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For various infectious diseases, vaccination has become a major intervention strategy. However, the
importance of social distancing has recently been highlighted during the ongoing COVID-19 pandemic.
In the absence of vaccination, or when vaccine efficacy is poor, social distancing may help to curb the
spread of new virus strains. However, both vaccination and social distancing are associated with various
costs. It is critical to consider these costs in addition to the benefits of these strategies when determining
the optimal rates of application of control strategies. We developed a game-theoretic epidemiological
model that considers vaccination and social distancing under the assumption that individuals pursue
the maximization of payoffs. By using this model, we identified the individually optimal strategy based
on the Nash strategy when both strategies are available and when only one strategy is available.
Furthermore, we determined the relative costs of control strategies at which individuals preferentially
adopt vaccination over social distancing (or vice versa).

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Infectious diseases represent an ongoing threat to global health,
and their prevention can significantly reduce economic and epi-
demiological burdens. Worldwide, an estimated 14.7 million indi-
viduals are killed by infectious diseases each year, with the vast
majority of death occurring in developing regions (14.2 million
out of 14.7 million) (Michaud, 2009). Specifically, the mortality
from infectious diseases is the highest in sub-Saharan Africa with
6.8 million annual deaths and South Asia with 4.4 million annual
deaths (Michaud, 2009). It is estimated that over 400 million
disability-adjusted life years (DALYs) are lost each year as a result
of infectious diseases, representing 26.9% of total DALYs (Michaud,
2009). Additionally, the disease burden of infections largely rests
on populations in low- and middle-income countries, which
account for 98.6% of the total burden of infections (Michaud,
2009). Specifically, lower respiratory infections (3.4 million
deaths), HIV/AIDS (2.6 million deaths), diarrheal diseases (1.8 mil-
lion deaths), tuberculosis (1.6 million deaths), and malaria (1.1
million deaths) are the top five infections that are responsible for
the greatest numbers of deaths in low- and middle-income coun-
tries (Michaud, 2009). Emerging global challenges related to infec-
tious diseases and the associated social and economic risks have
been highlighted by the ongoing pandemic of coronavirus
disease-19 (COVID-19). Since the first reports from Wuhan, China
in December of 2019, more than 85,600 COVID-19 cases have been
reported in China. Outside China, ongoing local transmission and
more than 12.9 million cases have been reported in numerous
countries, including the US, Brazil, India, Russia, and Peru (WHO,
2020). In addition to newly emerging infectious diseases, seasonal
diseases such as influenza jeopardize not only human health, but
also various levels of social and economic wellbeing. Annual epi-
demics of influenza result in 3–5 million cases of severe illness
and 290,000–650,000 deaths worldwide (WHO).

Prevention and control can minimize the negative impact of
infectious diseases on society, meaning that such measures are
important for public health and welfare. Specifically, it is notewor-
thy that behavioral changes during disease outbreaks reflect indi-
vidual choices regarding preventive measures for effectively
reducing the chance of contracting diseases. For example, during
the severe acute respiratory syndrome outbreak in 2003, precau-
tionary actions, such as wearing face masks, hand washing, and
avoiding public transportation and crowded areas, contributed to
reducing transmission in Hong Kong and Beijing (Beutels et al.,
2009; Lau et al., 2004). Additionally, it was noted that a significant
proportion of the population adapted their behavior and took pre-
ventive measures, such as social distancing, during the 2009 A/
H1N1 influenza pandemic (Jones and Salathe, 2009; Rubin et al.,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2020.110422&domain=pdf
https://doi.org/10.1016/j.jtbi.2020.110422
mailto:chok10004@soongsil.ac.kr
mailto:alicia@ssu.ac.kr
https://doi.org/10.1016/j.jtbi.2020.110422
http://www.sciencedirect.com/science/journal/00225193
http://www.elsevier.com/locate/yjtbi


2 W. Choi, E. Shim / Journal of Theoretical Biology 505 (2020) 110422
2009). Similarly, during the ongoing COVID-19 pandemic, exten-
sive social distancing policies, wearing facial masks, and delaying
the opening of schools have effectively reduced the transmission
of the disease in South Korea (Shim et al., 2020).

Overall, human behavior plays an important role in the spread
of infectious diseases. Therefore, understanding the influence of
behavior on the spread of diseases could be a key aspect of improv-
ing control efforts (Funk et al., 2010a). In recent years, the behav-
ioral epidemiology of infectious diseases has emerged as a new
subfield of epidemiology (d’Onofrio and Manfredi, 2020;
d’Onofrio et al., 2016; Funk et al., 2010a; Manfredi and D’Onofrio,
2013; Manfredi et al., 2009; Wang et al., 2016). Behavioral epi-
demiology is an inherently multidisciplinary field combining clas-
sical epidemiological modeling with behavioral sciences, such as
sociology, psychology, economics, and anthropology, to under-
stand the connection between human mechanics and infection
mechanics (d’Onofrio and Manfredi, 2020). Frameworks for the
computational modeling of behavioral epidemiology range from
classical models assuming homogeneously mixing (mean-field)
populations to complex models that account for behavioral feed-
back and population spatial/social structures. Many of these meth-
ods originated from statistical physics models, such as lattice and
network models (Wang et al., 2016).

The key issue in behavioral epidemiology is to understand the
relationships between behavioral changes and the dynamics of
infectious diseases. For example, a past study quantified how
increases in population awareness can reduce disease transmission
in well-mixed populations (Funk et al., 2010b). In another study on
behavior epidemiology, a behavior-implicit susceptible-infectious-
recovered (SIR) model with prevalence-dependent vaccination and
prevalence-dependent contact rates was developed (d’Onofrio and
Manfredi, 2020). This study presented the baseline perceived risk
conditions under minimal infection circulation at which the elim-
ination of a disease can be achieved.

Among the behavioral changes that can be used as strategies to
limit the spread of infectious diseases, we consider vaccination and
social distancing, and incorporate these strategies into a mathe-
matical model of disease transmission. Specifically, a game-
theoretic model was developed to consider both the costs and ben-
efits associated with disease intervention strategies to identify the
individually optimal strategy. By using game-theoretic models, one
can not only examine the transmission dynamics of infectious dis-
eases, but also determine how individual decision-making is
affected by the perceived costs of actions and the resulting
benefits.

Game theory is an established approach for modeling biological
phenomena (Broom and Rychtar, 2013; Hofbauer and Sigmund,
1998; Maynard-Smith, 1982; Mesterton-Gibbons, 2000). Recently,
game theory has emerged as a leading methodology for quantita-
tively describing the decision making of individuals presented with
various intervention options. Specifically, there have been numer-
ous studies on game-theoretic models focused on preventative
measures, particularly vaccination and behavioral changes (Bauch
and Earn, 2004; Bauch et al., 2003; Cornforth et al., 2011; Reluga,
2010, 2013; Reluga and Li, 2013; Shim et al., 2011, 2012a,b;
Verelst et al., 2016). Regardless, the majority of these game-
theoretic studies on disease modeling have considered a single
strategy and have not facilitated multiple intervention options.
One notable exception is the study by Kobe et al., where two
options for protection strategies for cholera, namely vaccination
and the use of clean water, were considered (Kobe et al., 2018).
In our study, we aimed to derive individually optimal protection
strategies in the event of a disease outbreak under the assumption
that individuals have the options of being vaccinated or practicing
social distancing. We formulated a game model for an endemic
infection to account for both the individual and community costs
of intervention and infection. Numerical methods were used to
investigate the ranges of costs associated with these options. The
resulting cost measures were used to determine which strategy
is preferable from an individual perspective.

2. Methods

We developed a mathematical model of disease transmission
considering vaccination and social distancing as personal protec-
tion strategies (Fig. 1). We extended a SIR-type model, and our
model classifies individuals based on several epidemiological sta-
tuses, namely susceptible ðSÞ, vaccinated ðVÞ, exposed ðEÞ, symp-
tomatic ðIÞ, asymptomatic ðAÞ, and recovered ðRÞ. Disease-free
individuals enter the susceptible class through birth or immigra-
tion at a constant rate K and their natural death rate is denoted
by l. It is assumed that susceptible individuals become infected
at a rate of kðtÞ, where the force of infection is calculated as

k tð Þ ¼ b0 I tð ÞþbAðtÞð Þ
N tð Þ . Here, b0 is the transmission rate, b is the rate of

relative infectiousness of asymptomatic cases compared to symp-
tomatic cases, and N tð Þ is the total population size
(N tð Þ ¼ S tð Þ þ V tð Þ þ E tð Þ þ I tð Þ þ A tð Þ þ RðtÞÞ: We define 1=k as the
duration of the latent period, and assume that a proportion p of
infected individuals will become symptomatic. Both symptomatic
and asymptomatic individuals are assumed to recover at a rate of c.

To describe social distancing in the proposed model, we
assume that susceptible individuals reduce the contact rate by a
fraction g (0 � g � 1). As another prevention strategy, we incor-
porate vaccination into our model using a vaccination rate w.
We assume that the infection rate among vaccinated individuals
is reduced by the vaccine efficacy d compared to unvaccinated
individuals (Table 1).

Given the definitions and assumptions presented above, the
transmission dynamic model is described by the following differ-
ential equations:

S0 tð Þ ¼ K� 1� gð Þk tð ÞS tð Þ � wþ lð ÞS tð Þ;
V 0 tð Þ ¼ wS tð Þ � 1� dð Þk tð ÞV tð Þ � lV tð Þ;
E0 tð Þ ¼ k tð Þ 1� gð ÞS tð Þ þ 1� dð ÞV tð Þð Þ � kþ lð ÞE tð Þ;
I0 tð Þ ¼ kpE tð Þ � cþ lð ÞI tð Þ;
A0 tð Þ ¼ k 1� pð ÞE tð Þ � cþ lð ÞA tð Þ;
R0 tð Þ ¼ cA tð Þ þ cI tð Þ � lR tð Þ:

ð1Þ

We assume that the total population is asymptotically constant,
meaning N tð Þ ¼ K ¼ K

l. Therefore, the model in (1) can be reduced

to a lower-dimensional system by replacing S with
K � V � E� I � A� R.

The use of dimensionless variables v ¼ V
K ; e ¼ E

K ;
�

i ¼ I
K ; a ¼ A

K ; r ¼ R
KÞ leads to further simplifications and the model

in (1) can be replaced with

v 0 tð Þ¼w 1�e tð Þ� i tð Þ�a tð Þ�r tð Þf g� 1�dð Þb0 i tð Þþba tð Þf gv tð Þ
� wþlð Þv tð Þ;

e0 tð Þ¼b0 i tð Þþba tð Þf g 1�gð Þ 1�e tð Þ� i tð Þ�a tð Þ�r tð Þð Þþ g�dð Þv tð Þf g
� kþlð Þe tð Þ;

i0 tð Þ¼kpe tð Þ� cþlð Þi tð Þ;
a0 tð Þ¼k 1�pð Þe tð Þ� cþlð Þa tð Þ;
r0 tð Þ¼ca tð Þþci tð Þ�lr tð Þ:

ð2Þ
The model in (2) permits the following disease-free equilibrium

(DFE):

E0 ¼ v0; e0; i0; a0; r0ð Þ ¼ w
wþ l

;0;0;0;0
� �

:



Fig. 1. Flow chart of the model of disease transmission with vaccination and social distancing as personal protection strategies.

Table 1
Summary of model parameters and baseline values used in numerical simulations.

Parameter Description Value References

l Natural death rate (d�1) 1/
(75*365)

(Longini
et al.,
2004)

b0 Infection transmission rate (d�1) Varies NA

w Vaccination rate (d�1) Varies NA

d Vaccine efficacy 0.45 (Dawood,
2020)

1=c Infectious period (d) 4.5 (Galvani
et al.,
2007)

b Relative infectiousness of
asymptomatic cases compared to
symptomatic cases

0.5 (Longini
et al.,
2004)

g Fraction by which susceptible
individuals reduce their contact rate

Varies NA

1=k Duration of latent period (d) 1.2 (Galvani
et al.,
2007)

p Probability that exposed individuals
progress to the symptomatic infectious
compartment

0.67 (Longini
et al.,
2004)
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By using this DFE, we can obtain the control reproduction num-
ber Rcðw;gÞ of the model by using the next-generation method
(van den Driessche and Watmough, 2002). Here, the control repro-
duction number is defined as the number of secondary infections
caused by a single infective individual in a population with control
measures in place. We computed the control reproduction number
under the assumption that the control parameters (w;g) are fixed
at constant values. To obtain Rcðw;gÞ, we introduce matrices F

and V corresponding to transmission and transition, respectively.
In other words, all epidemiological events leading to new infec-
tions are incorporated into the model through F and all other
events are incorporated through V, where

F ¼
b0 i tð Þþba tð Þf g 1�gð Þ 1�e tð Þ� i tð Þ�a tð Þ�r tð Þð Þþ g�dð Þv tð Þf g

0

0

2
664

3
775

And

V ¼
ðkþ lÞeðtÞ

�kpe tð Þ þ ðcþ lÞiðtÞ
�k 1� pð Þe tð Þ þ cþ lð ÞaðtÞ

2
64

3
75:
By using F and V in a linearized system, we can evaluate the
sensitivity matrix for the appearance of new infections (F) and
the sensitivity matrix of transitions (V) as

F ¼
0 b0ð 1� gð Þ þ w g�dð Þ

wþl Þ b0bð 1� gð Þ þ w g�dð Þ
wþl Þ

0 0 0

0 0 0

2
664

3
775

And

V ¼
kþ l 0 0

�kp lþ c 0

�kð1� pÞ 0 lþ c

2
664

3
775

By using the spectral radius of the matrix FV�1, we can obtain
the control reproduction number Rcðw;gÞ as follows:

Rcðw;gÞ ¼ kb
kþ lð Þ cþ lð Þ

1� dð Þwþ 1� gð Þlð Þ
wþ l

where b ¼ b0 pþ b 1� pð Þð Þ. Here, b indicates the weighted trans-
mission rate considering both symptomatic and asymptomatic
cases.

By assuming there are no control measures (i.e., w ¼ g ¼ 0), we
can derive the basic reproduction numberR0, meaning the number
of infected individuals that one infected individual would produce
within an entire susceptible population in the absence of control
measures. The first factor of Rc w;gð Þ is the basic reproduction
number (R0), where

R0 ¼ Rc 0;0ð Þ ¼ bk
kþ lð Þ cþ lð Þ : ð3Þ

The second factor 1�dð Þwþ 1�gð Þl
wþl represents the reduction in R0

caused by control measures. This simplifies the control reproduc-
tion number as follows:

Rc w;gð Þ ¼ 1� dð Þwþ 1� gð Þlð Þ
wþ lð Þ R0 ð4Þ

It should be noted that the control reproduction number gener-

ally decreases with the social distancing level @Rc w;gð Þ
@g < 0

� �
, but it

decreases with the vaccination rate only when



Fig. 2. Contour plot of Rc as a function of both the vaccination rate w and social
distancing level g.
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d > g because @Rc w;gð Þ
@w =ðg�dÞl

wþlð Þ2 R0(Figs. 2 and S1). If vaccine efficacy is

not sufficiently high (i.e., d < g), then the control reproduction
number increases as additional individuals choose a vaccination
strategy, indicating the increased risk of infection when vaccina-
tion is selected over social distancing.

When Rc > 1, a disease remains endemic in the population, and
we can find the endemic equilibrium of the model in (2). By setting

i
0 ¼ 0, a0 ¼ 0, and r0 ¼ 0 in these equations, the endemic equilib-
rium can be calculated as

E� ¼ v�; e�; i�; a�; r�ð Þ ¼ v�;
cþ l
kp

i�; i�;
1� p
p

i�;
c
pl

i�
� �

:

By substituting E� into v 0 ¼ 0 and setting e0 ¼ 0 in (2), it can be
derived that the endemic level i� satisfies H1 i�ð Þ ¼ 0, where

H1 i�ð Þ ¼ 1� dð Þ 1� gð Þ b
pl

� �2

i�2

þ b
pl

1� dð Þ wþ lð Þ
l

þ 1� gð Þ 1� 1� dð ÞR0ð Þ
� �

i�

þ wþ lð Þ 1�Rcð Þ
l

ð5Þ

Here, we note that H1 0ð Þ < 0 when Rc > 1 and

H1
plR0

b

� �
¼ 1� dð ÞR0 þ wþlð Þ

l > 0. Because plR0
b ¼ pkl

kþlð Þ cþlð Þ < 1, it fol-

lows that H1 i�ð Þ ¼ 0 has a solution i� with 0 < i� < plR0
b when

Rc > 1. Fig. 3 presents the variation in the endemic equilibrium
level (i�) with the vaccination rate (w) and social distancing
level (g).
3. Results

3.1. Vaccination as a personal protection strategy

In this section, we consider vaccination as the sole personal pro-
tection strategy against infectious diseases (g ¼ 0). When it is
available, vaccination functions as a primary prevention strategy,
potentially leading to herd immunity. Specifically, vaccination pro-
vides direct protection by increasing the resistance of uninfected
individuals to the pathogens from which a vaccine was prepared.
Furthermore, vaccination can reduce the proportion of infected
individuals, who could potentially transmit an infection, meaning
that it also provides indirect protection. To analyze the role of vac-
cination and its optimal application strategy from an individual
perspective, we consider the following model by setting g ¼ 0 in
the model in (2):

v 0 tð Þ¼w 1�e tð Þ� i tð Þ�a tð Þ�r tð Þf g� 1�dð Þb0 i tð Þþba tð Þf gv tð Þ
� wþlð Þv tð Þ;

e0 tð Þ¼b0 i tð Þþba tð Þf g 1�e tð Þ� i tð Þ�a tð Þ�r tð Þ�dv tð Þf g� kþlð Þe tð Þ;
i0 tð Þ¼kpe tð Þ� cþlð Þi tð Þ;
a0 tð Þ¼k 1�pð Þe tð Þ� cþlð Þa tð Þ;
r0 tð Þ¼ca tð Þþci tð Þ�lr tð Þ:

ð6Þ
3.1.1. Reproduction number and endemic equilibrium
In this vaccination model, the control reproduction number is

calculated as
Rw = 1�dð Þwþlð Þ

wþlð Þ R0.

Fig. 4(a) presents Rw as a function of the vaccination rate w. To
analyze the threshold value for the vaccination rate that is required
to achieve herd immunity, we set Rw ¼ 1 and solve for w. This
threshold vaccination rate is denoted as wHI and is calculated as

wHI ¼
l R0 � 1f g

1� 1� dð ÞR0
;

where we assume that 1 < R0 < 1
1�d. If R0 > 1

1�d, then the disease
cannot be eradicated by vaccination alone. Similarly, for values of
w less than wHI , the disease remains endemic. Otherwise, the disease
can be eradicated.

The endemic equilibrium in (6) is denoted as Ew
� and exists

when Rw > 1, where Ew
� ¼ v�

w; e
�
w; i

�
w; a

�
w; r

�
w

� �
with

i�w ¼ �p 1�dð Þ wþl�lR0ð Þþlf gþp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�dð Þ wþlR0ð Þ�dlf g2þ4R0d 1�dð Þl2

p
2 1�dð Þb ;

v�
w ¼ w plR0�bi�wð Þ

lR0 1�dð Þbi�wþp wþlð Þð Þ ;
e�w ¼ cþl

kp i�w;

a�w ¼ 1�p
p i�w;

r�w ¼ c
pl i

�
w:

ð7Þ

Here, the endemic level i�w decreases with w as

@ i�w wð Þ
� �
@w

¼ p
2b

1� dð ÞðwlþR0Þ � dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1� dð ÞðwlþR0Þ � dg2 þ 4R0d 1� dð Þ

q � 1

8><
>:

9>=
>; < 0:

Therefore, the endemic level attains its maximum value (de-
noted by i�w;max) when w is zero, meaning i�w;max ¼ i�w w ¼ 0ð Þ ¼ plðR0�1Þ

b .

3.1.2. Application of game theory
Based on the endemic equilibrium, we now examine the indi-

vidual payoff of vaccination strategies. We use the notations v
and nv to denote individuals who choose vaccination and reject
vaccination, respectively. The probabilities of infection among vac-
cinated and unvaccinated individuals, which are denoted as pv and
pnv , respectively, can be expressed as the proportions of suscepti-
ble individuals becoming infected versus dying during any unit of
time (Bauch and Earn, 2004) as follows:

pv ¼ 1� dð Þb0ði�w þ ba�wÞ
1� dð Þb0 i�w þ ba�

w

� �
þ l

and pnv ¼ b0ði�w þ ba�
wÞ

b0 i�w þ ba�w
� �

þ l
ð8Þ

Here, pV ;N is defined as the increased risk of infection among
unvaccinated individuals compared to vaccinated individuals as
follows:



Fig. 3. Sensitivity of the endemic level (i�) to varying levels of control measures (i.e., vaccination and social distancing) varies. Other parameters are set to the baseline values
listed in Table 1. (a) Endemic level as a function of the vaccination rate w with g ¼ 0:1. (b) Endemic level as a function of the social distancing level g with w ¼ 0:00001.

Fig. 4. (a) Graph of the control reproduction number Rw when vaccination is the sole personal protection strategy (g ¼ 0). The threshold value for the vaccination rate that is
required to achieve herd immunity is denoted as wHI . (b) Graph of the control reproduction number Rg when social distancing is the sole personal protection strategy
(w ¼ d ¼ 0). The threshold value for the social distancing level that is required to achieve herd immunity is denoted as gHI .
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pV ;N i�w
� �

¼ pnv � pv ¼ dplbi�w
1� dð Þbi�w þ pl

h i
bi�w þ pl
h i ð9Þ

By using the general game-theoretic framework (Bauch and
Earn, 2004; Reluga and Galvani, 2011), the expected payoffs asso-
ciated with each strategy can be defined as

Ev ¼ �Cv � pvCi and Env ¼ �pnvCi

where Cv is the cost of vaccination, and Ci is the cost associated
with infection. To scale payoff without changing the outcome of
the game, we divide both equations by Ci to obtain
Ev ¼ �Cv � pv and Env ¼ �pnv ð10Þ
where Cv is the relative cost of vaccination compared with the cost
of infection, that is, Cv ¼ Cv=Ci.

To analyze expected individual marginal payoffs, we denote the
vaccination rate for the entire population as wPOP . If wPOP > wHI , then
Rw < 1 and the population reaches a disease-free equilibrium. In
this case, the probability of infection becomes zero, meaning
pv ¼ pnv ¼ 0. Therefore, there is no incentive for individuals to
be vaccinated.

In contrast, if wPOP < wHI , then Rw > 1, and the population
reaches an endemic equilibrium Ew

�. An individual considers the
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expected marginal payoffs associated with switching from the
non-vaccination strategy to the vaccination strategy as

DEði�wÞ ¼ Ev � Env ¼ pV ;N i�w
� �

� Cv : ð11Þ

In the presence of an endemic equilibrium (Ew
�), an individual

chooses a vaccination strategy when the relative benefit of vacci-
nation versus non-vaccination is greater than the cost of vaccina-

tion, meaning DEði�wÞ > 0, or equivalently, pV ;N i�w
� �

> Cv . In

contrast, non-vaccination is favored when pV ;N i�w
� �

< Cv .

From a game-theoretic perspective, an individual adopts a vac-
cination strategy that will maximize personal payoff by consider-
ing the risk of infection, which is determined by the vaccination
decisions made by the rest of the population (Reluga and
Galvani, 2011; Shim et al., 2011). The Nash vaccination strategy,
denoted as wNE, where the payoff to an individual does not change
regardless of whether one accepts or rejects vaccination, is gov-

erned by the equation pV ;N i�w
� �

¼ Cv : By substituting the endemic

level i�w into the equation pV ;N i�w
� �

¼ Cv , we can obtain the follow-

ing equation that the Nash vaccination strategy wNE must satisfy:

G wð Þ ¼ 1� dð Þ2Cv Z � d 1� dð ÞCvR0

 �

w2

þ 1� dð Þl d 1þ Cv
� �

Z � 2d2Cv

 �

w

þ dl2 Z � d2 þ dCv 1� dð ÞR0

 �

¼ 0; ð12Þ

where Z ¼ 1� 1� dð ÞR0f gdþ 1� dð ÞR0f g2Cv .
To analyze the existence of the Nash vaccination strategy wNE,

we examine the potential real roots of (12), which are denoted as
w1 andw2, where w1 � w2 < wHI (Fig. S2). Additionally, it should be

noted that i�w w1ð Þ � i�w w2ð Þ because @ i�w wð Þð Þ
@w < 0.

To analyze the Nash vaccination strategy, we first examine the

maximum and minimum values of pV ;N i�w
� �

. Based on (9), we note

that pV ;N i�w
� �

increases with i�w when 0 < i�w < i�w;C and decreases

when i�w > i�w;C , attaining its maximum value at i�w ¼ i�w;C , where

i�w;C ¼ lp
b
ffiffiffiffiffiffi
1�d

p . Interestingly, it is feasible that i�w;C > i�w;max, which is

equivalent to R0 � 1þ 1ffiffiffiffiffiffi
1�d

p . This case would correspond to the

non-existence of i�w;C .

The value of pV ;N i�w
� �

when i�w ¼ i�w;C is denoted as pC
V ;N . If this

value exists, then pC
V ;N is calculated as

pC
V ;N ¼ pV ;N


i�w¼i�w;C

¼ d

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� d

p� �2 ð13Þ

We also define pB
V ;N as the value of pV ;Nði�wÞ when the endemic

level reaches its maximum value (i.e., when w ¼ 0) as follows:

pB
V ;N ¼ pV ;N


i�w¼i�w;max

¼ d R0 � 1ð Þ
1� dð ÞR0 þ df gR0

ð14Þ

According to the calculations above, we arrive at the following
results regarding the existence of the Nash strategy.

Case 1. We consider the case where R0 � 1þ 1ffiffiffiffiffiffi
1�d

p , which would

indicate the non-existence of i�w;C (Fig. 5). The existence of a Nash

vaccination strategy now depends on the value of Cv .

① If Cv > pB
V ;N , then there is no Nash vaccination strategy. This

is because DE < 0 for all i�w > 0 when Cv > pB
V ;N , indicating that

the relative cost of vaccination exceeds the corresponding mar-
ginal benefit.
② If Cv < pB
V ;N , then there exists a unique Nash vaccination

strategy wNE that is obtained when Cv ¼ pV ;N .

Case 2. We consider the case where R0 > 1þ 1ffiffiffiffiffiffi
1�d

p , which would

allow i�w;C < i�w;max (Fig. 6). Depending on the value of Cv , the follow-
ing four cases can be identified. Here, we consider vaccine efficacy.

① If Cv > pC
V ;N , then there is no Nash vaccination strategy. This

is because DE < 0 for all i�w > 0 when Cv > pC
V ;N .

② If Cv ¼ pC
V ;N , then DE ¼ 0 only when i�w ¼ i�w;C . A unique Nash

vaccination strategy is obtained in the scenario where the rela-
tive benefit of vaccination is maximized, facilitating the highest
possible cost of vaccination.
③ If pB

V ;N < Cv < pC
V ;N , then DE ¼ 0 at two distinct endemic

levels, resulting in two Nash vaccination strategies (i.e., w1

and w2). These strategies emerge when the cost of vaccination
is intermediate and the disease transmissibility is relatively
high with low vaccination coverage ðwPOP < w1Þ. The expected
marginal payoffs become zero at two distinct endemic levels,
which correspond to two Nash vaccination strategies. This phe-
nomenon was not identified in a prior study using a simple SIR
vaccination game model (Bauch and Earn, 2004).
④ If Cv � pB

V ;N , then there is a unique Nash vaccination strategy
wNE. This scenario occurs when the cost of vaccination is rela-
tively low, which promotes vaccination and reduces the ende-
mic level at the Nash equilibrium.

The Nash vaccination rate wNE is presented in Fig. 7(a) as a func-
tion of the relative cost of vaccination Cv when the value ofR0 var-
ies. One can seen that wNE decreases with Cv and has a higher
sensitivity to increasing costs when R0 is greater.

3.2. Social distancing as a personal protection strategy

We now examine the case where individuals consider social
distancing as the sole strategy for preventing infectious diseases.
In the absence of vaccination, large-scale social distancing mea-
sures (including workplace non-attendance, school closures, and
travel restrictions) appear to be the most effective means of miti-
gation. It has been reported that although social distancing alone
may be insufficient to eliminate disease transmission, it can flatten
the epidemic curve, thereby reducing the burden on the healthcare
system and providing additional time to prepare for a subsequent
epidemic (Anderson et al., 2020). To analyze the optimal social dis-
tancing at an individual level, we let w ¼ 0 in (2). This yields

e0 tð Þ ¼ k tð Þ 1� gð Þ 1� e tð Þ � i tð Þ � a tð Þ � r tð Þð Þ � kþ lð Þe tð Þ;
i0 tð Þ ¼ kpe tð Þ � cþ lð Þi tð Þ;
a0 tð Þ ¼ k 1� pð Þe tð Þ � cþ lð Þa tð Þ;
r0 tð Þ ¼ ca tð Þ þ ci tð Þ � lr tð Þ:

ð15Þ
where the force of infection is calculated as k tð Þ ¼ b0 i tð Þ þ ba tð Þf g.

3.2.1. Reproduction number and endemic equilibrium
The proportion g represents the social distancing level for a par-

ticular individual who can reduce their contact rate by staying
home, refraining from attending public events, or cancelling
appointments during outbreaks. The control reproduction number
associated with this model is defined as

Rg ¼ 1� gð ÞR0 ð16Þ
To obtain the threshold value for the social distancing level that

is required to achieve herd immunity (gHI), we setRg ¼ 1 and solve
for g as follows:



Fig. 5. Case where R0 � 1þ 1ffiffiffiffiffiffi
1�d

p (Case 1). Here, we set R0 ¼ 1:5 and d ¼ 0:45. (a) Graph of the probabilities of infection among individuals who accept or reject vaccination.
(b) Graph of the differences between two probabilities of infection: (1) When Cv > pB

V ;N , there is no Nash vaccination strategy, (2) when Cv ¼ pV ;N , there is a unique Nash
vaccination strategy wNE.

Fig. 6. Case where R0 > 1þ 1ffiffiffiffiffiffi
1�d

p (Case 2). Here, we set R0 ¼ 5 and d ¼ 0:8. (a) Graph of the probabilities of infection among individuals who accept or reject vaccination. (b)
Graph of the differences between two probabilities of infection. If it exists, the Nash vaccination strategy can be obtained when Cv ¼ pV ;N: (1) there is no Nash strategy when
Cv > pC

V ;N , (2) two Nash strategies when pB
V ;N < Cv < pC

V ;N , and (3) one Nash strategy when Cv ¼ pC
V ;N or Cv � pB

V ;N .
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gHI ¼ 1� 1
R0

ð17Þ

Fig. 4(b) presents a graph of Rg as a function of the social dis-
tancing level g. The disease remains endemic if g < gHI and is erad-
icated if g > gHI. In this analysis, we consider the endemic settings
by assuming that g < gHI , which is equivalent to Rg > 1 or
R0 > 1

1�g.

Given the value of R0, we can determine the corresponding
endemic level by setting Eq (15) equal to zero. This resulted in

H2 i�g
� �

¼ 0, where
H2 i�g
� �

¼ 1� gð Þ b
pl

� �2

i�g
2 þ b

pl
1þ 1� gð Þ 1�R0ð Þf gi�g

þ f1� 1� gð ÞR0g: ð18Þ

By H2 i�g
� �

¼ 0, the endemic equilibrium is obtained as

i�g ¼ plðRg � 1Þ
1� gð Þb ð19Þ

It should be noted that i�g ¼ i�gðgpopÞ, where gpop is defined as the
social distancing probability for the entire population.



Fig. 7. (a) Graph of the optimal vaccination rate wNE as a function of the relative cost of vaccination Cv when the basic reproduction number R0 is 1:5; 2; 2:5; and 3, where
d ¼ 0:7. (b) Graph of the optimal level of social distancing gNE as a function of the relative cost of social distancing Cg.
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3.2.2. Application of game theory
In the presence of an endemic equilibrium, we define /ðg;gpopÞ

as the probability that a susceptible individual becomes infected,
where

/ g;gpop

� �
¼ ð1� gÞk�gðgpopÞ

ð1� gÞk�gðgpopÞ þ l
ð20Þ

Here, g represents the social distancing strategy of a target indi-
vidual, and the force of infection (k�gðtÞ) is calculated as

k�g ¼ k�g gpop

� �
¼ b0 i�g þ ba�

g

n o
¼ b

p
i�g ¼ l Rg � 1

� �
1� gpop

ð21Þ

It should be noted that if the background social distancing level
gpop increases, then the probability that an infected individual will
encounter a susceptible individual decreases, and the force of
infection k�gðtÞ also decreases, which demonstrates the dependence
of k�gðtÞ on the background social distancing level gpop. Further-
more, the social distancing strategy of a target individual can
reduce their risk of infection /ðg;gpopÞ. Therefore, the probability
of infection is affected by both the background social distancing
level gpop and the social distancing strategy g of a target individual.

We now calculate the payoff for an individual who adopts a
social distancing strategy g in the presence of a background social
distancing strategy gpop as follows:

E g;gpop

� �
¼ �

1� gð Þk�g gpop

� �

1� gð Þk�g gpop

� �
þ l

� gCg

¼ � 1� gð Þ Rg � 1
� �

1� gð Þ Rg � 1
� �þ 1� gpop

� �� gCg; ð22Þ

where Cg ¼ Cg
Ci
is the relative cost of social distancing Cg compared to

the cost of infection Ci.
Without loss of generality, we assume that the relative cost of

social distancing is less than that of infection, meaning Cg < 1.
Therefore,
@Eðg;gpopÞ
@g

¼ Rg � 1

1� gð Þ Rg � 1
� �þ 1� gpop

� �n o2

� Cg and
@2Eðg;gpopÞ

@g2

¼ 2 Rg � 1
� �2

1� gð Þ Rg � 1
� �þ 1� gpop

� �n o3 ð23Þ

When @2Eðg;gpopÞ
@g2 > 0, E g;gpop

� �
is a convex function of g that

attains its global maximum value at either g ¼ 0 or g ¼ 1. The cor-
responding payoff when g ¼ 0 is

E 0;gpop

� �
¼ � Rg � 1

Rg � gpop
ð24Þ

where the focal individual does not practice social distancing at all
and depends entirely on the social distancing of the background
population. The payoff when g ¼ 1 is

E 1;gpop

� �
¼ �Cg ð25Þ

where the target individual practices social distancing exclusively
and is protected against infection at the full cost of social distancing.

The optimal individual strategy gNE is obtained in the scenario
where the individual payoff is consistent regardless of whether
or not one adopts a social distancing strategy. In other words, gNE

is the solution to the equation E 0;gpop

� �
¼ E 1;gpop

� �
, or

equivalently,

Rg � 1
Rg � gpop

¼ Cg: ð26Þ

By using (16), this expression can be rewritten as

1� gpop

� �
R0 � 1

1� gpop

� �
R0 � gpop

¼ Cg: ð27Þ
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It should be noted that
1�gpopð ÞR0�1

1�gpopð ÞR0�gpop
is a decreasing function of

gpop (0 � gpop < gHI) that attains its maximum value 1� 1
R0

when

gpop ¼ 0 (Fig. 8). Therefore, gNE never exceeds the herd immunity
threshold gHI and equality is attained only when the relative cost
of social distancing is zero (Cg ¼ 0). Furthermore, if Cg > Cg

max, then
the resulting optimal social distancing strategy is zero (gNE ¼ 0Þ
when Cg

max ¼ 1� 1
R0
. When 0 < Cg < Cg

max, the optimal social dis-

tancing level gNE is computed as

gNE ¼ 1� 1� Cg

R0 � ð1þR0ÞCg ð28Þ

Graphs of the optimal social distancing level gNE as a function of
the relative cost of social distancing Cg in terms of the value of
R0are presented in Figs. 7(b) and S2.

3.3. Combining vaccination and social distancing

Finally, we consider the case where individuals can adopt a
combined strategy of vaccination and social distancing for personal
protection against infectious diseases. When both strategies are
available, the Nash vaccination strategy becomes a function of
the social distancing level wNE gð Þ. Similarly, the optimal social dis-
tancing strategy becomes a function of the vaccination rate gNE wð Þ.
By substituting the expression for i� from (5) into
�Cv þ pV ;N i�ð Þ ¼ 0 (see (11)), we can obtain the equation that the
Nash vaccination strategy wNE gð Þ satisfies as follows:

Z � dR0 1� dð ÞCv
 �
Cvw2 þ l

1� d
1� dð ÞAþ 1� gð ÞBf gw

þ dl2

1� d
ð1� dÞCv þ 1� gð ÞD
 �

¼ 0 ð29Þ
where

A ¼ CvZ þ dCv � 1� dð ÞR0 þ dð Þ 1� dð ÞR0C
v2;
Fig. 8. Expected cost when there is no individual social distancing, meaning
1�gpopð ÞR0�1

1�gpopð ÞR0�gpop
, as a function of the background social distancing level gpop . The basic

reproduction number R0 takes on values of 1:5;2;2:5; and 3. If it exists, the optimal
social distancing level can be obtained when the relative cost of social distancing Cg

is equal to the expected cost and the individual social distancing level is zero.
B ¼ dZ þ 2d� 1ð ÞCvZ � 1þ dð ÞdCv þ 1� dð Þ2 dþ 1� dð ÞR0ð ÞR0C
v2;

D ¼ dþ d� 2� 2R0 1� dð Þð ÞCv

þ 1� gð Þ 1� dð ÞCvR2
0 þ 2� dð ÞCv � d

� �
R0 þ Cv

� �
;

and

Z ¼ 1�R0 1� dð Þf gdþ R0 1� dð Þf g2Cv :
Similarly, we can obtain the optimal social distancing strategy

by solving (26) for g as follows:

gNE w; dð Þ ¼ 1

� 1� Cg� �
1�R0 1� dð Þ þ 1� dð ÞR0 � dð ÞCg
 �
R0 � Cg 1þR0ð Þ� �

1� dCg� �
l

w

� 1� Cg

R0 � 1þR0ð ÞCg : ð30Þ

In this analysis, we consider Cv � pB
V ;N , which is the case where

there is a unique Nash vaccination strategy. We denote the maxi-
mum threshold value for the relative cost of vaccination as Cvmax,
where Cvmax ¼ pB

V ;N . We let g0 be the social distancing level where
wNE g0ð Þ ¼ 0 and w0 be the vaccination rate where gNE w0ð Þ ¼ 0.
Numerical simulations demonstrate that there are two cases,
namely (1) g0 < gNE and w0 > wNE, and (2) g0 > gNE and w0 < wNE,
for the baseline parameter values (Table 1).

- If g0 < gNE and w0 > wNE, then the black line (optimal level of
social distancing) remains above the gray line (optimal vaccina-
tion line). Therefore, social distancing is the dominant strategy
(Fig. 9(a)).

- If g0 > gNE and w0 < wNE, then the gray line remains above the
black line. Therefore, vaccination is the dominant strategy
(Fig. 9(b)).

By setting w equal to zero in (29) and solving for g, we obtain

g0 ¼ 1

þ
dþ d� 2� 2R0 1� dð Þð ÞCv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 2d2 � 4d

� �
Cv þ d2Cv2

q
2� 2dð ÞCvR2

0 þ ð4� 2dÞCv � 2d
� �

R0 þ 2Cv
:

Similarly, setting (30) equal to zero and solving for w yeilds

w0 ¼ ðR0 � 1Þ 1� dCg� �
l

1�R0 1� dð Þ þ 1� dð ÞR0 � dð ÞCg :

Vaccination is the dominant strategy (gray region) when
g0 > gNE, which is defined as

1þ
dþ d� 2� 2R0 1� dð Þð ÞCv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 2d2 � 4d

� �
Cv þ d2Cv2

q
2� 2dð ÞCvR2

0 þ ð4� 2dÞCv � 2d
� �

R0 þ 2Cv

> 1� 1� Cg

R0 � 1þR0ð ÞCg :

Social distancing is the dominant strategy (black region) when
w0 > wNE;which is defined as

ðR0 � 1Þ 1� dCg� �
l

1�R0 1� dð Þ þ 1� dð ÞR0 � dð ÞCg

>

�l d 1þ Cv
� �

Z � 2d2Cv
� �þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 2 2� dð ÞdCv þ dCv

� �2n o
Z2

r

2ð1� dÞCvðZ � d 1� dð ÞR0C
vÞ :



Fig. 9. Combined vaccination and social distancing strategies. When both strategies are available, the optimal vaccination rate (gray lines) and optimal social distancing level
(black lines) are compared. (a) Social distancing is the dominant strategy. (b) Vaccination is the dominant strategy.

Fig. 10. Regions in ðCv ;CgÞ showing the cutoff values as the maximum threshold
costs for the vaccination and social distancing strategies. Black: social distancing
only, gray: vaccination only.
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The cutoff values for the relative costs in the graph in Fig. 10 are
the maximum threshold costs for the vaccination and social dis-
tancing strategies. If the relative cost of social distancing Cg

exceeds the maximum threshold value Cg
max, then the social dis-

tancing strategy is not selected, meaning vaccination is the domi-
nant strategy. Similarly, if the relative cost of vaccination Cv

approaches the maximum threshold value Cvmax, then social dis-
tancing is the dominant strategy. If both of the relative costs Cv

and Cg exceed their corresponding thresholds, then neither strat-
egy is selected by the population because the corresponding costs
are excessively high relative to the corresponding benefits.

4. Discussion

In this study, we constructed a game-theoretic model for dis-
ease transmission and control measures (i.e., vaccination and social
distancing) to determine the optimal individual strategies for pre-
venting infectious diseases. We generated a payoff function associ-
ated with each control strategy for susceptible individuals, and the
resulting payoffs were calculated based on the decisions of the rest
of the population. When both vaccination and social distancing are
available to a population, the relative cost of each strategy deter-
mines which strategy is more likely to be adopted by the popula-
tion. For baseline parameter values, it was demonstrated that
social distancing is more likely to be the dominant strategy. This
is partially based on its superior efficacy compared to an imperfect
vaccine. Social distancing directly reduces the per capita rate at
which susceptible individuals are infected by reducing the contact
rate, whereas vaccines may still permit infection based on poor
efficacy. Therefore, when both strategies have the same cost, the
social distancing strategy is more likely to be selected. If the rela-
tive costs of both strategies exceed the corresponding maximum
threshold values, then neither strategy will be selected, because
marginal payoffs of the control strategies will be minimal. These
results indicate that when vaccine efficacy is not sufficiently high
for a basic reproduction number, a disease cannot be eradicated
by vaccination alone. In contrast, extreme social distancing has
the potential to fully protect individuals from infection by mini-
mizing the force of infection. However, a high social distancing
level can result in economic loss not only for individuals, but also
for communities based on the discontinuation of economic activ-
ity. Furthermore, the herd immunity threshold for social distancing
cannot be achieved through voluntary participation alone (e.g.,
school or work attendance and using public transportation). There-
fore, public health agencies should establish policies considering
both social distancing and vaccination, such as subsidized vaccina-
tion, school closure, and cancellation of public events.

Vaccine coverage can be affected by psychological factors, such
as epidemic scares, rumors of disease, the perceived effectiveness
of vaccination by the media, or word of mouth (Bhattacharyya
et al., 2015; Breban, 2011; d’Onofrio and Manfredi, 2020;
d’Onofrio et al., 2016; Shim et al., 2012b; Tchuenche et al., 2011).
In particular, when a vaccine for a newly emerging infectious dis-
ease, such as COVID-19, is under development, there is insufficient
information available regarding its effectiveness. This study can
provide guidance regarding preferred prevention strategies accord-
ing to the perceived effectiveness and relative cost of new vaccines
because it can identify an appropriate relative cost for vaccination
for voluntary participation. If the cost of vaccination is relatively
high compared to its efficacy, then individual adoption of vaccina-
tion may be reduced. In a prior study, it was also suggested that
voluntary vaccination in the presence of a behavior-dependent
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contact rate can reduce infection prevalence, but may also induce
recurrent epidemics (d’Onofrio and Manfredi, 2020). Public inter-
vention was shown to have a stabilizing role which can reduce
the strength of imitation-induced oscillations, and even facilitate
disease elimination (d’Onofrio et al., 2012).

One limitation of our model is that it does not consider age
heterogeneity in terms of disease susceptibility or age-dependent
mixing patterns. Additionally, our model assumes that the costs
associated with social distancing are limited to the personal costs,
even though there are social costs associated with a malfunction-
ing society (e.g., food supply and healthcare services breakdowns)
when social distancing is practiced by a relatively large fraction of
a population over an extended period of time. Furthermore, our
analysis was conducted under the assumption that a system has
already reached an endemic state when individuals begin selecting
protection strategies. In the real world, the infection probability
changes dynamically with disease prevalence and age-dependent
susceptibility. For example, the optimal vaccination rates for all
age groups are the highest at the beginning of a seasonal influenza
epidemic, and the optimal vaccination coverage differs between
age groups (Shim, 2013). Additionally, if the severity of a disease
increases, and government interventions, such as school closures
and travel restrictions, are present, then individuals may choose
to increase their social distancing level. For a more detailed analy-
sis of optimal personal strategies, the vaccination rate and social
distancing level should be defined as state variables.

In this paper, we presented the first study on a game-theoretic
model for infectious diseases considering vaccination and social
distancing simultaneously. Our findings highlight the optimal pro-
tection strategies from an individual perspective in the event of a
disease outbreak. Our game-theoretic model can also be extended
and applied to various infectious diseases to provide insights into
the interplay between disease dynamics and individual adherence
to protection strategies.
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Appendix A

Endemic equilibrium

By solving (5) and setting the equations in (2) equal to zero, we can
obtain the endemic equilibrium as E� ¼ v�; e�; i�; a�; r�ð Þ, where

i� ¼
�pl wþ lþ xyð Þ þ pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wþ l� xyð Þ2 þ 4 1� xð Þyðy� lÞ

q
2b 1� dð Þy ;
v� ¼ wðplR0 � bi�Þ
lR0ð 1� dð Þbi� þ pðwþ lÞÞ ;

e� ¼ cþ l
kp

i�;

a� ¼ 1� p
p

i�;

r� ¼ c
pl

i�;

where x ¼ 1�R0 1� dð Þand y ¼ l 1�gð Þ
1�d :

Appendix B

Nash equilibriumðwNEÞ

To study the existence of a Nash equilibrium wNE, we solve (12),
which has the following two possible real roots:

w1 ¼
�l d 1þCv

� �
Z�2d2Cv

� ��l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �2 2� dð ÞdCv þ dCv

� �2n o
Z2

r

2ð1� dÞCvðZ� d 1� dð ÞR0C
vÞ

and

w2 ¼
�l d 1þCv

� �
Z�2d2Cv

� �þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 �2 2� dð ÞdCv þ dCv

� �2n o
Z2

r

2ð1� dÞCvðZ� d 1� dð ÞR0C
vÞ ;

where Z ¼ 1� 1� dð ÞR0f gdþ 1� dð ÞR0f g2Cv .

Appendix C. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jtbi.2020.110422.
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