-22, with an E-value cutoff of 1e-5 using BLASTP. In
addition, the Pfam database, version 27.0, was used for domain annotation by HMMER, ver-
sion 3.1b1 (http://hmmer.janelia.org/). The putative proteins were further classified by Gene
Ontology (GO) [93], using Blast2Go [94], and the euKaryotic Clusters of Orthologous Groups
(KOG) [95], using BLAST (E-value of 1e-5). The Web server of the CAZymes Analysis Toolkit
(CAT) [96] was used to identify CAZymes in P. lilacinum with E-values� 1e-50.

The proteases were discovered by the MEROPS batch BLAST online server [97]. Proteins
with sequences that matched the cytochrome P450 genes [98] with E-values� 1e-50 were
annotated as P450 enzymes. Candidate pathogenic factors were predicted by sequence align-
ment against the Pathogen Host Interactions (PHI) database, version 3.5 [99], with E-
values� 1e-50. In addition, the secretomes were identified based on recognizing the signal
peptide and transmembrane sequences. Proteins were considered to be secreted proteins if the
signal peptides were identified by at least two methods among SignalP, version 4.0 [100], Tar-
getP, version 1.1 [101], Phobious, version 101 [102], and Predisi [103], and transmembrane
sequences were not identified by at least one of the methods among SignalP, Phobious and
TMHMM, version 2.0c [104].

Orthologous and phylogenomic analysis
Orthologous groups of genes from P. lilacinum and the other fungi listed in S14 Table were
detected by OrthoMCL, version 2.0.9 [105], and then were filtered to identify the single copy
orthologues. The single copy orthologues were aligned with MUSCLE [106]. The poor align-
ment regions of the concatenated sequences were removed using Gblock, version 0.91b [107],
and then the high quality sequences were used for the maximum likelihood phylogeny analysis
with the Dayhoff model implemented in the TREE-PUZZLE program [108]. Bootstrap support
value was calculated by analyzing 1,000 replicates.

Phylogenetic analysis of the PKS and NRPS genes
The secondary metabolite genes were discovered by performing SMURF [50] and antiSMASH
[40] analyses. PKS and NRPS domain structures were characterized by antiSMASH and Pfam,
or were visually identified by multiple alignments. The KS domains extracted from PKS and
the A-domain from NRPS were aligned by MUSCLE [106], and then a maximum likelihood
phylogeny was constructed by treeBeST (http://treesoft.sourceforge.net/treebest.shtml) using
1,000 bootstrap replicates.

qRT-PCR analysis
Three biological replicates were performed for each analysis of the relative expression levels.
The cDNAs were synthesized with a TIANScript Ⅱ RT Kit (TIANGEN, China). The cDNA was
analyzed by qRT-PCR using SYBR Premix Ex Taq (TAKARA, Japan) on a BIO-RAD CFX96
(BIO-RAD). The housekeeping actin gene designed from VFPBJ_07912, which was similar to
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the reported GU299860.1, was used for normalization. The relative expression values were cal-
culated using the 2-ΔΔCt method. The primers are listed in S13 Table.

Molecular genetic procedures
Polyethylene glycol-mediated protoplast transformation of PLBJ-1 was performed as previ-
ously reported [49, 109], with the following modifications: the protoplast was produced by
20 gL−l Driselase (Sigma) digestion for 4 h at 31°C. The regeneration medium was PDA
medium containing G418 sulfate (400 μg/L), supplemented with molasses (10 g/L), sacchar-
ose (0.6 M), yeast extract (0.3 g/L), tryptone (0.3 g/L), and casein peptone (0.3 g/L) [10].
The construction of knockout and overexpression plasmids originated from pKOV21 and
KSTNP, and the primers are listed in S13 Table. A quick method for isolating the fungal
genomic DNA was developed to screen for a large number of transformants. Briefly, a nip of
mycelia was transferred to 50 μL of NaOH (50 mM) and was incubated at 95°C for 20 min.
The solution was directly used for PCR amplification after 5 μL of Tris-HCl (1 M) were
added to neutralize the base.

Culture extraction and HPLC-MS profiling
Cultures of 1×105 conidia per mL of P. lilacinum and its mutants were grown in leucinostatin-
inducing PDB medium at 28°C on a shaker at 150 rpm for 8 days. Culture medium (7.5 L) was
extracted with the same volume of EtOAc three times (each 1 h) ultrasonically. The combined
EtOAc extracts were concentrated to afford a crude extract (0.4 g), which was subjected to
reversed-phase ODS column chromatography eluting with MeOH-H2O (from 40% to 100%)
to afford 6 fractions (Fr.A–Fr.F). Fr.E (40 mg) was passed through a Sephadex LH-20 column
(MeOH) and yielded mixtures of 5.0 mg of leucinostatins A and B. The structure of the mix-
tures was further identified by standard substance using LC-MS analysis. Approximately 200
mL of culture medium were used for comparative LC-MS analysis between PLBJ-1 and its
mutants. LC-MS was performed on an Agilent Accurate-Mass-QTOF LC/MS 6520 instrument.
HPLC analysis was performed on a Waters HPLC system (Waters e2695, Waters 2998, Photo-
diode Array Detector) using an ODS column (C18, 250 × 4.6 mm, YMC Pak, 5 μm). The
ODS (50 μm) column was produced by YMC Co. Ltd. (Kyoto, Japan). The Sephadex LH-20
was purchased from GE Healthcare. Analytical HPLC was conducted with a Waters HPLC sys-
tem (Waters e2695, Waters 2998, Photodiode Array Detector) using an ODS column (C18,
250 × 4.6 mm, YMC Pak, 5 μm) with a flow rate of 1 mL/min. The fresh extracts were dissolved
in methanol before being separated on a linear gradient of MeOH:H2O (0.1% formic acid) at a
flow rate of 1 mL/min. Fresh extracts of mutant strains were detected for 30 min using a linear
gradient of 20% to 100% (0–20 min), 100%MeOH (20–25 min), and 20%MeOH (25–30 min).
The LC-MS analysis method was consistent with analytical HPLC.

Fungus bioassay
Confronting incubation of P. lilacinum (wild type, ΔlcsA and OE::lcsF) with P. infestanswas per-
formed on rye agar medium in 9 cm Petri plates, incubated simultaneously and cultured at 28°C
for 24 h and then at 18°C, the optimum temperature for P. infestans, for 9 days, while confronta-
tion with P. capsici was performed on lab-made PDAmedium, cultured at 28°C for 7 days. For
the inhibitory zone experiment, freshly produced sporangia of P. infestanswas suspended in ster-
ile water at a concentration of 2×105 sporangia/mL. One milliliter of the suspension was smeared
on 15 cm Petri plates, followed by Oxford cups with a diameter of 1 cm being placed. From 5 to
60 μg (increment 5 μg) of leucinostatins A and B dissolved in 20%methanol were added to the
Oxford cup, and 20 μL of 20% methanol were used a control. Then, the Oxford cups were
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removed after the solution was absorbed by media. Five days later, the area was calculated by
drawing circles of the inhibitory zone on metric graph paper and counting the number of square
millimeters within the circle [110, 111]. Three biological replicates were performed. At the same
time, the effects of 50 μg, 33 μg, 17 μg and 8.5 μg of leucinostatins are demonstrated in S11 Fig.

Accession numbers
The genome sequences of PLBJ-1, PLFJ-1, and P. chlamydosporium strain 170 used for com-
parative analysis have been deposited at GenBank under the accession numbers
LSBH00000000, LSBI00000000 and LSBJ00000000, respectively.

Supporting Information
S1 Fig. Genomic synteny of PLBJ-1 and TERIBC 1. Syntenic relationships were analyzed by
BLASTN with an E-value cutoff of 1e-5. The red semicircle represents the scaffolds of PLBJ-1,
while the blue semicircle represents the scaffolds of TERIBC 1. Scaffold lengths of� 100 Kb
were used for this analysis, and the threshold of the matched block was� 1000 bp, which was
connected by lines of the same color.
(TIF)

S2 Fig. KOG classification of PLBJ-1 and PLFJ-1 genomes and proteins related to the PHI
database.
(TIF)

S3 Fig. Maximum likelihood phylogeny of the PKSs in PLBJ-1 and other identified fungal
PKSs. The domain structure of PKSs was predicted by Pfam and antiSMASH, and KS domains
were used for phylogenetic analysis. Bootstraps values>50% are presented on the nodes.
(PDF)

S4 Fig. Maximum likelihood phylogeny of the NRPS A domains from fungi in Ophiocordy-
cipitaceae. The tree included NRPSs from Ophiocordycipitaceae (P. liliacinum, T. inflatum, T.
ophioglossoides,H.minnesotensis, O. sinensis and O. unilateralis) and some functionally char-
acterized products. The sub-clades of peptaibiotics, siderophore synthetase and cyclosporine
synthetase are highlighted by shading.
(PDF)

S5 Fig. Strategy and identification of the lcsA deletion. (A) Double homologous recombina-
tion strategy for deleting 2,613 bp of lcsA by introducing the homologous arm into the plasmid
pKOV21. (B) Candidate transformants grown onmedium resulted from either homologous
recombination or ectopic integration of the neo gene cassette into the genome. (C) PCR amplifi-
cation verified the validity of ΔlcsA. Lanes 1 and 2, amplified with primer pair targetF and tar-
getR, identified the target gene that was deleted from P. lilacinum. Lanes 3 and 4 were amplified
with primer pair upcheckF and neoupR, and lanes 5 and 6 were amplified with primer pair neo-
downF and upcheckR. The bonds in lanes 4 and 6 indicated the neo replaced the target gene.
(TIF)

S6 Fig. MS profile of the extracts of the wild type and mutant P. lilacinum cultures. Peaks of
[M+H]+ = 1219 (leucinostatin A) and [M+H]+ = 1205 (leucinostatin B) were detected in wild
type, but not in the ΔlcsA, ΔlcsC, ΔlcsD and ΔlcsE.
(TIF)

S7 Fig. The boundary of the lcs cluster identified by RNA-seq and qRT-PCR. (A) Expression
levels in FPKM for genes in and flanking the lcs cluster in leucinostatin-inducing medium. (B)
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Expression ratio of genes in wild type PLBJ-1 to those in ΔlcsA when cultured in leucinostatin-
inducing medium.
(TIF)

S8 Fig. Identification of the ΔlcsC, ΔlcsD and ΔlcsE transformants and overexpression of
transcription factor lcsF. (A) PCR amplification verified the validity of ΔlcsC, ΔlcsD and ΔlcsE.
Lanes 1 and 2 were amplified for target gene products, lanes 3 and 4 were amplified with
primer pairs in neo and upstream of the knockout cassette, and lanes 5 and 6 were amplified
with primer pairs in neo and downstream of the knockout cassette. (B) Overexpression cassette
of KSTNP-OElcsF including PtrpC promoter, gene lcsF and TrpC terminator, using neo as the
marker. (C) The approximate 3,000 bp fragments in lanes 2, 3 and 4 were amplified from three
overexpressing transformants with the primer pair OElcsFF and OElcsFR, and lane 1 was
amplified from wild type P. lilacinum.
(TIF)

S9 Fig. lcsF overexpression increased the expression of related genes and leucinostatin pro-
duction. (A) Overexpression of transcription factor lcsF enhanced expression levels of genes in
the lcs cluster. The expression ratio referred to the genes in OE::lcsF to those in the wild type
when cultured in leucinostatin-inducing medium. (B) HPLC profiles (UV 210 nm) of culture
extracts from the wild type P. lilacinum strain and three overexpressing transformants cultured
in PDB medium.
(TIF)

S10 Fig. Cocultivation of P. infestans with P. lilacinum wild type, ΔlcsC, ΔlcsD and ΔlcsE
mutants on rye agar medium.
(TIF)

S11 Fig. Inhibitory zone of P. infestans with leucinostatins A and B of different concentra-
tion. The location of leucinostatins was represented by black circle, of which the dosage is
marked. The red dotted line circles the inhibitory zones of P. infestans. Twenty microliters of
20% methanol were placed at CK.
(TIF)

S12 Fig. The area (mm2) of the inhibitory zone with different leucinostatin dosages.
(TIF)

S13 Fig. Syntenic relationships of lcs cluster in PLBJ-1, PLFJ-1 and TERIBC 1. Syntenic
relationships were analyzed by BLASTN, with an E-value cutoff of 1e-5. The lcs cluster was
located in scaffold00004 (1,048,997–1,162,497 bp) of PLFJ-1, scaffold00002 (1,030,100–
1,143,599 bp) of PLBJ-1 and LOFA01000012.1 (1,012,032–1,125,446 bp) of TERIBC 1. The
genes in this region are indicated by blue arrows.
(TIF)

S14 Fig. Maximum likelihood phylogeny of the ten A domains of LcsA.
(TIF)

S1 Table. Genome size and repeat sequence in P. lilacinum and other fungi.
(DOCX)

S2 Table. Super scaffold construction, based on syntenic alignments of PLBJ-1 and PLFJ-1.
(DOCX)

S3 Table. Comparison of repeat elements between PLBJ-1 and PLFJ-1.
(DOCX)
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S4 Table. Glycoside hydrolases in P. lilacinum and comparison with other fungi.
(XLSX)

S5 Table. Carbohydrate-binding modules in P. lilacinum and comparison with other fungi.
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S6 Table. Carbohydrate esterases in P. lilacinum and comparison with other fungi.
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S7 Table. Glycosyltransferases in P. lilacinum and comparison with other fungi.
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S10 Table. Major paralogous gene expansion in nematode parasitic fungi.
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