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The rapid development of medical imaging has boosted the abilities of modern medicine.
As single modality imaging limits complex cancer diagnostics, dual-modal imaging has
come into the spotlight in clinical settings. The rare earth element Holmium (Ho) has
intrinsic paramagnetism and great X-ray attenuation due to its high atomic number. These
features endow Ho with good potential to be a nanoprobe in combined x-ray computed
tomography (CT) and T2-weighted magnetic resonance imaging (MRI). Herein, we present
a facile strategy for preparing HoF3 nanoparticles (HoF3 NPs) with modification by PEG
4000. The functional PEG-HoF3 NPs have good water solubility, low cytotoxicity, and
biocompatibility as a dual-modal contrast agent. Currently, there is limited systematic and
intensive investigation of Ho-based nanomaterials for dual-modal imaging. Our PEG-HoF3
NPs provide a new direction to realize in vitro and vivo CT/MRI imaging, as well as
validation of Ho-based nanomaterials will verify their potential for biomedical applications.

Keywords: nanomaterial, cancer, diagnosis, dual-model imaging, contrast agent
INTRODUCTION

Imaging technology plays an important role in modern medicine due to its ability to provide
noninvasive but detailed information of anatomical structure and functional activities during the
progress of a disease. However, single-model imaging methods cannot always meet the criteria for
diagnosing co2mplex diseases (1, 2); thus, multi-modal imaging has become the new direction for
imaging technology development (3–6). There are two main means to achieve multi-modal imaging
(1): endow one device with multiple imaging capabilities; or (2) construct multi-modal contrast
agents (CAs) for diagnosis. Conflicts between various methods and high costs have limited the
feasibility of the first method. Hence, researchers are focusing their efforts on developing multi-
modal CAs that can be widely used in magnetic resonance imaging (MRI), X-ray computed
tomography (CT), as well as fluorescence imaging (FI) (7–13). Due to the penetrative limitation of
FI in vivo, CT and MRI are more commonly applied for clinical diagnosis (14–17). CT is the most
cost-effective examination and offers strong X-ray penetration, which has very high resolution for
bone and calcification but poor resolution for soft tissue. Notably, MRI can remedy this
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shortcoming. Therefore, the combination of CT and MRI can
significantly improve diagnostic ability (2, 18–24).

At present, CT and MRI examinations are used
independently in clinical settings. Small iodinated molecule
nanomaterials are routinely applied as CT CAs to assist in
disease diagnosis. Due to the lack of X-ray absorption, a very
large amount of such CAs for intravenous injection is needed to
meet the contrast requirement, usually 80-150 ml per adult for
angiography (25, 26). Such a high dose is not only likely to cause
allergy, but it can also lead to irreversible renal damage (27–29).
Furthermore, as small molecular iodide is quickly excreted by the
kidney, its short circulation lifetime can affect imaging quality for
certain diseases. Similarly, MRI has its own limitations. Gd-
chelates are the most commonly used commercial MRI CAs in
clinical settings. However, Gd-based CAs can accumulate in the
central nervous system and lead to renal fibrosis (30). Another
notable disadvantage of MRI is that the optimum magnetic field
strength for current Gd-based CAs is less than 1.0 T (31),
whereas the trend in clinical MRI is to use ultra-high magnetic
fields of 7.0 T or even higher because of the better imaging
quality (32). 7.0 T MRI has been available in the market since
2017, and ultra-high field strength MRI equipment will become
mainstream in the future. As a result, several researchers have
been focusing on developing new CAs to suit this powerful
visualization tool. Tb, Ho, and Dy are the elements with the
largest magnetic moments in the periodic table and can cause
considerable transverse relaxation of hydrogen protons in free
water. Thus, Tb, Ho, and Dy-based materials are the best choices
Frontiers in Oncology | www.frontiersin.org 2
for ultra-high field T2 CAs (33–36). Against the background of
continuous pursuit of ultra-high field intensity MRI, research on
MRI CAs based on large magnetic moment elements is likely to
experience rapid growth in the near future. Thus, we developed a
facile strategy to construct control-sized PEGylated HoF3
nanoparticles (PEG-HoF3 NPs) as a dual-modal imaging CA.
Scheme 1. illustrates the design of our study. We used a facile
one-pot solvothermal approach to obtain Ho-based
nanomaterial, which has a high X-ray attenuation and large
magnetic moment. PEG-HoF3 NPs offer great biocompatibility
and low cytotoxicity due to the existence of poly(ethylene glycol)
(PEG). As a result, these NPs could be used as CT/MRI dual-
modal imaging CAs both in vitro and in vivo, confirming the
potential of Ho-based nanomaterials for bioapplication research.
MATERIALS AND METHODS

Chemicals
HoCl3•6H2O, poly(ethylene glycol) (PEG, MW = 4000 Da) was
obtained from Sigma-Aldrich. NH4F and ethylene glycol (EG)
were obtained from Beijing Chemicals. Dimethyl sulfoxide
(DMSO) were obtained from Sigma-Aldrich. DMEM and FBS
were purchased from Gibco.

Preparation of PEG-HoF3 NPs
PEG-HoF3 NPs were fabricated via a one-pot solvothermal
method. Firstly, 0.8 mmol HoCl3•6H2O was dissolved in 5 mL
SCHEME 1 | Schematic illustration of PEG-HoF3 NPs for enhanced CT and T2-weighted duel-model imaging.
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of EG to form a clear solution. Then, 0.6 g of PEG 4000 was
added to 15 mL of EG to form a clear solution. Next, prepared
EG with 2.4 mmol NH4F added to the mixture of above two
solutions. This mixed solutions were vigorously stirred for about
40 min and then transferred to a 50 mL Teflon-lined autoclave
and kept at 200°C for 10 h. When the system was cooled down,
all collected NPs were washed several times.

In Vitro Cytotoxicity Assessment
Human cervix cancer cells (HeLa) and mouse fibroblast cells
(L929) were cultured in DMEMwith 10% FBS, 1% penicillin, and
1% streptomycin at a 37°C in a 5% CO2 incubator. After
incubation in 96-well cell culture plates for 24 h, different
concentrations of PEG-HoF3 NPs (0, 25, 50, 100, 200, 300 mg/
mL) were added to the HeLa cells and L929 cells and incubated
for another 24 h. Next, 10 mL (5 mg/mL) MTT was added to 96-
well cell culture plates and kept for an additional 4 h at 37°C.
Finally, the medium was removed and DMSO was added for 15
min to dissolve the formazan. The absorbance peak at 570 nm
was measured by a microplate reader.

Histological and Hematology Assessment
Kunming mice (18-25 g) were obtained from the Center for
Experimental Animals, Jilin University (Changchun, China). All
operations are carried out in accordance with relevant national
regulations. For histological assessment, 100 mL PEG-HoF3 NPs
(300 mg/mL) and 100 mL 0.9% NaCl solution were administered
to Kunming mice via tail vein. After 30 days, Major organs and
tissues (heart, liver, spleen, lung, kidney, and muscle) were
collected. All tissues samples were formalin-fixed, paraffin-
embedded, and stained with H&E. Tissue sections were
observed under an optical microscope (×10). Blood samples
were also obtained from the PEG-HoF3 NPs and NaCl injected
mouse groups for routine blood testing and biochemical
indices testing.

CT Imaging
Different concentration of PEG-HoF3 NPs and Iohexol aqueous
solutions (I or Ho 0, 0.25, 0.5, 1, 2, 4 mmol/mL) were prepared
for in vitro CT imaging. When the suitable con-centration was
determined, in vivo CT images were obtained on Kunming mice.
After intraperitoneal anesthesia with chloral hydrate, 100 mL
PEG-HoF3 NPs (2 mg/mL) were injected into these mice via tail
vein and images were obtained at different times (0, 1, 2, 6, 12, 24
h). CT was performed using a clinical CT scanner, and the
parameters were tube voltage of 120 kVp, tube current of 300
mAs, 0.9 mm thickness, 0.99 pitch, window width of 200 HU,
and window level of 45 HU.

T2-Weighted MRI
Different concentrations of PEG-HoF3 NPs aqueous solutions
(Ho 0, 0.0625, 0.125, 0.25, 0.5, 1 mmol/mL) were prepared for
in vitro T2-weightedMRI. Preliminary preparation was similar to
the above steps. MRI was performed on a clinical MR scanner.
100 uL PEG-HoF3 NPs (0.8 mg/mL) were injected into mice as
above. These mice were scanned pre-injection and 1, 2, 4, 12, and
Frontiers in Oncology | www.frontiersin.org 3
24 h post-injection. The MR scanner parameters were
TR=7279.7 ms, TE=113 ms and FOV=240x240 mm.
RESULTS AND DISCUSSION

Preparation and Characterization
of PEG-HoF3 NPs
Uniform HoF3 NPs were prepared through a one-pot
solvothermal method using PEG 4000 as a surfactant, as
illustrated in Figure 1A. The TEM images demonstrate the
good dispersivity of PEG-HoF3 NPs, and the existence of Ho
and F element is proved by HADDF-STEM image and EDS
mapping (Figures 1B–F), and the high-resolution TEM image
shows that the width of lattice fringes about PEG-HoF3 NPs was
0.3401 nm. The SEM image shows the spherical nanoparticles
with an average diameter of 38 nm; the diameter of PEG-HoF3
NPs was normally distributed in the range of 30–55 nm
(Figure S1). In order to ascertain the hydrodynamic diameters
of PEG-HoF3 NPs, the dynamic light scattering (DLS) was
performed, and the results show the average hydrodynamic
diameter are suitable for using in organism in different
solvents (Figure 2A). Meanwhile, the Zeta potential of PEG-
HoF3 NPs was 5.83 mV with the decoration of PEG. These value
are suitable for nanomaterial which will be applied in vivo. XRD
analysis exhibited several strong peaks, which indicated the
highly crystalline nanostructure of this material. The
diffraction peaks of the nanoparticles can be indexed to
orthorhombic HoF3, which matches the card (PDF 00-023-
0284) in Figure 2B (34). XPS spectra verified that the NPs
contained Ho 4d, F 1s (Figures 2C, D), further confirming the
existence of HoF3 NPs. The peaks of C and O confirmed the
presence of PEG (Figure S2). The peak in 3391 cm-1 of FTIR
spectrum further confirm the existence of PEG (Figure S3). Due
to the low toxicity and bio-tolerability of PEG, it was approved
for use in biopharmaceuticals by the US FDA several years ago
(37, 38). Using PEG 4000 to modify the surface of HoF3 NPs not
only reduced cytotoxicity, but also enhanced dispersibility in
water and phosphate-buffered saline (PBS) solution. The picture
shows good stability of PEG-HoF3 NPs in normal saline and PBS
solution (Figure S4). There was no obvious Ho3+ ion
dissociation after long-term dialysis in PBS solution (pH=7.4)
with PEG-HoF3 NPs.

Biocompatibility Assessment of
PEG-HoF3 NPs
Biocompatibility assessment should be carried out before
nanomaterial imaging probes are applied in vivo. Due to the lack
of data about the application of Ho-based nanomaterial in vivo, we
carried out a variety of tests to assess the safety of PEG-HoF3 NPs.
The cytotoxicity of PEG-HoF3 NPs was evaluated by the MTT cell
proliferation assay. We chose HeLa and L929 cells to evaluate
the toxicity of the new Ho-based nanomaterial by observing
damage in cancer cells and normal cells, respectively. The cell
viability results are depicted in Figures 3A, B. The two cell types
were exposed to PEG-HoF3 NPs at different extracellular
August 2021 | Volume 11 | Article 741383
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concentrations (0-300 mg/mL). As expected, the new PEGylated
Ho-based nanoparticles had great biocompatibility. Cell viability
was still about 85% of the highest concentration (300 mg/mL) in
both cell strains. We further investigated histological damage
caused by PEG-HoF3 NPs through long-term toxicity assessment.
Thirty days after injection, the two groups’ mice were sacrificed.
The main organs and tissues (heart, liver, spleen, lung, kidney, and
muscle) underwent H&E staining for histopathological assessment.

Paraffin sections conformed that there was no significant
damage or severe inflammation in organs or tissues in either the
control group or PEG-HoF3 NPs injection group (Figure 3C).
Encouraged by these results, quantitative analysis of PEG-HoF3 NPs
Frontiers in Oncology | www.frontiersin.org 4
potential toxicity was carried out via blood testing and biochemical
examination. Routine blood tests can be used to observe changes in
the distribution of blood cells to judge the condition of mice, and
biochemical examination can be used to detect various products of
metabolism in blood to show the condition of organs such as liver or
kidney. Thirty days after injection, there were no significant
abnormalities in the morphology or indices of blood cells
Figure 4. Metabolism of the main organs also remained stable,
which was consistent with the physiological status of the mice.
Taken together, the results confirmed that Ho-based nanomaterials
offer great potential for bio-application researches due to their
high biocompatibility.
FIGURE 1 | (A) The synthetic process of PEG-HoF3 NPs; (B, C) TEM image of PEG-HoF3 NPs, the particles size is about 30-40nm and its lattice fringes;
(D–F). HADDF-STEM image of PEG-HoF3 and EDS mapping of F, Ho element.
August 2021 | Volume 11 | Article 741383

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Holmium-Based Nanoparticles for Cancer Diagnosis
A B

DC

FIGURE 2 | (A) The dynamic light scattering (DLS) of PEG-HoF3 NPs; (B) XRD pattern of PEG-HoF3 NPs; (C, D) Higher-resolution XPS spectra of Ho 4d and
F1s, respectively.
A B

C

FIGURE 3 | (A, B) Viability of L929 and HeLa cells after incubation with different concentrations of PEG-HoF3 NPs; (C) Tissue sections of 6 major organs from
mouse which injected with PEG-HoF3 NPs via tail vein.
Frontiers in Oncology | www.frontiersin.org August 2021 | Volume 11 | Article 7413835

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang
et

al.
H
olm

ium
-B

ased
N
anoparticles

for
C
ancer

D
iagnosis

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

A
ugust

2021
|
Volum

e
11

|
A
rticle

741383
6

FIGURE 4 | Mice blood testing and biochemical examination, there is no evitable changes in two groups.
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A

B

FIGURE 5 | (A) In vitro CT images of PEG-HoF3 NPs and Iohexol aqueous solution with different concentration; (B) CT value of corresponding tube of A.
A

B

FIGURE 6 | (A, B) Changes of tumor site and mouse liver in different time point before versus post-injection of PEG-HoF3 NPs.
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CT Imaging
As a rare earth element, Ho has an atomic number of 67, which is
much higher than iodine’s atomic number of 53. The inherent
characteristics of Ho, specifically its high x-ray attenuation, result
in the significantly improved imaging ability of Ho-based CAs in
CT. The in vitro CT imaging results are shown in Figure 5A.
Different concentrations of PEG-HoF3 NPs and Iohexol aqueous
solution (0-4 mM) were prepared in Eppendorf tubes and the
solutions became brighter as the concentration increased. As
shown in Figure 5B, the Hounsfield Units (HU) value of PEG-
HoF3 NPs was significantly higher than that of iodine-based
CAs, as we expected, and the HU values for both increased
linearly. Therefore, the necessary dose of PEG-HoF3 NPs is much
lower than that of iodine-based CAs to achieve the same contrast
Frontiers in Oncology | www.frontiersin.org 8
effect in vivo, which may reduce the risks of large doses of
CAs (39).

After cytotoxicity assessment of PEG-HoF3 NPs, tumor-
bearing Kunming mice were selected to test the CT contrast
effect in vivo. The distribution of PEG-HoF3 NPs was monitored
by a CT scanner at different time points. We then compared the
images at these time points with the images pre-injection: the
brightness of the tumor site was obviously higher after
24 h (Figure 6A).

We also tracked the brightness of the liver and kidney after
administering PEG-HoF3 NPs via the tail vein (Figures 6B and S5).
Usually, small molecule iodine CAs are not long-lasting in the
liver, which decreases the diagnostic ability of liver disease to
some extent. However, as shown in Figure S5, the liver of the
A

B

C

FIGURE 7 | (A) In vitro T2-weighted MRI images of PEG-HoF3 NPs with different concentration; (B) The r2 relaxivity plot of PEG-HoF3 NPs; (C) Signal changes of
tumor site in different time point before and post-injection of PEG-HoF3 NPs.
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mice maintained a high contrast effect after 24 h, which likely
indicates the uptake of PEG-HoF3 NPs by hepatocytes. However,
there was no obvious enhancement in the kidney at the time
points we used. This may indicate that the uptake of PEG-HoF3
NPs by renal cells is limited and that the size and shape of PEG-
HoF3 NPs prevented its filtration through the kidney. It is
possible that the above mechanism can decrease the side effects
of CAs on the kidney, and warrants further study.

T2-Weighted MRI
To date, there have been few studies on Ho-based MRI imaging. It
has been confirmed that Ho-based nanomaterial has T2-weighted
MRI contrast ability owing to its intrinsic paramagnetism. However,
the magnetic resonance relaxivity of NPs can differ due to their size,
form, and even synthesis methods. For this reason, we firstly
validated the feasibility of PEG-HoF3 NPs as a T2-weighted MRI
CAs in vitro. Different concentrations of PEG-HoF3 NPs aqueous
solution were tested on a clinical MR scanner. T2-weighted images
of PEG-HoF3 NPs aqueous solution (0-1 mg/mL) gradually
darkened with an increasing Ho concentration (Figure 7A).
According to the concentration of PEG-HoF3 NPs, the r2
relaxivity value of this new contrast agent is 117.51 mM-1 S-1

(Figure 7B). Next, we further explored the potential of PEG-
HoF3 NPs as negative MRI CAs in tumor-bearing mice. T2-
weighted MRI was performed on the same scanner at different
times (1, 2, 4, 12, 24 h) after intravenous injection of PEG-HoF3 NPs
(Figure 7C). The results showed no significant changes in the signal
of the tumor site within 0 to 2 h. However, after 12 h, the signal of
the tumor site decreased significantly and a large dark area gradually
presented. At 24 h, the negative contrast agent filled the center of
tumor site. These results also confirm long term circulation of PEG-
HoF3 NPs, which will be helpful for improving the detection of
tumors at specific places.
CONCLUSIONS

We firstly synthesized a new Ho-based NP via a one-pot
solvothermal method. The new PEG-HoF3 NPs had a uniform
size and showed good dispersibility in aqueous solution.
Cytotoxicity assessment and histological analysis indicated that
the new Ho-based NPs had good biocompatibility and low
toxicity for applications in vivo. We then further verified the
imaging ability of the PEG-HoF3 NPs in vitro and vivo. The
Frontiers in Oncology | www.frontiersin.org 9
results showed that PEG-HoF3 NPs had an excellent contrast
effect in both CT and T2-weighted MRI. Based on this desirable
performance, we expect that PEG-HoF3 NPs hold great promise
for dual-modal imaging and that Ho-based nanomaterials
warrant further research.
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