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Abstract Recent studies suggest a framework where white- matter (WM) atrophy plays an 
important role in fronto- temporal dementia (FTD) pathophysiology. However, these studies often 
overlook the fact that WM tracts bridging different brain regions may have different vulnerabilities 
to the disease and the relative contribution of grey- matter (GM) atrophy to this WM model, resulting 
in a less comprehensive understanding of the relationship between clinical symptoms and pathology. 
Using a common factor analysis to extract a semantic and an executive factor, we aimed to test the 
relative contribution of WM and GM of specific tracts in predicting cognition in the Frontotemporal 
Lobar Degeneration Neuroimaging Initiative (FTLDNI). We found that semantic symptoms were 
mainly dependent on short- range WM fibre disruption, while damage to long- range WM fibres 
was preferentially associated to executive dysfunction with the GM contribution to cognition being 
predominant for local processing. These results support the importance of the disruption of specific 
WM tracts to the core cognitive symptoms associated with FTD. As large- scale WM tracts, which are 
particularly vulnerable to vascular disease, were highly associated with executive dysfunction, our 
findings highlight the importance of controlling for risk factors associated with deep WM disease, 
such as vascular risk factors, in patients with FTD in order not to potentiate underlying executive 
dysfunction.

Editor's evaluation
This study explores how the pathophysiology of frontotemporal dementia, a collection of younger- 
onset dementias, impacts grey and white mater brain integrity, and how such changes relate to 
discrete aspects of cognition. The authors used whole- brain fixed- based analysis, structural connec-
tivity analysis of white matter tracts, alongside voxel- based morphometry of grey matter atrophy. 
Overall, semantic impairment was found to associate with relatively short- range white matter 
dysfunction, while executive dysfunction was related to long- range white matter fibres.
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Introduction
Fronto- temporal dementia (FTD) is the second most prevalent form of early onset dementia (Bang 
et al., 2015; Cairns et al., 2007). The misfolding and aggregation of proteins such as tau, TDP- 43, 
FUS, or ubiquitin- positive proteins encompass nearly all cases of FTD (Seelaar et al., 2011). FTD clin-
ical phenotype includes behavioural, executive, and language dysfunction without primary amnesia. 
The initial clinical manifestation of the disease characterizes FTD cases into three common variants: 
the behavioural (BV) and two distinct forms of primary progressive aphasias, the semantic (SV) and 
the progressive non- fluent aphasia (PNFA). As the disease progresses, both language and behavioural 
dysfunction may appear in all variants.

While FTD has long been considered a grey- matter (GM) disease, recent advance in diffusion MRI 
(dMRI) research has revealed that white matter (WM) is also much involved in the pathophysiology of 
the disease (Zhang et al., 2009; McKenna et al., 2021). GM atrophy is typically observed in the insula 
(Muhtadie et al., 2021) (all variants), the bilateral anterior cingulate and frontal lobe (BV) (Lanata and 
Miller, 2016), left anterior temporal lobe (SV) (Williams et al., 2005), and left premotor and inferior 
frontal cortex (PNFA) (McMillan et al., 2004). Widespread WM abnormalities have been observed 
in the uncinate fasciculus, superior frontal, inferior frontal and inferior fronto- occipital fasciculi, the 
corpus callosum and the cingulum bundle, with a large overlap amongst participants; see Greaves 
and Rohrer, 2019; Meeter et al., 2017; Rohrer et al., 2010, for recent reviews of MRI findings in 
FTD. In some mutation carriers, WM changes are detectable up to 30 years before symptoms onset 
(Jiskoot et  al., 2018), strengthening the importance of considering WM alteration as part of the 
pathophysiology of FTD.

Although often studied separately, WM and GM impairments are not occurring in isolation from 
one another. Alteration from GM may propagate to WM and, reciprocally, WM damage may prop-
agate to GM via Wallerian degeneration or retrograde degeneration (Metzler- Baddeley et  al., 
2019; Villain et al., 2008; Villain et al., 2010). The aforementioned constructs suggest a dynamical 
and interdependent relationship between GM and WM as determinants of cognitive symptoms in 
neurodegenerative conditions such as FTD. Despite strong evidence of isolated effects of both WM 
and GM disruptions on FTD, their relative contribution to the impairment of the different cognitive 
domains typically affected in patients with FTD is unknown. Nonetheless, a number of studies have 
related both GM and WM atrophy to discrete aspects of cognition in BV and SD including disinhibition 
(Piguet et al., 2011), moral reasoning (Strikwerda- Brown et al., 2021), and WM changes over time 
(Lam et al., 2014).

In the present study, we aim to clarify the relative contribution of different properties of WM 
fibres and GM to the cognitive impairment (semantic and executive) in FTD patients. Specifically, we 
used a WM fixel- based analysis (FBA) combined with a structural connectivity and GM voxel- based 
morphometry (VBM) analyses to (1) provide an improved characterization of the whole brain fibre 
density (FD) and fibre cross- section (FC) impairment across the variants, (2) investigate the relationship 
between the WM metrics and GM volume, (3) evaluate the relationship between WM metrics and 
cognition domains in patients, and (4) test the relative contribution of WM and GM of specific tracts in 
predicting cognition. We studied these associations across different WM tracts under the assumption 
that these associations vary depending on specific WM tracts characteristics. We found that semantic 
symptoms were mainly dependent on short- range WM fibre disruption, while damage to long- range 
WM fibres was preferentially associated to executive dysfunction with the GM contribution to cogni-
tion being predominant for local processing.

Results
Fibre loss in FTD variants
Variants of FTD all had extensive WM impairments compared to normal controls after correction for 
age, sex, and intracranial volume (ICV) (Figure 1). Figure 2a–c shows the streamline segments associ-
ated to significantly reduced FC and FD (FWE- corrected p- value < 0.05; colour coded by direction) for 
the BV, PNFA, and SV, respectively. Irrespective of the variant, reduced FC (Figure 2a–c; upper panels) 
could be observed in large associative fibres including the uncinate fasciculus, the inferior fronto- 
occipital fasciculus and the superior longitudinal fasciculus, cingulum, and corpus callosum. Despite a 
large common network, variant- specific differences could be noted in the bilateral anterior and medial 

https://doi.org/10.7554/eLife.73510
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part of the frontal cortex and lateral orbitofrontal WM for BV (Figure 2a), while PNFA presented with 
reduced FC in the caudal part (precentral gyrus/supplementary motor area [SMA]) of the left frontal 
cortex (Figure 2b) and SV showed a left predominant FC reduction in the inferior longitudinal fascic-
ulus (Figure 2c). Reduced FD patterns (Figure 2a–c; lower panels) were similar to those observed for 
FC although with a lower spatial extent.

Structural connectivity analysis (Figure 2d–f), although based on a different method (tractography), 
provided complementary information to the FBA, about specific GM regions that may be affected 
by the WM impairment. Significant reductions (FWE- corrected p- value < 0.001) in tracts connecting 
GM regions are shown for frontal regions (red), the insula (light blue), the temporal lobe (yellow), 
subcortical region (green), and parietal regions (dark blue), where the line thickness corresponds to 
the strength of the effect. Compared to normal controls, BV (Figure 2d) had the largest reduction 
in bilateral insula – inferior frontal cortex (pars opercularis and triangularis) connectivity, followed by 
bilateral reduction in thalamo- frontal (rostral middle frontal) connectivity. For PNFA (Figure 2e), the 
largest reduction was also observed in insula – inferior frontal cortex (pars opercularis and triangu-
laris) connectivity but in the left hemisphere only, followed by precentral – middle frontal connectivity 
impairment. For SV (Figure 2f), the largest reduction occurred in the left hemisphere between the 
thalamus and the temporal cortex (superior and middle), but also between the lateral orbitofrontal 
and superior frontal cortex, followed by intra- temporal connectivity reduction.

Figure 1. Method workflow. The main steps of the methods are shown from the native space (left) to template space (right). For the white matter (WM) 
(upper panels), native diffusion- weighted MRIs were first preprocessed to obtain individual normalized WM FODs (a). WM FODs were non- linearly 
registered to a study- specific WM FOD template (b), to obtain the fibre density (FD), and fibre cross- section metrics (FC), later used in whole brain 
fixel- based analysis. The template space WM FODs were then used to generate individual probabilistic tractograms (c). For the grey matter (GM) (lower 
panels), native space GM probability maps were warped to a study specific GM template in MNI space to obtain individual template space GM volume 
(e). An affine transform was estimated between MNI template and the diffusion template space which was subsequently applied to the Desikan- Killiany 
(DKT) GM atlas to bring the DKT atlas in diffusion space (f). Individual structural connectivity matrices were then obtained by counting the amount of 
fibres connecting each pair of GM regions within the DKT atlas (g). Significant difference in connectivity for a given dependant variable (Y) was then 
tested using the network- based statistic enhanced (h). Significant predictors (connections) were selected to access the relative importance of GM 
volume and WM (FD and FC) within each connection in predicting Y (h), where mean FD and FC were obtained in fixels belonging to the connection 
streamlines and GM was the average of both GM regions volume for each subject.

https://doi.org/10.7554/eLife.73510
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Figure 2. Fibre loss in fronto- temporal dementia (FTD) variants. Streamlines (colour coded by direction) associated to significantly reduced fibre 
cross- section (FC) and fibre density (FD) (FWE- corrected p- value) are shown for behavioural variants (BV) vs. normal elderly control (CN) (a), progressive 
non- fluent aphasia (PNFA) vs. CN (b) and semantic variant (SV) vs. CN (c). Associated structural connectivity reduction (FWE- corrected p- value < 0.001) 
is shown in panels (d–f) for the ipsilateral left (upper panel) and right (lower panel) hemisphere, where frontal regions are shown in red, the insula in 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.73510
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GM atrophy in FTD variants
Significant differences, after correction for age, sex, ICV, and multiple comparisons, were observed for 
GM volume between CN and FTD variants (Figure 3a–c). BV (Figure 3a) had a widespread reduction 
in bilateral GM volume with the strongest effect seen in the insula, orbitofrontal, anterior cingulate, 
and prefrontal cortex (middle and inferior) while PNFA (Figure 3b) had a left predominant atrophy in 
the premotor part of the frontal cortex, the insula and prefrontal cortex (middle and inferior), and SV 
(Figure 3c) had a bilateral (but left predominant) atrophy of the whole temporal lobes and to a lesser 
extend insula atrophy. Taken together (Figure 3d), the three variants share overlapping GM atrophy 
in the insula, while BV and SV share atrophy in the temporal lobe and orbitofrontal cortex, and PNFA 
and BV share atrophy in the left prefrontal cortex (middle and inferior).

Relationship between GM atrophy and WM microstructural impairment
The peak of the maximum GM atrophy for each variant was used as a seed (Figure 4a–c left panels) 
to investigate the relationship between GM and whole brain WM FC and FD across all participants. 
Streamlines associated to significant fixels after correction for multiple comparison are shown for 
the relationship with FC (middle panels) and FD (right panels). Independently of the seed loca-
tion, a strong relationship was found between GM atrophy and reduced FC and FD for the inferior 

light blue, the temporal lobe in yellow, subcortical regions in green, and parietal regions in dark blue. The line thickness corresponds to the statistical 
strength of the effect. Red = left- right, green = front back, blue = top down.

Figure 2 continued

Figure 3. Grey- matter (GM) atrophy in fronto- temporal dementia (FTD) variants. Significant (RFT p- value < 0.05) GM volume decrease is shown for 
behavioural variants (BV) vs. normal elderly control (CN) (a), progressive non- fluent aphasia (PNFA) vs. CN (b) and semantic variant (SV) vs. CN (c). 
Legend are showing the magnitude of the voxelwise T values. An overlay of the statistical maps (d) is shown for BV (green), SV (blue), and PNFA (red), 
with associated T values colour bars.

https://doi.org/10.7554/eLife.73510
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fronto- occipital fasciculus, uncinate fasciculus, and superior longitudinal fasciculus. GM volume for the 
BV orbitofrontal seed (Figure 4a) was also associated with the inferior part of the precentral cortex, 
PNFA premotor seed (Figure 4b) with the precentral WM fibres, and SV inferior temporal seed with 
impairment in the inferior longitudinal fasciculus.

Cognitive domains and WM microstructure
As highlighted earlier, our three factor model failed to reject the null hypothesis suggesting that this 
model provides a satisfactory explanation for the variation in this data. Therefore, in order to assess 
the relationship between impaired cognition and WM FD and FC, in the first step we performed a 
three common factor analysis across eight cognitive scores in patients only to represent these scores 
by three principal factors (Figure 5a). According to the loadings of this analysis, the first factor (Factor 
1) was mainly related to semantic processing and comprised naming, category fluency, and verbal 
learning scores (delayed and immediate recall). The second factor (Factor 2) was mainly related to 
executive processing and comprised digit span, trail making, and letter fluency scores. The third 
factor (Factor 3) was only related to verbal fluency (category and letter). Although SV patients had on 
average a lower semantic factor score compared to BV (p = 0.034) and PNFA (p < 0.001) and a higher 
executive factor score (p < 0.001; vs. BV and PNFA), a large within- group variability can be noted 
for all factors (Figure 5b). Patients factor scores were used to investigate the relationship between 
each cognitive domain and structural connectivity as well as WM metrics FD and FC. After correction 
for age, sex, ICV, and multiple comparisons, the first (semantic) factor was significantly associated 
to FC in the uncinate fasciculus, the inferior fronto- occipital fasciculus, and the inferior longitudinal 
fasciculus (Figure 5d; upper panel). The semantic factor was also associated to reduced connectivity 
between the left GM temporal regions amongst themselves but also with the supramarginal, lateral 
orbitofrontal gyrus, and with the thalamus (Figure 5c). The second (executive) factor was significantly 
associated with a reduced FC in the superior longitudinal fasciculus, superior corona radiata, body of 
the corpus callosum, inferior frontal and precentral WM, and in fibres corresponding to the aslant tract 
(Figure 5d; lower panel). Reduced structural connectivity was predominantly observed between the 
left superior frontal gyrus and other GM frontal regions (pars orbitalis, pars triangularis, lateral orbitof-
rontal, rostral middle frontal, and precentral gyrus), accompanied by a reduced connectivity between 
left superior frontal gyrus and other cortices (insula, the superior temporal gyrus, and between the 
inferior parietal cortex) (Figure  5c). Although not shown in the figure, FD yielded similar spatial 

Figure 4. Relationship between grey- matter (GM) atrophy and white- matter (WM) microstructural impairment. The peak of the maximum GM atrophy 
for each variant (behavioural variant [BV], progressive non- fluent aphasia [PNFA], and semantic variant [SV]) was used as a seed (a- c left panels, blue 
dot) to investigate the relationship between GM and whole brain WM fibre cross section (FC) and fibre density (FD) across all participants. Streamlines 
associated with significant relationships (FWE- corrected p- value < 0.05) between the average GM volume of each seeds are shown for FC (middle 
panels) and FD (right panels). Streamlines are colour coded by direction.

https://doi.org/10.7554/eLife.73510
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relationships than FC. No significant relationship could be found between the third factor (verbal 
fluency) and FC, FD, or structural connectivity (not shown).

Relative contribution of GM and WM to predict cognitive impairment
In order to disentangle the contribution of WM and GM abnormalities on cognition impairment, we 
used the connectivity- based pair of GM regions previously associated to identified cognitive factors 
(Factors 1 and 2; FEW- p <0.001), where VBM- derived GM volume was averaged for the pair of regions 
and FD and FC averages were calculated from the fixel associated to the connecting streamlines 
(see Tract of interest analysis section). Example of pair of GM regions and fixel mask are shown in 
Figure 6a–b for the Factors 1 (semantic) and 2 (executive) respectively. After correcting for age, sex, 
and ICV, GM volume and FC better explained the variance for the first cognitive factor (39.2% and 

Figure 5. Cognitive domains and white- matter (WM) microstructure. The factor loadings for the common factor analysis of selected cognitive tests are 
shown in (a). Associated factors scores are shown in (b) for behavioural variant (BV), semantic variant (SV), and progressive non- fluent aphasia (PNFA), 
for Factor 1 (semantic processing; left panel), Factor 2 (executive processing; middle panel), and Factor 3 (verbal fluency; right panel). Significantly 
reduced structural connectivity (across all patients; FWE- corrected p- value < 0.01) is shown in (c) for the Factor 1 (upper panel) and Factor 2 (lower 
panel), for the ipsilateral left (upper panel) hemisphere connectivity, where frontal regions are shown in red, the insula in light blue, the temporal lobe in 
yellow, subcortical regions in green and parietal regions in dark blue. The line thickness corresponds to the statistical strength of the effect. Significant 
relationship (FWE- corrected p- value < 0.05) between the cognitive factors and fibre cross- section (FC) is shown in (d) with associated streamlines (colour 
coded by direction) for Factor 1 (upper panel) and Factor 2 (lower panel).

https://doi.org/10.7554/eLife.73510
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32.2%, respectively) than FD (12.7%) (Figure 6a; right panels). On the other hand, for the second 
factor, FC explains the variance better (31.7 %) than GM (18.5%) and FD (18.9%) (Figure 6b; right 
panels). The comparisons of all the selected connection standardized estimates revealed that, for 
most connections, GM, FD, and FC could predict the cognition (Figure 6c; left panel). Importantly, 
when included together in the same general linear models (GLM) (Figure 6c; right panel), the contri-
bution of the WM was reduced but not for all connections. We then tested the relationship between 
the standardized estimates and the average fibre length and found a positive relationship for FD 
(Figure 6d; left panel, p = 0.006) and a trend level negative relationship for GM (Figure 6d; right 
panel, p = 0.058), but not for FC (Figure 6d middle panel, p = 0.94).

Discussion
In this study we aimed to quantify the relative contribution of WM and GM abnormalities as determi-
nants of cognitive impairment in FTD clinical spectrum. We found that, although regional differences 
in WM properties were observed in all variants, all FTD cases had FD or FC abnormalities across a 
large WM network connecting the frontal and temporal cortices. Furthermore, these WM abnormali-
ties were linked to patterns of GM atrophy and cognitive decline across FTD variants. The differential 
contributions of WM and GM on cognition depended on the length of WM fibre. Although both GM 
and WM abnormalities contribute to FTD symptoms, these results highlight the importance of WM FD 
and FC in FTD pathophysiology.

Figure 6. Respective contribution of grey matter (GM) and white matter (WM) to predict cognitive impairment. Example tract of interest, selected 
from the significant relationship between structural connectivity and cognitive factor, are shown in (a–b), for Factors 1 and 2, respectively. The pair of 
connecting cortical regions (green and yellow) and the fixel binary mask extracted from the streamlines connecting the pair of GM regions (white) are 
used to calculate the connection- specific relationship across subjects between the cognitive factors and the average regional GM volume (upper panel) 
and the average fibre cross- section (FC) and fibre density (FD) in the fixel binary mask (middle and lower panels, respectively). The standardized estimate 
of the relationship between the cognitive factors 1 and 2 is shown in (c) for all selected connections, where the left panel shows the values when FD, FC, 
and GM were used as single predictors and the right panels show the partial estimates when FD, FC, and GM were all included together in the model. 
The relationship between each connection estimate and their associated average fibre length is shown in (d) for FD (left panel), FC (middle panel), and 
GM (right panel).

https://doi.org/10.7554/eLife.73510
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FD and FC and structural connectivity phenotypes in variants of FTD
Our study identified a large network (uncinate fasciculus, superior longitudinal fasciculus, inferior 
fronto- occipital fasciculus, cingulum, and corpus callosum) of WM impairment being shared across 
FTD variants, extending findings from previous reports (Agosta et  al., 2015). Also in line with 
previous literature, we found SV to have additional impairments in the inferior fronto- occipital fascic-
ulus (Acosta- Cabronero et al., 2011; Agosta et al., 2010; Galantucci et al., 2011; Matsuo et al., 
2008; Whitwell et al., 2010), BV in the frontal cortex (Agosta et al., 2012; Mahoney et al., 2014; 
Piguet et al., 2011; Yu et al., 2019; Zhang et al., 2009), and PNFA in SMA WM fibres (Agosta 
et  al., 2015; Mahoney et  al., 2013). Our structural connectivity results were in agreement with 
the fixel- based results suggesting that both techniques were able to detect WM impairments in 
FTD. In addition, we found that one of the largest reductions in structural connectivity was between 
thalamo- frontal regions, supporting the finding that thalamic atrophy is a prominent feature of FTD 
(Diehl- Schmid et al., 2019) and that it is common across episodic and genetic mutation (Bocchetta 
et al., 2018).

Cognitive factor across variants
Across the FTD spectrum, we found that a common semantic factor explained the variance of scores in 
the immediate and delayed verbal memory test, picture naming, and categorical verbal fluency. This is 
in line with several studies showing poorer lexical retrieval of semantically degraded words vs. seman-
tically intact words (Jefferies et al., 2004; Knott et al., 2000; Patterson et al., 1994), suggesting 
that semantic information contributes significantly in (phonological) lexical activation. The second 
cognitive factor (executive) explained the variance of scores in the modified trail making processing 
time, digit span (forward and backward), and phonemic, but not categorical, verbal fluency. TMT 
measures multiple executive functions, including attention, processing speed, set- shifting, and digit 
span (forward and backward), and is typically used as an attentional/working memory measure, while 
phonemic verbal fluency contains both a working memory/executive and a language component. A 
third factor grouped the two verbal fluency tests together, however this factor only partly explains the 
variance of each test as they also weighed on semantic processing (for category fluency) and executive 
functioning (letter fluency), supporting the dual nature of the verbal fluency test (Whiteside et al., 
2016) even in non- demented individuals.

WM and cognition in FTD
Semantic processing
In the present study, we found evidence of the relationship between semantic deficits and WM impair-
ment in the left uncinate fasciculus, inferior longitudinal fasciculus, and inferior fronto- occipital fascic-
ulus, across all variants. The uncinate fasciculus (connecting the orbitofrontal cortex to the temporal 
pole) has been associated with semantic processing in many studies; see Papagno, 2011, for a review. 
Brain stimulation studies (Duffau et al., 2008; Duffau et al., 2005) and post- mortem fibre dissection 
studies Martino et al., 2010 have linked the ventral subcomponent of the inferior fronto- occipital 
fasciculus (connecting the frontal lobe to occipital associative extrastriate cortex and the temporo- 
basal region) and semantic processing. Prior studies led to inconsistent results regarding the involve-
ment of the inferior longitudinal fasciculus, connecting the ventro- anterior temporal lobes, to several 
occipital regions (fusiform gyrus, lingual gyrus, and dorsolateral occipital cortex); see Cocquyt et al., 
2020, for a recent review. Our structural connectivity analysis revealed that the connectivity between 
the left inferior temporal cortex and the thalamus may also be involved in semantic processing. In 
general, our findings support the so- called hub model for the semantic processing where the ante-
rior temporal pole represents a unique trans- modal hub receiving and assembling information from 
different modality specificity brain regions via specific WM connections (Patterson et al., 2007). Inter-
estingly, it was also proposed (Ralph et al., 2017) that graded deficit in semantic processing is depen-
dent on the WM fasciculi connecting the anterior temporal lobe to the cortex, where the uncinate 
fasciculus, superior longitudinal fasciculus, and inferior fronto- occipital fasciculus would convey either 
social, verbal, or visual semantic processing, respectively. Altogether, our findings support the hub 
hypothesis and suggest that it could be expanded further by considering subcortical contribution to 
the model.

https://doi.org/10.7554/eLife.73510
https://www-sciencedirect-com.proxy3.library.mcgill.ca/topics/neuroscience/extrastriate-cortex
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Executive processing
Executive processing is a prominent frontal function and not surprisingly it is severely affected in the 
FTD clinical spectrum. We found that the executive function impairment was associated with disruption 
of WM tracts in the frontal lobe, specifically in superior longitudinal fasciculus, superior corona radiata, 
the body of the corpus callosum, inferior frontal and supplementary motor WM, and the aslant tract. 
The superior longitudinal fasciculus (connecting the frontal lobe to temporal and parietal cortices) has 
previously been associated to processing speed (Turken et al., 2008) and working memory (Rizio 
and Diaz, 2016) and impairment of the corona radiata (connecting the prefrontal cortex to the basal 
ganglia and thalamus) has also been associated to executive dysfunction (Hua et al., 2014; Moeller 
et al., 2015). Interestingly, the aslant tract (connecting the SMA with the inferior frontal cortex) has 
been associated with the self- initiated movement and speech production (Kinoshita et  al., 2015) 
and its integrity correlated with the amount of distortion errors that PNFA patients made in sponta-
neous speech (Mandelli et al., 2014). Moreover, our results suggest that the contribution of WM to 
executive deficits increases with the length of these WM tracts. Reduced WM integrity in large- scale 
WM tracts was the major player of executive dysfunction in the FTD population. Interestingly, large- 
scale WM tracts are also particularly vulnerable to WM vascular disease, as observed in post- mortem 
studies (O’Brien et al., 2002). Moreover, chronic ischemic microvascular lesions, depicted as diffuse 
WM hyperintensities in brain MRI scans, are independently associated with impairment of executive 
function (Young et al., 2008). Our results could thus suggest that patients with FTD and compro-
mised large- scale WM fibres might be particularly vulnerable to additional vascular pathology. Thus, 
our findings highlight the importance for controlling vascular risk factors in FTD patients in order not 
to potentiate the underlining executive dysfunction. Alternatively, given that the majority of FTD 
patients are younger and less likely to have significant vascular disease, it is possible that the tract is 
more vulnerable to a degree of degenerative pathology.

Relationship between GM, WM, and cognition
As WM and GM impairment are too often considered in isolation, one of the goals of our study 
was to investigate their relative contribution to neurodegeneration. We found that the magnitude 
of GM atrophy was strongly related to the impairment of WM networks. This was also observed in 
both AD and FTD using canonical correlation analysis (Avants et al., 2010). Modeling the combined 
contribution of GM and WM to cognition is not straightforward because of the lack of spatial overlap 
between these modalities. To overcome this challenge, we took advantage of a common connectivity 
space that encompasses both structural connectivity and fibre- specific WM pathways. This construct 
allowed us to select anatomically relevant connections, to extract their average regional GM volume 
and streamlines- based respective FC and FD for predicting their respective contribution on the cogni-
tive domain. Interestingly, within short connections, the contribution of GM atrophy was dominant, 
while WM FD gained in importance as a function of fibre length. This finding supports a framework in 
which cognitive functions involving short- range circuits are mostly affected by local GM atrophy, while 
cognitive processes mediated by long- range fibres are more vulnerable to WM impairment. Thus, our 
results support the critical importance of considering both GM and WM alterations for a better under-
standing of distinctively spatially distributed cognitive alterations in neurodegeneration.

FBA applied to FTD
To assess WM FD and FC, we used a novel fixel- based approach where individual fibre populations, 
even within the same voxel, can be assessed independently. Older diffusion tensor imaging (DTI) 
techniques, although historically invaluable in offering the earliest opportunities to non- invasively 
investigate some microstructural properties of WM and their alteration in aging and disease, suffered 
from the inability to resolve crossing fibres. It was shown that traditional DTI may lead to artefactual 
findings in neurodegenerative disorders (Mito et al., 2018; Tournier et al., 2008), both false positive 
and false negative. This severely limits the extent to which such DTI findings can be interpreted or 
even safely relied upon. Novel techniques, such as constrained spherical deconvolution (Tournier 
et al., 2007; Tournier et al., 2004) and FBA Raffelt et al., 2015 have greatly improved the accuracy 
of dMRI processing and whole brain statistical analysis. The associated metrics, FD and FC, were 
recently proposed to capture different properties of the WM fibre (Raffelt et al., 2017). FD is consid-
ered a measure of WM microstructure, while FC is related to macroscopic fibre bundle morphometric 
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change. Although these measures are typically not independent, they can provide insight on different 
types of WM impairment and have successfully been applied to Alzheimer’s disease (Mito et  al., 
2018). In the context of FTD, we found that both FD and FC were reduced in similar WM regions, 
which suggest that both fibre atrophy and axonal depletion that are part of the disease.

Strengths and limitations
This study has several strengths. To our knowledge, this is the first study applying an FBA to analyse 
WM impairments across FTD phenotypes, thus broadening the biological interpretation of WM alter-
ations in the pathophysiology of this disease. There is a growing body of evidence describing WM 
degeneration in several cortical diseases. However, most studies did not investigate the relationship 
between specific cognitive domains, whole brain WM properties, and structural connectivity. There-
fore, our study provided a more complete picture of specific WM tracts involved in core FTD cognitive 
impairment. Finally, the use of an innovative connection- based framework, allowing for the quantifica-
tion of the simultaneous contribution of WM and GM abnormalities on cognitive deficits in FTD, also 
expanded the knowledge about multimodal contribution to cognition. The main limitations are due 
to a limited number of subjects and the lack of longitudinal data. Although patients were clinically 
assessed with the highest standards, the lack of genetic or pathological information precludes any 
association between the proteins involved in the etiology of FTD, such as tau and TDP- 43, and WM 
fibres. Furthermore, as the data obtained from Frontotemporal Lobar Degeneration Neuroimaging 
Initiative (FTLDNI) are the result of a multicentric collaboration, differences in scanners, protocols, and 
center- specific differences could impact our findings. Nonetheless, before the release of the data, a 
quality control was conducted. In addition, while the number of diffusion gradient directions (60) and 
the b- value (2000) are suitable to obtain a good overall quality of the WM FODs, the spatial resolution 
was limited to 2.2 mm isotropic voxels. Since some bundles of white fibres are only a few mm wide, 
significant group differences in these bundles are difficult to detect at the resolution of the data used 
in the present study. This, however, was the maximum resolution that could be obtained for this signal 
while still maintaining a good signal- to- noise ratio. Finally, although our imaging analyses controlled 
for age, sex, and ICV but not for clinically relevant variables including disease duration and symptom 
severity, as these would be artificial and could potentially bias the results of a study with such a diverse 
clinical population, this imposes a limitation on the interpretation of the results presented in this study.

Conclusion
In conclusion, our results support the importance of WM tract disruption to the core cognitive symp-
toms associated with FTD. While semantic symptoms were mainly dependent on short- range WM 
fibre disruption, long- range WM fibres damage was the major contributor to executive dysfunction. 
As large- scale WM tracts, which are particularly vulnerable to vascular disease, were highly associ-
ated with executive dysfunction, our findings highlight the importance of controlling for risk factors 
associated with deep WM disease, such as vascular risk factors, in patients with FTD in order not to 
potentiate underlying executive dysfunction.

Table 1. Demographics.

CN (N = 68) BV (N = 28) SV (N = 26) PFNA (N = 30)

Age (year) 61.8 (8.2) 60.6 (6.4) 62.6 (6.0) 68.3 (7.4)

Sex (female) 60.3 % 21.4 % 42.3 % 63.3 %

CDR language – 0.84 (0.53) 1.04 (0.47) 1.38 (0.66)

CDR behaviour – 1.48 (0.72) 0.98 (0.48) 0.41 (0.46)

CDR sum of boxes – 5.96 (2.78) 3.54 (2.02) 1.59 (1.55)

MMSe 29.2 (0.8) 24.3 (3.7) 25.8 (3.6) 25.3 (4.9)

https://doi.org/10.7554/eLife.73510
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Materials and methods
Study sample
All data were obtained from the FTLDNI, through the LONI portal (http://adni.loni.usc.edu). FTLDNI 
is a multicentric longitudinal database, collecting MRIs, PET, and CSF biomarkers in FTD patients and 
age- matched controls. All patients were clinically diagnosed by a multidisciplinary consensus panel 
(Ljubenkov et al., 2018; Staffaroni et al., 2019). For the present analysis, we included a total of 155 
participants with cross- sectional DWI sequence passing quality control. The dataset comprised 68 
normal elderly control (CN), 28 BV, 30 PNFA, and 26 SV FTD patients (see Table 1 for demographics).

MRI acquisition
A total of 65 volumes (diffusion- weighted images for 60 gradient directions at b = 2000 s/mm2 and 
5 images at b = 0 s/mm2) were acquired on a Siemens Trio Tim with the following parameters: repe-
tition time/echo time = 6600/86 ms, 2.2 mm isotropic voxels, phase encoding direction = AP. A 3D 
MPRAGE image (1 mm isotropic voxels, repetition time/echo time = 2300/2.98 ms, and flip angle = 
9 degrees) was also used to measure GM volume.

dMRI processing
We implemented preprocessing and analysis steps of a state- of- the- art FBA pipeline (Dhollander 
et al., 2021). All dMRI data were preprocessed using MRtrix3 (Tournier et al., 2019). Preprocessing 
steps included denoising (Veraart et al., 2016), Gibbs ringing correction (Kellner et al., 2016), eddy- 
current and motion correction (Andersson and Sotiropoulos, 2016), and bias field correction (Tustison 
et al., 2010). Response functions for single- fibre WM as well as GM and CSF were estimated from 
the data themselves using an unsupervised method (Dhollander et al., 2019). Single- shell 3- tissue 
CSD was performed to obtain WM- like FODs as well as GM- like and CSF- like compartments in all 
voxels (Dhollander and Connelly, 2016), using MRtrix3Tissue (https://3Tissue.github.io), a fork of 
MRtrix3 (Tournier et al., 2019). The resulting WM- like FOD, GM- like and CSF- like images were used 
to perform multi- tissue informed log- domain intensity normalization (Figure  1a). A cubic b- spline 
interpolation was used to upsample the WM FOD images to 1.3 mm isotropic voxels. A study- specific 
template was created using the WM FOD images from 30 NC to which all subjects’ FOD images were 
subsequently non- linearly registered (Raffelt et al., 2012a; Raffelt et al., 2011). Finally, the WM FOD 
template was used to generate a whole brain probabilistic tractogram (Tournier et al., 2010) which 
was then filtered from 20 million tracts to 2 million tracts to reduce reconstruction bias (Smith et al., 
2013).

Fixel-based metrics
We used the FBA framework (Raffelt et al., 2017; Raffelt et al., 2012b) to compute the FD and the 
FC at the fixel level (Figure 1b). A ‘fixel’ here refers to a ‘fibre population in a voxel’; hence, when 
multiple fibres are crossing in the same voxel, they each still have individual measures of FD and FC. 
Interestingly these metrics provide complementary information about the WM. Namely, FD- based 
differences can be interpreted as intra- axonal microstructural alterations, while FC- based differences 
can be attributed to macroscopic changes of a fibre bundle, that is, a tract that is atrophied or hyper-
trophied in respect to the WM FOD template.

Structural connectivity analyses
A probabilistic tractography algorithm (Tournier et al., 2010) with dynamic seeding (Smith et al., 
2015) was used to generate 20 million tracks for each participant’s WM FODs in the template space 
(Figure 1c). The tractogram was subsequently filtered using SIFT (Smith et al., 2013) until the algo-
rithm reaches convergence. We used the Desikan- Killiany (DKT) GM atlas to compute the amount of 
fibres connecting 68 GM regions (Desikan et al., 2006). An affine transformation was first calculated 
from the MNI ICBM152 WM parcellation to the diffusion template space (Figure 1e). The affine trans-
form was applied to the DKT atlas to bring it in diffusion template space (Figure 1f) and the atlas was 
corrected by the amplitude of the template WM FOD, where amplitudes higher than 0.1 were set to 
zero. A visual inspection of the resulting GM atlas insured that all GM regions were well represented. 
Structural connectomes were calculated as the total number of fibres paths connecting each pair of 

https://doi.org/10.7554/eLife.73510
http://adni.loni.usc.edu
https://3Tissue.github.io


 Research article Neuroscience

Savard et al. eLife 2022;11:e73510. DOI: https:// doi. org/ 10. 7554/ eLife. 73510  13 of 18

GM regions (Figure 1g). The results of the statistical analysis performed on the connectomes were 
visualized using BrainNet Viewer (Xia et al., 2013).

GM voxel-based morphometry
T1 anatomical images were segmented in GM, WM, and CSF tissue probability images using the SPM12 
segmentation tool (https://www.fil.ion.ucl.ac.uk/spm/doc/biblio/). A study- specific brain template was 
then calculated using the GM and WM probabilities from 30 CN using the Dartel toolbox (Ashburner, 
2007). Each individual GM map was non- linearly registered to the CN template (Figure 1d). GM prob-
abilities were modulated and filtered using a full width half maximum of 8 mm. ICV was defined as the 
sum of GM, WH, and CSF probabilities images in native T1 space.

Cognitive tests
In order to clinically characterize the FTD patients, the following cognitive scores were used: the 
total correct immediate (30 s) and delayed (10 min) items recall of the California Verbal Learning Test, 
the total Boston naming correct score, the semantic verbal fluency (animal), the phonemic verbal 
fluency (d words), the modified trail making completion time, the forward and backward digit span. A 
maximum likelihood common factor analysis (‘factoran’ function in Matlab, with varimax rotation) was 
used to obtain a parsimonious representation of all available cognitive scores, as we wanted to obtain 
an explanatory model for the correlations amongst these scores. A two common factor hypothesis 
was first rejected (approximate chi- squared test; p < 0.05) while a three- factor model fails to reject the 
null hypothesis (approximate chi- squared test; p < 0.42), suggesting that the latter model provides a 
satisfactory explanation of the covariation in these data (see Figure 5a for the factor loadings results). 
The factor scores were calculated using a weighted least score estimate.

Tract of interest analysis
Using a matrix of regions, pairs of GM regions were made, based on the significance of their connec-
tivity. These selected connectivity- based pairs of GM regions were used to extract the tracts connecting 
them, which allows to investigate the tract- specific relations between GM volume, FD, and FC and 
cognition. Using the template filtered tractogram (2 M streamlines), we extracted the streamlines 
assigned to the pair of selected GM regions (Figure 1i). The resulting streamlines were then auto-
matically thresholded into a binary fixel mask using an automated optimal threshold (Ridgway et al., 
2009). The connectivity- based FC and FD values were then averaged in the mask. The GM volume 
was assessed by calculating the average GM VBM values of the connecting regions (see Figure 6a–b 
for a graphical representation). To investigate all the selected connections as a whole, we standard-
ized GM, FC, and FD across all connections and used repeated GLM to obtain the prediction estimate 
for their respective cognitive factors adjusted for age, sex, and ICV (Figure 1i). Finally, we calculated 
the average streamline length for each tract, which best represents the overall length of the tract.

Statistical analysis
Fixel- wise whole brain characterization of the relationship between FC, FD, diagnosis, and cognition 
was carried out using the connectivity- based fixel enhancement method (Raffelt et al., 2015). For the 
structural connectivity analysis, a common connectivity mask was generated for the top 20% connec-
tions of the population template. Relationship between the connectivity, diagnosis, and cognition 
was calculated using the network- based statistical enhancement method (Vinokur et al., 2015). For 
both methods, family- wise- corrected p- values were obtained via permutation testing (n = 1000). VBM 
analyses were performed using VoxelStats (Mathotaarachchi et al., 2016). Correction for multiple 
comparisons was performed using random field theory with a cluster threshold (after correction) of 
p < 0.01. Analyses of cognition were performed in patient groups only. All statistical models were 
corrected for age, sex, and ICV.

https://doi.org/10.7554/eLife.73510
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