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The virtual loss function in the summary perception of motion

and its limited adjustability
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Humans can grasp the “average” feature of a visual
ensemble quickly and effortlessly. However, it is largely
unknown what is the exact form of the summary
statistic humans perceive and it is even less known
whether this form can be changed by feedback. Here we
borrow the concept of loss function to characterize how
the summary perception is related to the distribution of
feature values in the ensemble, assuming that the
summary statistic minimizes a virtual expected loss
associated with its deviation from individual feature
values. In two experiments, we investigated a
random-dot motion estimation task to infer the virtual
loss function implicit in ensemble perception and see
whether it can be changed by feedback. On each trial,
participants reported the average moving direction of an
ensemble of moving dots whose distribution of moving
directions was skewed. In Experiment 1, where no
feedback was available, participants’ estimates fell
between the mean and the mode of the distribution and
were closer to the mean. In particular, the deviation
from the mean and toward the mode increased almost
linearly with the mode-to-mean distance. The pattern
was best modeled by an inverse Gaussian loss function,
which punishes large errors less heavily than the
quadratic loss function does. In Experiment 2, we tested
whether this virtual loss function can be altered by
feedback. Two groups of participants either received the
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mode or the mean as the correct answer. After extensive
training up to five days, both groups’ estimates moved
slightly towards the mode. That is, feedback had no
specific influence on participants’ virtual loss function.
To conclude, the virtual loss function in the summary
perception of motion is close to inverse Gaussian, and it
can hardly be changed by feedback.

Looking out of the window in an early spring, you
may see green leaves on the trees, and it may take you
a while before you realize that every leaf has a slightly
different color. Humans can quickly extract summary
statistics from a visual scene. The documentation
of such ability dated back to Peterson and Beach’s
(1967) classic review “Man as an Intuitive Statistician”
and, more recently, has grown into a field known as
ensemble perception (Alvarez, 2011; Ariely, 2001;
Chong & Treisman, 2003; Chong & Treisman, 2005),
which includes a variety of visual dimensions, such
as orientation (Girshick, Landy, & Simoncelli, 2011;
Tomassini, Morgan, & Solomon, 2010), motion (Hol
& Treue, 2001; Webb, Ledgeway, & Rocchi, 2011),
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color (Chetverikov, Campana, & Kristjansson, 2017),
shape (de Gardelle & Summerfield, 2011), size (Chong
& Treisman, 2005), and facial expression (Haberman
& Whitney, 2010). One fundamental question is,

what summary statistic of a visual distribution do
humans perceive as the average (i.e., estimate of central
tendency)?

One natural candidate for the average is the
(arithmetic) mean of the distribution, which was widely
presumed in previous studies of ensemble perception
(Ariely, 2001; Solomon, Morgan, & Chubb, 2011). An
alternative and more sophisticated hypothesis is robust
averaging, that humans may underweight outliers in
their summary perception of the distribution, which
receives support from several lines of studies (de
Gardelle & Summerfield, 2011; Juni, Singh, & Maloney,
2010; Vandormael, Herce Castanon, Balaguer, Li, &
Summerfield, 2017). Compared with the computation
of the mean that assigns equal weight to each sample,
robust averaging can result in a more reliable estimate
of central tendency for samples that are contaminated
by non-Gaussian noises (Cohen, Singh, & Maloney,
2008; Huber, 2004; Juni et al., 2010).

What remains largely unknown for ensemble
perception is the exact functional form that determines
the weight for averaging assigned to each individual
sample, depending on the location of the sample in
the distribution. Here we introduce loss function,
one of the key components of Bayesian Decision
Theory (see Maloney & Zhang, 2010 for a review),
to characterize the summary statistic in participants’
ensemble perception. In this framework, the average
feature perceived by a participant in a distribution
of features can be considered as a point estimate for
an unobservable random variable that follows the
distribution. We assume that the participant’s perceived
average feature effectively minimizes her expected
loss associated with the deviation between the point
estimate and the random variable. In other words,
different forms of loss function would result in different
summary statistics. For example, minimizing quadratic
loss (Loss(error) = |error|’) would correspond to
perceiving the mean of the distribution as the average,
while minimizing hit loss (Loss(error) = 0 if error =
0; Loss(error) = 1 if error # 0) would correspond to
perceiving the mode as the average. We understand that
the participant’s goal in ensemble perception is to reach
a summary statistic of the distribution (such as mean,
median, or mode), and thus the deviations between the
participant’s estimate and individual samples from the
distribution do not incur any real loss. However, the
concept of loss function is convenient for us to specify
an otherwise recursive functional of how the influence
of an individual sample on a summary statistic may
change with the distance of the sample to the summary
statistic. To avoid confusion with real loss function, we
will use the term “virtual loss function” instead of “loss
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function” to characterize ensemble perception. In the
present article, we will consider different families of
virtual loss functions and see which form best predicts
participants’ ensemble perception in the absence of
feedback. This form of virtual loss function will be
referred to as the participant’s “default” virtual loss
function.

After identifying human participants’ default
summary statistic (virtual loss function), we ask
a further question: Can people learn an arbitrary
summary statistic that is chosen by the experimenter?
This question is arguably important, given that the most
rewarding summary statistic in different environments
can be different and it would be profitable for people to
adjust their ensemble perception accordingly. However,
probably because it resides on the border of two
different areas—ensemble perception and perceptual
learning—this question has received surprisingly little
treatment. As far as we know, only a few studies
(Bauer, 2009; Fan, Turk-Browne, & Taylor, 2016) had
investigated learning in ensemble perception, but with a
different focus. For example, Fan et al. (2016) focused
on the possible increase of precision of ensemble
perception over training. The symmetric distribution
they used, where the mean, median, and mode were
all the same, cannot be used to distinguish between
the different hypotheses about summary statistics.
Bauer (2009) used skewed distributions, but all four
sets of stimuli in his experiment had similar positive
skewness so that participants could simply apply a
positive or negative shift to calibrate their estimates
to the designated correct answer—arithmetic or
geometric mean of the distribution. In other words,
it is unknown whether people can really learn an
arbitrary summary statistic. Here we provide such
a test, using an experimental design that implies
distinct responses for different summary statistics
and that precludes use of any simple calibration
strategies.

In our two experiments, participants were required
to report the average motion direction of an ensemble
of dots that moved in different directions. We were not
interested in motion perception itself, but used random
dot motion as a convenient way to present thousands
of samples within a few hundred milliseconds. In the
literature of ensemble perception, both random dot
motion (Dakin, Mareschal, & Bex, 2005; Watamaniuk
& McKee, 1998; Watamaniuk, Sekuler, & Williams,
1989) and simultaneous presentation of orientation
(Dakin, 2001; Girshick et al., 2011) are widely used
stimuli (see Whitney & Yamanashi Leib, 2018 for a
review). Previous studies of ensemble perception involve
integrating features over time (Albrecht & Scholl,
2010; Joo, Shin, Chong, & Blake, 2009; Yamanashi
Leib, Fischer, Liu, Qiu, Robertson, & Whitney, 2014),
as well as that over space (Ariely, 2001; Chong &
Treisman, 2003). According to two recent studies
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Figure 1. Task, design, and results of Experiment 1. (A) Time course of one trial. (B) Five possible forms of generative distributions. In
each trial, each dot’s moving direction was sampled from one Gaussian mixture distribution, whose Mean-Mode distance had five
possible levels. Dark color represents larger Mean-Mode distance. (C) The distributions of participants’ responses under the five
Mean-Mode distance levels. (D) The towards-mode metric in participants’ responses increased almost linearly with the Mean-Mode
distance. The two dashed lines represent the predicted towards-mode metrics if participants report the mean or mode of the
stimulus distribution. (E) The standard deviation of participants’ responses also increased with the Mean-Mode distance. Dots denote
data from individual participants. The line and its shading denote linear regression fit and its 95% confidence interval.

(Florey, Dakin, & Mareschal, 2017; Gorea, Belkoura,
& Solomon, 2014), these two types of integration are
similar in efficiency and may share common sampling
mechanisms.

On each trial, the motion direction of each dot
was randomly drawn from a skewed distribution,
where the mean, median, and mode were dissociable.
In Experiment 1, no feedback was available, and
participants’ estimates fell between the mean and
mode, best modeled by an inverse Gaussian loss
function that is consistent with robust averaging. In
Experiment 2, two separate groups of participants
were trained to report either the mean or the mode of
specific distributions and we compared their report
before and after training for both the trained and
untrained distributions. After up to five days of
training, participants’ report became slightly closer to

the mode of the motion distribution, no matter which
feedback (mean or mode) they received. This suggests
that people cannot flexibly adjust their virtual loss
function according to feedback, even after thousands
of trials of training.

In Experiment 1, we aimed to identify the virtual loss
function implicit in participants’ ensemble perception.
On each trial, participants saw an ensemble of moving
dots and were required to reproduce the overall moving
direction (Figure 1A). The moving direction of each
dot was randomly generated from a skewed distribution
that was a mixture of two Gaussian distributions of
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different means and variances. Across trials we varied
the distance between the two Gaussian distributions

to manipulate the disparity between the mean and

the mode of the generative distribution (Figure 1B).
We were interested in whether the mean or mode is
perceived as the average moving direction, and if neither
is the case, what virtual loss function can characterize
participants’ responses.

In our modeling, we also considered the possibility
that participants may not process all the dots but
instead base their estimates on random samples from
the population (Dakin et al., 2005; Marchant, Simons,
& de Fockert, 2013). Random sampling errors would
not lead to systematic bias but might contribute to
additional variations in participants’ estimates.

Methods

Participants

Fifteen participants (aged 18-25, eight female)
participated in Experiment 1. One participant was
the first author. The other participants were naive
to the purpose of the experiment. The study was
approved by the Institutional Review Board of School
of Psychological and Cognitive Sciences at Peking
University. All participants provided written informed
consent in accordance with the Declaration of Helsinki
and were compensated for their time.

Stimuli and procedure

Stimuli were presented on a Display++ monitor
(Cambridge Research Systems; 31.5-inch [67.7 x
38.1 cm]; resolution 1920 x 1080 px; refresh rate
120 Hz) in a dark room, controlled by Matlab
and Psychtoolbox-3 (Brainard, 1997; Pelli, 1997).
Participants were seated ~60 cm in front of the screen,
with their head stabilized by a chinrest.

Each trial started with a red fixation dot (diameter
0.34 cm, ~0.3 deg) on a black background for 1000
ms, followed by 800 ms of random-dot kinematogram
(RDK). Subsequently, a green bar appeared at the
center of the screen. Participants were asked to use
the mouse to adjust the pointing direction of the
responding bar to reproduce the overall moving
direction of the dots and then press the space key to
confirm their response. If they did not confirm their
response within 5000 ms, this trial would be forced to
end and a warning message “Time-out!” would appear
on the screen. We recorded the final pointing direction
of the responding bar.

The RDK was composed of white dots (diameter
0.11 cm, =0.1 deg) whose initial positions were
randomized within a square window (width 17.25 cm,
~15 deg). The density of moving dots was set to be
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13.8 dots/cm?/second (~16.7 dots/deg?/second), which
resulted in about 25 dots at a time on the screen. Each
dot followed a two-dimensional random walk in a
square area (width and height 17.25 cm, ~15 deg of
visual angle). On each subsequent frame (refreshed
every 8.33 ms), each dot was displaced by 0.046 cm
(i.e., moving speed 5.75 cm/s, =5 deg/s), whose moving
direction was randomly and independently resampled
from a Gaussian mixture distribution (Figure 1B).
When the dot moved out of the square, it would re-enter
the square from the opposite side. A circular window
(diameter 17.25 cm, ~215 deg) was applied over the
square so that only dots within the circular window were
visible. Please see supplemental video files for demos of
RDK stimuli. Part of the stimulus code was adapted
from the open resource from Shadlen lab (https:
//shadlenlab.columbia.edu/resources/ VCRDM.html).

The generative distribution varied from trial to trial,
each of which was a mixture of two equally weighted
Gaussian distributions (standard deviations [SDs] 15°
and 50°). By varying the distance between the centers
of the two Gaussian distributions (0°, 35°, 55°, 80°,
or 105°), we obtained five levels of distance between
the mean and the mode of the mixture distribution,
which was, respectively, approximately 0°, 17.5°, 27.5°,
40°, or 52.5°. The mean of the mixture distribution
was sampled from 5° to 355° in steps of 10°, resulting
in 36 different values. The mode of the distribution
was clockwise to the mean in half of the trials and
counterclockwise in the other half. All different
conditions were randomly mixed. Thus, before a trial,
participants had no clues to which directions the dots
would be moving.

There were 36 (Mean directions) x 5 (Mean-Mode
distance levels) x 2 (Mode relative to Mean: clockwise
or counter-clockwise) x 2 (repetitions) = 720
experimental trials in total, divided into five blocks.
Participants completed eight practice trials before the
main experiment and completed the whole experiment
in ~75 minutes.

Statistical analysis

For each trial, we defined “towards-mode metric” as
the deviation of participants’ response from the mean
of the stimulus distribution towards the mode of the
distribution. A towards-mode metric of 0 implies that
the participant reported the mean moving direction
of the stimulus distribution. A larger towards-mode
metric implies a larger deviation from the mean and
towards the mode. We used the mean and the SD of
towards-mode metrics to, respectively, quantify the bias
and variability in participants’ responses.

We applied linear mixed model (LMM) analyses
separately to the mean and SD of towards-mode
metrics using the Ime4 package in R, which included a
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Figure 2. lllustration of sampling-based optimal decision models. (A) Assumptions. The observer draws a fixed number of perceptual
samples from the motion stimulus distribution, based on which she derives a point estimate of the overall motion direction. The
estimate is an optimal decision that minimizes expected loss. The yellow and green arrows denote the optimal point estimates based
on two different loss functions (as shown in B). (B) How different loss functions correspond to different optimal estimates. Black bars
denote effective sub-samples from the stimulus distribution. Underneath are the overall losses of different decisions under two
different loss functions (a wider and a narrower inverse Gaussian loss functions). The wider loss function corresponds to an optimal
estimate closer to the distribution mean, while the narrower loss function corresponds to an optimal estimate closer to the mode.

fixed effect of the mean-mode distance and a maximal
random effect design (Barr, Levy, Scheepers, & Tily,
2013). The degrees of free and p values were estimated
by Satterthwaite method.

Modeling

We modeled participants’ estimate of the overall
motion direction as the optimal choice that minimizes
expected loss (Figure 2). We constructed four
alternative models, all of which have the following three
components. First, we assumed that on each trial the
participant randomly drew a fixed number of samples
(termed “perceptual samples”) from the empirical
distribution of motion directions and estimated the
overall motion direction based on these samples. Note
that drawing an infinitely large number of samples
is a limiting case of a fixed number of samples.

Given that the empirical distribution of motion
directions on each trial consisted of approximately 2300
independent motion instances and was thus practically
indistinguishable from the generative distribution, we

simulated participants’ perceptual samples by directly
sampling from the generative distribution.

Second, given a specific loss function, we assumed
that participants would choose a point estimate of
the distribution that minimizes expected loss (Ma &
Jazayeri, 2014; Maloney & Mamassian, 2009; Maloney
& Zhang, 2010):

Zfil Loss (a, s;)
N 9

(1)

Optimal estimate = argmin
a

where a denotes a specific choice of point estimate, s;
denotes the motion direction of the ith sample, N is the
number of perceptual samples the participant draws
(effective sample size), and Loss(.) denotes the virtual
loss function, which specifies the magnitude of virtual
loss incurred had a deviated from s;. Here the expected
virtual loss is approximated by the mean virtual loss
across the available perceptual samples. The optimal
estimate that minimizes expected virtual loss would
depend on the loss function, as well as the perceptual
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samples (Figure 2B, lower panel). We considered two
alternative families of virtual loss functions. The first
was the Lp loss family,

Loss(a,s; p) = la—sl” (2)

The quadratic and hit loss functions we described
in the Introduction are two special cases of the L, loss
family (p = 2 and p = 0), termed L, and L , respectively,
whose optimal estimates correspond to the mean and
the mode of the distribution respectively. The second
virtual loss family we considered was inverse Gaussian,

(c/—A)Z

Loss(a,s;0)=1—¢ 22, (3)

where o controls the width of the inverted-bell-shaped
loss function.

Last, a Gaussian error term, Normal(0, o ),
was added to the optimal point estimate to model the
late noise (e.g., motor noise and memory noise) in
participants’ responses.

In total, we considered four different models whose
assumptions differ in two dimensions: sample size
(limited vs. infinite) and virtual loss function family
(inverse Gaussian vs. Lp). The 2 by 2 combinations
of models were abbreviated as Ltd-InvGau, Ltd-Lp,
Inf-InvGau, and Inf-Lp. Among them, the Ltd-InvGau
model has three free parameters: N (effective
sample size), o (width parameter of the virtual loss
function), and o, (width parameter of the late
error distribution). The Ltd-Lp model also has three
free parameters: N, p (shape parameter of Lp loss
function), and o,,.. The Inf-InvGau model has two free
parameters: o and o .. The Inf-Lp model has two free
parameters: p and o .

For each participant and each model, we combined
Monte-Carlo simulation and grid search to find
the maximum likelihood estimation of the model
parameters. Grid search settings: effective sample size
N varies from 2 to 200 in step size 6; late noise o,
varies from 0° to 20° in step size 0.5°; shape parameter
of Lp loss function p varies from 0.1 to 3 in step size
0.1; width parameter of Inverse Gaussian loss function
o varies from 10° to 150° in step size 5°. For each
combination of parameters and Mean-Mode distance
level (arbitrarily setting Mean = 0), we generated
6000 simulated responses, on the basis of which we
calculated the likelihood function of participants’
responses. In particular, we fit a Gaussian distribution
(with mean and variance as free parameters) to the 6000
simulated responses as a numerical approximation of
the likelihood function. The combination of parameters
that maximize the summed log likelihood across trials
were chosen as the participant’s estimated parameters
for the model.
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The Akaike information criterion with a correction
for sample sizes, AICc (Akaike, 1974; Hurvich & Tsai,
1989), was used for model selection. For a specific
model, the AAICc was computed for each participant
and each task as the difference of AICc between the
model and the minimum AICc among the four models.
The best model on the group level was the model with
the lowest AAICc summed across participants. The
group-level Bayesian model selection (Daunizeau,
Adam, & Rigoux, 2014; Rigoux, Stephan, Friston, &
Daunizeau, 2014; Stephan, Penny, Daunizeau, Moran,
& Friston, 2009) was used to provide an additional
omnibus measure of model advantage.

In our experimental design, statistical and
modeling analyses described above, we used Gaussian
distributions as an approximation for von Mises
distributions in the circular space and omitted possible
wrap-around issues. We also performed additional
modeling analyses in the circular space that compensate
for wrap-around and obtained similar results (see
Supplementary Figure S6 for details).

Results and discussion

The distribution of all participants’ towards-mode
metrics is plotted in Figure 1C. We found that
participants’ estimate of the overall motion direction
fell between the mean and the mode of the stimulus
distribution. On average the towards-mode metric (the
deviation of participants’ response from the mean
of the stimulus distribution toward the mode of the
distribution) was 29% of the Mean-Mode distance. The
towards-mode metric increased almost linearly with
the Mean-Mode distance (Figure 1D), whose slope
according to an LMM analysis was significantly greater
than zero (¢#(14) = 26.18, p < 0.01) and less than one
(#(14) = —62.58, p < 0.01).

The SD of participants’ responses (Figure 1E) also
increased with the Mean-Mode distance (#(14) = 4.76,
p < 0.01), which apparently could not be explained by
late noises. If the variability in participants’ responses
was merely due to an additive late noise, it would
have been constant rather than changing with the
Mean-Mode distance level of the stimulus. Therefore
our finding suggests that the precision of participants’
summary perception decreased when the variability of
the stimulus distribution increased.

In the analyses above, we collapsed participants’
towards-mode metric across motion distributions
with different mean directions. We also examined
whether the towards-mode metric was influenced
by the mean direction (Supplementary Figures S3
and S4). According to a linear mixed model analysis
(Supplementary LMM S1) on participants’ response,
when the mean of the motion distribution was close
to the horizontal axis, participants’ response was
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Figure 3. Modeling results of Experiment 1. Data versus model fits for the towards-mode metric (A) and standard deviation (B) of
participants’ responses. Error bars denote SE. Only the Ltd-InvGau model fits well to both the bias and the standard deviation
patterns. (C) The AAICc summed over all participants. Smaller AAICc indicates better fit. The probability for the Ltd-InvGau model to

outperform all the other models, Py, was greater than 99%.

repulsed away from the horizontal axis, which was
consistent with the reference repulsion effect reported
in the literature of motion or orientation perception
(Rauber & Treue, 1998; Wei & Stocker, 2015). However,
no repulsion effect was found for the vertical axis.
The response variability did not vary with the mean
direction of the motion distribution (Supplementary
LMM 8S2). In Supplementary LMM S1, we also
checked that the initial direction of the responding
bar had little influence on the participant’s response
(Supplementary Figure S5).

We fit four alternative models—Ltd-InvGau,
Ltd-Lp, Inf-InvGau, and Inf-Lp—to each participant’s
responses using maximum likelihood estimation and
plot the model predictions versus data in Figures 3A
and 3B. Only the Ltd-InvGau model well predicted both
the towards-mode metric and variability in participants’
responses, whereas the other models exhibited patterned
deviations. In particular, models assuming an inverse
Gaussian loss function but not those assuming an Lp
loss function could predict the linear increase of the
towards-mode metric with the Mean-Mode distance.
Models assuming limited but not infinite sample size
could predict the increase of response variability

with the Mean-Mode distance, because the former
but not the latter would introduce random sampling
error that increases with the variance of the stimulus
distribution.

A model comparison analysis of the four models
using AICc also showed that the Ltd-InvGau model
fit best to the data (Figure 3C, exceedance probability
>99%). The fitted parameters of the Ltd-InvGau model
is shown in Supplementary Table S1. According to
the median parameters of Ltd-InvGau, participants’
sample size was 53, the SD of the inverse Gaussian loss
function was 75°, and the standard deviation of late
noise was 10.5°. That people use only a limited number
of perceptual samples is consistent with previous
findings in ensemble perception (Dakin et al., 2005;
Marchant et al., 2013).

The inverted-bell-shaped inverse Gaussian loss
function that we identified in our data does not
punish large errors as heavily as the quadratic
(i.e. L2) loss function does. It agrees with the loss
function Kording and Wolpert (2004) found in
sensorimotor learning and is also consistent with
previous findings of the underweighting of outliers in
ensemble perception (de Gardelle & Summerfield, 2011;
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Haberman & Whitney, 2010; Vandormael et al., 2017).
We will discuss its implications further in the General
discussion.

In Experiment 1, we gave participants no feedback
and estimated their default ensemble perception
(virtual loss function). A natural question follows: Can
participants’ bias in ensemble perception be changed by
feedback?

Although feedback has been commonly used in
perceptual learning studies (Dosher & Lu, 2017), the
question we ask here is different. Traditional perceptual
learning studies focused on improving perceptual
discriminability, whereas we focused on the bias of
perceptual decisions, especially when the desired bias
may vary from distribution to distribution following an
abstract rule (i.e., minimizing virtual loss).

In Experiment 2, we provided two groups of
participants with different feedbacks and tested whether
participants could adjust their responses accordingly.
One group of participants received the mean of
the stimulus distribution as the feedback direction.
The other group received the mode as the feedback.
Participants were instructed to find a proper way to
interpret the motion stimulus and reduce their error
relative to the feedback. In training sessions feedback
was available only at the Mean-Mode distance of 27.5°,
but were tested at Mean-Mode distances of both 17.5°
and 27.5° in pretests and posttests. The inclusion of an
untrained Mean-Mode distance level in the tests was
intended to test the generalizability of the training.

One note: Based on a limited number of samples,
the mode of a continuous distribution can only
be estimated with uncertainty and kernel density
estimation is required. Such estimation may seem to be
difficult for human participants. However, reasonably
good performance was found in previous research
where participants were required to estimate the mode
for a multimodal, continuous distribution based on 70
samples (Sun, Li, & Zhang, 2019).

Methods

Participants

Twenty-eight naive participants (aged 18-24,
20 female) participated in Experiment 2. They
were assigned to either the Mean-feedback group (16
participants) or Mode-feedback group (12 participants).
The study was approved by the Institutional Review
Board of School of Psychological and Cognitive
Sciences at Peking University. All participants provided
written informed consent in accordance with the
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Declaration of Helsinki and were compensated for their
time.

Stimuli and procedure

The apparatus was the same as that of Experiment 1.

Similar to Experiment 1, the RDK in Experiment 2
consisted of white dots (diameter 0.11 cm, ~0.1
deg of visual angle), whose initial positions were
randomized within a square window (width 17.25 cm,
~15 deg). The density of moving dots was set to be
27.6 dots/cm?/s (*233.4 dots/deg’ /s), which resulted
in about 50 dots at a time on a deep grey back
ground. Each dot followed a two-dimensional random
walk in a square area (width and height 17.25 cm,
~15 deg). On each subsequent frame (refreshed
every 8.33 ms), 4% of the dots disappeared and
were relocated to random positions. The remaining
dots were displaced by 0.12 cm (i.e., moving speed
11.5 cm/s, ~10 deg/s), whose moving direction was
randomly and independently re-sampled from a
Gaussian mixture distribution. When the dot moved
out of the square, it would be transformed to the
opposite side of the square. A circular window
(diameter 17.25 cm, =15 deg) was applied over the
square so that only dots within the circular window
were visible. Please see supplemental video files for
demos of RDK stimuli. After viewing the RDK for
1500 ms, participants were asked to report the overall
moving direction of the RDK and then received a
500-ms feedback of the correct answer (Figure 4). The
higher density of dots and longer presentation time in
Experiment 2 was motivated by the consideration that
the stimuli in Experiment 1 might have not provided
enough motion samples for participants.

Each participant completed one pretest, five training,
and one posttest sessions in five different days. On the
first day, participants first completed eight practice
trials to be familiarized with the task. They then
completed a no-feedback pretest session and a short
training session. In the following three days, they
completed three long training sessions. On the last day,
participants first completed a short training session and
then a no-feedback posttest session that had the same
design as the pretest session.

Participants were trained only at the Mean-Mode
distance of 27.5° but pretested and posttested at both
27.5° and 17.5°. As in Experiment 1, all different
conditions in each session were randomly mixed. In
each test session, there were 36 (Mean directions)

x 2 (Mean-Mode distance levels) x 2 (Mean-Mode
relative directions: clockwise or counter-clockwise)

x 2 (repetitions) = 288 trials. Some of our early
participants complained that the sessions on the first
and last days (test + short training) were too long and
tiring. To improve participants’ experience, we slightly
reduced the length of the short training sessions on
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Fixation: 300ms Stimulus: 1500ms

--

Response: up to 5000ms

Feecback: 500ms Empty: 1000ms

Figure 4. Task of Experiment 2 during training. Time course of one trial during training. No feedback was available in pretest and

posttest, for which the procedure was the same as Experiment 1.

the first day and last day for later participants. As the
result, the first nine participants of the mode feedback
group completed 2448 training trials in total, and the
remaining 19 participants completed 2304 training
trials in total.

Statistical analysis

Similar to Experiment 1, we applied LMM analyses
separately to the mean and SD of towards-mode
metrics. The fixed effects of the LMMs included the
main and interaction effects of experimental session
(pretest session, the five training sessions, and posttest
session were coded as 1 to 7), Mean-Mode distance
level, and feedback group. The random effect structure
was kept maximal. The significance of the fixed effects
was interpreted using the ImerTest package in R
(Kuznetsova, Brockhoff, & Christensen, 2017), where
the degrees of freedom and p values were estimated by
the Satterthwaite method. For significant interactions,
we applied “emmeans” package to do post hoc
tests.

Modeling

The goal of our modeling was to identify the latent
dimensions that had changed across pretests and
posttests. Based on the winning model of Experiment 1
(Ltd-InvGau model), we constructed eight models that
differed in their flexibility across pretests and posttests
in three parameters (dimensions): sample size N, loss
function width o, and noise SD o .. If one specific
dimension (e.g., loss function width) was set to be
“variable,” two different parameters would be used for
the dimension to model the pretest and posttest data
(e.g. o7 and o?*"). In contrast, if the dimension was
set to be “fixed,” a single parameter would be used for
the pretests and posttests. Each dimension can be either
“variable” or “fixed,” thus resultingin2 x 2 x 2 =38
models.

The models are named according to their assumption
of flexibility on each dimension, where “V” represents
“variable” and “F” represents “fixed.” For example,
[F-sample, V-loss, F-noise] represents a model with

fixed effective sample size, variable loss function width,
and fixed late noise. The number of parameters in each
model equals 3 plus the number of “F” in the model
name.

For each participant and model, we fit the model
to the participant’s towards-mode metrics in the
pretest and posttest sessions. The model fitting and
comparison procedures were the same as those of
Experiment 1.

Similar to Experiment 1, we performed additional
modeling analyses in the circular space that compensate
for wrap-around and obtained similar results (see
Supplementary Figure S7 for details).

Results and discussion

Participants’ towards-mode metric is plotted
against different experimental conditions in Figure
SA. We performed a linear mixed model analysis
on towards-mode metric to identify the possible
differences between the two feedback groups in learning
effects. Consistent with our results in Experiment 1,
participants’ towards-mode metric was larger for larger
Mean-Mode distance (i.e., 27.5° > 17.5°, F(1, 37.8) =
277.96, p < 0.001). Meanwhile, towards-mode metric
increased with increasing experimental sessions (F{(1,
27.9) = 6.28, p = 0.02). The increase of towards-mode
metric across experimental sessions was larger at the
trained 27.5° than at the untrained 17.5° Mean-Mode
distance level (interaction F(1, 32.6) = 5.59, p =
0.02), which echoed our finding in Experiment 1 that
participants’ towards-mode metric scaled with the
Mean-Mode distance (see Figure 1D).

Meanwhile, the interaction between the feedback
type and the experiment session did not reach
significance (F(1, 27.9) = 1.85, p = 0.18). In other
words, whether the feedback during training was the
mean or the mode of the motion distribution had little
influence on participants’ response.

According to a similar linear mixed model analysis
on the SD of towards-bias metric (Figure 5B),
participant’s response variability decreased across the
experimental sessions (F(1, 28.0) = 19.6, p < 0.01).
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Figure 5. Results of Experiment 2. (A) The change of towards-mode metric in participants’ responses separately for the
Mode-feedback (green) and Mean-feedback (yellow) groups. There was no significant interaction between the feedback groups and
the experimental sessions. Compared to the pretest, both groups’ towards-mode metric moved slightly closer to the mode of the
stimulus distribution in the posttest. (B) The change of participants’ response SD. (C) Results of model comparisons based on the
pretest and posttest responses. We considered eight models whose assumptions are combinations of the following three factors:
whether (1) sample size, (2) loss function, and (3) late noise have been fixed (denoted “F”) or variant (denoted “V”) across pretest and
posttest. Lower AlCc indicates better fit. The probability for the winning model ([F-sample, V-loss, V-noise]) to outperform all the

other models, Pgyc, was 95.3%.

Consistent with our finding in Experiment 1 (Figure
1E), the response variability was larger at the trained
27.5° than at the untrained 17.5° Mean-Mode distance
level (F(1, 28.0) = 15.23, p < 0.01). The Mode-feedback
group’s response variability was overall larger than

the Mean-feedback group (F(1, 28.0) = 15.23,

p < 0.01).

It is not ideal that nine participants in the Mode-
feedback group have slightly smaller number of training
trials. To exclude the possible influence of different
training length, we performed additional trial-level
linear mixed model analyses (Supplementary LMM S3)
to reveal how participants’ performance might change
trial by trial with the number of training trials. All
statistical conclusions were the same as those of the
session-level analysis reported above.

Participants’ towards-mode metric had increased
over training, a change that was not specific to Mean-
or Mode-feedback. Did this non-specific change arise
from perception or a mapping between perception and
motor response? Given that perceptual-motor mappings
can be quickly shaped by feedback (Shadmehr, Smith,

& Krakauer, 2010; Wolpert, Ghahramani, & Flanagan,
2001), the lack of specific learning effects after several
days of training suggests that the change was probably
perceptual.

To further test whether the change of participants’
toward-mode bias and response variability over training
was due to the change in loss function, we constructed
eight models that were all based on Ltd-InvGau,
the winning model of Experiment 1, but differed in
whether the three parameters of Ltd-InvGau (effective
sample size, loss function’s width, and noise SD) were
allowed to vary (“variable”, denoted by prefix “V”)
or kept constant (“fixed”, denoted by prefix “F”) in
fitting pretest and posttest data. According to model
comparisons based on AICc, the best-fitting model
([F-sample, V-loss, V-noise]) assumed inflexible effective
sample size, flexible loss function width, and flexible
late noise (Figure 5C, exceedance probability = 95.3%).
In fact, the second and third best models also assumed
flexible loss function width. The predictions of the best
model agreed well with the observed towards-mode
metric and response SD (Figures 5A and 5B). The
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fitted parameters of the winning model is shown in
Supplementary Table S2.

To summarize, we found that different feedbacks
had similar effects on participants’ toward-mode
metric—the responses of both the feedback groups
moved slightly toward the mode after extensive training.
We will discuss this limited adjustability of virtual loss
function in General discussion.

We investigated ensemble perception using skewed
motion distributions and found that the overall motion
direction participants reported falls between the
mean and mode of the stimulus distribution, and
that participants’ bias toward the mode and their
response variability increase with the Mean-Mode
distance. These patterns can be well predicted by
a sampling-based optimal decision model that
assumes an inverse-Gaussian loss function, which
effectively underweights extreme values in the stimulus
distribution. In a second experiment, we further
examined whether participants’ ensemble perception,
in terms of virtual loss function, can be changed
by feedback. We trained two groups of participants
for five days with either the mean or mode of the
stimulus distribution as feedback and found no
feedback-specific learning effects but that participants
in both groups moved their estimates slightly toward the
mode.

Excluding an alternating-response hypothesis

That the SD, as well as the mean of participants’
towards-mode metric, increased with the Mean-Mode
distance of the stimulus might be explained by the
following alternating-response hypothesis: Participants
had perceived two (or more) discrete directions from
the mixture distribution, such as the two centers of the
two Gaussian components, and alternatively reported
different directions in different trials. If so, we would
expect to see bimodality (or multimodality) in the
distribution of their responses (Laquitaine & Gardner,
2018). However, our data patterns did not support
this hypothesis. Supplementary Figure S1 shows the
distribution of towards-mode metrics in Experiment
1, separately for each participant, each Mean-Mode
distance condition, and Mean-Mode relative direction
(clockwise or counter-clockwise). Almost all the
distributions appeared to be unimodal. We used the
bimodality coefficient (BC) to measure how likely a
distribution is bimodal or multimodal instead of being
unimodal. A BC higher than 0.555 suggests that the
distribution is bimodal or multimodal, whereas a BC
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lower than 0.555 suggests unimodality (Freeman &
Dale, 2013). Of the 135 distributions in Supplementary
Figure S1, 131 distributions had BC lower than 0.555
(group-averaged BC: 0.324). We computed the mean
BCs for each participant and performed a group-level
t-test against the null hypothesis “group-averaged

BC was higher than 0.555,” which indicates that the
distribution of towards-mode metric was unimodal
(¢(14) = —39.89, p < 0.01). Moreover, as a more direct
evidence against the alternating-response hypothesis,
there were no increased responses at either of the two
modes of the two Gaussian components (marked by
dash lines in Supplementary Figure S1).

Similarly, in Experiment 2, there was little bimodality
or multimodality in the distributions of individual
participants’ towards-mode metrics (Supplementary
Figure S2). All 224 distributions in Supplementary
Figure S2 had a BC lower than 0.555 (group-averaged
BC: 0.341, #(27) = —36.13, p < 0.01). Again, this
is against the alternating-response hypothesis and
suggests that a single moving direction was perceived in
each trial.

Of course, if participants had perceived the two
centers of the two Gaussian components in the mixture
distribution but used a weighted average of them as
their response, no multimodality would be observed
likely. However, had participants been able to perceive
and integrate the two discrete directions, in Experiment
2 it would not have been so hard for them to adjust
their responses to match the predefined correct answer
(i.e., the Mode or Mean of the mixture distribution).
Therefore we considered it unlikely that participants
had perceived two (or more) discrete directions of
motion from the mixture distribution.

Loss function

In studies where Bayesian observer models are used
to model human perception (Stocker & Simoncelli,
20006), action (Kording & Wolpert, 2004), and working
memory (Ding, Cueva, Tsodyks, & Qian, 2017) but
where loss functions are not explicitly specified, both
L0 and L2 are common choices of loss functions in
modeling practice, such as in the maximum a posteriori
and Bayes least-squares models of Jazayeri and Shadlen
(2010). However, we found that the loss function
implicit in participants’ ensemble perception of motion
agrees neither with LO nor with L2 but lies in between.
A caveat to interpreting our results is that the loss
function we measured is “virtual,” which is applied to a
stimulus distribution instead of a posterior distribution
of beliefs as in Bayesian observer models. Despite
this difference, the virtual loss function we studied
here may still capture a common essential aspect of
human behavior: how people summarize an arbitrary
distribution.
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Our modeling approach was partly inspired by
Kording and Wolpert’s (2004) work in sensorimotor
loss function, where they asked participants to play a
virtual shooting game under skewed distributions of
sensorimotor errors. Their data allowed them to reject
both LO and L2 loss functions but were inconclusive
about whether the Lp or the inverse Gaussian loss
function fits better. In contrast, our data clearly
favored the inverse Gaussian over the Lp loss function:
The former outperformed the latter in predicting
participants’ response patterns (Figures 3A and 3B),
as well as in goodness-of-fit (Figure 3C, exceedance
probability >99%).

The inverse Gaussian loss function found in our
study of motion perception corresponds to a summary
statistic between the mean and mode, which agrees with
findings of Webb and colleagues in motion perception
(Webb, Ledgeway, & McGraw, 2007; Webb et al., 2011)
as well as with the loss function found in sensorimotor
planning (Kording & Wolpert, 2004) or visual working
memory (Sims, 2015). An exception is Sun, Li, and
Zhang (2019), where participants were explicitly
required to report the mean and mode of skewed
visuospatial distributions and the mean reported by
participants biased toward the tail instead of the mode
of the distribution.

One important feature of the inverse Gaussian loss
function is that it does not penalize large errors as
much as the L2 (quadratic) loss function. In other
words, the choice that minimize inverse Gaussian
loss would underweight outliers. Indeed, humans
are widely documented to underweight outliers in
ensemble perception, such as the facial expression
(Haberman & Whitney, 2010), color (de Gardelle
& Summerfield, 2011), number (Vandormael et al.,
2017), and orientation (Li, Herce Castanon, Solomon,
Vandormael, & Summerfield, 2017), known as robust
averaging (Huber, 2004; Juni et al., 2010). Our findings
add to evidence for the hypothesis of robust averaging
and further advance our understanding of robust
averaging in the following two aspects. First, we have
observed that the inverse Gaussian loss function can
better characterize the human summary perception of
motion than the Lp loss function, though both loss
functions can implement robust averaging. Second,
such robust averaging is “robust” itself and changes
very little under different external goals, even after
extensive training. The theoretical implications of these
observations deserve future research.

Sampling and effective sample size

We assumed that instead of applying virtual loss
function to all samples, participants may only take
a limited number of samples into account. The
introduction of limited sample size can explain why
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the variability of participants’ ensemble perception
increases with the Mean-Mode distance of the stimulus
distribution.

Similar to previous studies of ensemble perception
(Dakin et al., 2005; Marchant et al., 2013), the sampling
process we modeled is at the computational-theory
level, whose capacity is quantified by effective sample
size. We cannot exclude other forms of sampling
process that provides equivalent amount of information
(e.g. taking a larger number of noisier samples).
Whether and how participants really sample from
the stimulus distribution is a question for future
research. For example, participants might sample
from the trajectory of a single dot, or instead from
multiple dots, simultaneously or sequentially. Though
in Experiment | the estimated effective sample size
(median 53) was smaller than the number of samples
in one dot’s trajectory (median 96), in Experiment
2 the former (median 32) was much larger than
the latter (median 17), thus largely excluding the
possibility that participants sampled only from one
single dot’s trajectory. Eye tracking and manipulation
of spatial attention would be two promising methods
to further investigate the algorithm people use to
gather information in the summary perception of
motion.

We also cannot exclude the possibility that
participants may have perceived multiple consecutive
motion samples as one motion sample, due to limited
temporal precision of their visual system. If such
pooling had occurred, the motion samples participants
actually perceived would follow a distribution that
has the same mean as the presented distribution but
whose mode is closer to the mean. This might explain
why participants failed to report the exact mode of the
presented distribution in the Mode-feedback group,
but could not explain why participants also failed to
learn the mean in the Mean-feedback group. That is,
pooling is unlikely to cause the lack of specific learning
effects. But pooling may provide an explanation for the
nonspecific change we observed: If participants used
the same way to integrate the samples they perceived
but over training each percept pooled a smaller number
of samples because of increased temporal precision,
their responses would slightly move toward the mode
regardless of feedback.

We have omitted modeling the visual noise in
perceiving individual motion samples, partly for
simplicity and partly because the effect of visual
noise may not be empirically separable from that of
effective sample size, virtual loss function, or late
noise. Similar to late noise, visual noise alone could
not explain why the towards-mode metric and its
variability increase with the Mean-Mode distance
of the distribution. Similar to pooling, visual noise
may bias the mode but not the mean estimated from
samples.
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Limited adjustability of loss function

Given the large body of evidence that human
decisions are adaptive (Cheadle et al., 2014; Dayan &
Niv, 2008; Keramati, Smittenaar, Dolan, & Dayan,
2016), one might expect participants to be able
to adjust the summary statistic of their ensemble
perception according to the rewarding structure of
the environment. However, we found little evidence
for such adjustments. Why do people have difficulty
adjusting their virtual loss functions? We consider a few
possibilities below.

One possibility is that people may be insensitive to
any higher-order probabilistic information beyond
the mean and variance (i.c., the first two moments)
of the motion distribution, as suggested by Waskom,
Asfour, and Kiani (2018). But this is unlikely to be true
in our case, otherwise participants’ estimates of the
overall motion direction would not have systematically
deviated from the mean of the stimulus distribution,
neither would their responses be shaped by feedback at
all.

A second possibility is that participants’ ensemble
perception may be determined by hard-wired neural
circuits that are hardly subject to the rewarding
structure of the environment. From the perspective
of population coding, the winner-take-all and vector-
averaging decoding algorithms roughly correspond
to ensemble perception at the mode and mean of the
stimulus distribution, respectively (Zohary, Scase, &
Braddick, 1996). Parallel to our rejection of the LO
and L2 loss functions, Webb and colleagues found
that neither of the two decoding algorithms can
explain participants’ psychophysical data in motion
perception, which implies an ensemble perception
between the mean and the mode of the stimulus
distribution (Webb et al., 2007; Webb et al., 2011).
Meanwhile, they found that the overall direction
participants perceive would vary with the duration and
the temporal or spatial dynamics of motion stimuli.
However, they did not consider the decoding algorithm
itself to be adjustable but explained the changed
motion perception under different motion conditions
as a result of neural temporal dynamics. Our results
were consistent with their conjecture that the neural
read-out of the global motion direction might not be
adjustable.

It is also possible that people may have the ability
to adjust the virtual loss function implicit in their
ensemble perception but simply do not have enough
motivation to do so. It should be noted that the initial
bias is much closer to the mean than to the mode of
the stimulus distribution. As a result, participants in
the Mean-feedback group may not be well motivated to
improve.

Finally, other than the training received in our
laboratory, participants are frequently exposed to
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motion stimuli in their daily life. Several hours of
laboratory training is probably not intense enough to
reverse many years of perceptual experience.

Keywords: summary perception, ensemble perception,
loss function, robust averaging, plasticity
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