
In-Depth Review

Management of hyperphosphataemia in chronic kidney
disease—challenges and solutions

Markus Ketteler1, Rudolf P. Wüthrich2 and Jürgen Floege3

1Division of Nephrology, Coburg Clinic and KfH-Dialysis Center, Coburg, Germany, 2Division of Nephrology, University Hospital, Zürich,
Switzerland and 3Division of Nephrology and Clinical Immunology, RWTH University Hospital Aachen, Aachen, Germany

Correspondence and offprint requests to: Markus Ketteler; E-mail: markus.ketteler@klinikum-coburg.de

Abstract
Hyperphosphataemia is a clinical consequence of the advanced stages of chronic kidney disease
(CKD). Considerable evidence points to a role of hyperphosphataemia in the pathogenesis of CKD-
associated cardiovascular (CV) complications, including vascular calcification, and with increased
all-cause and CV mortality. These observations place management of hyperphosphataemia at
the centre of CKD treatment. Although our increased understanding of the physiological role of
FGF-23 may provide a long-term alternative biomarker of phosphate load and underlying disease
progression, regular determination of serum phosphate is currently the most frequently used
parameter to evaluate phosphate load in clinical practice. This review considers the challenges
physicians and patients face in trying to control hyperphosphataemia. Amongst these are the
limitations of dietary phosphate restriction, giving rise to the need for phosphate binder therapy
to maintain serum phosphate control. Once the decision to use phosphate binders has been
made, considerations include the relative efficacy, different potential side effects and pill burden
associated with various phosphate binders. Although a number of phosphate binders are
available, adherence poses a major obstacle to effective treatment. This emphasizes that further
improvements to phosphate binder therapy can be made. Evaluation of novel agents and their
potential role in the clinic should continue.
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Introduction

Currently, the global prevalence of chronic kidney
disease (CKD) is estimated to be around 7% in people
aged ≥30 years, with a higher prevalence (23–36%) in
people aged ≥64 years [1]. CKD is a key determinant of
poor health outcomes in patients with major noncom-
municable diseases, contributing to their substantial
worldwide burden [2]. Elevated serum phosphate levels
(hyperphosphataemia) are an unavoidable clinical con-
sequence of the advanced stages of CKD [3, 4]. Hyper-
phosphataemia is linked with a number of serious
clinical complications, including vascular calcification [5]
and left ventricular hypertrophy [6], as well as increased
all-cause and cardiovascular (CV) mortality [7, 8]. Large
observational studies have shown a graded association
between levels of serum phosphate and all-cause mor-
tality in patients undergoing dialysis [7–11]. Given these
observations, one of the principal challenges in the
management of patients in the advanced stages of CKD
is control of hyperphosphataemia. This review focuses
on selected questions surrounding the diagnosis and
management of hyperphosphataemia in daily clinical
practice.

What is the effect of hyperphosphataemia
in patients?

Although an in-depth description of the pathophysiology
of hyperphosphataemia has been provided elsewhere [6],
a brief overview is helpful to provide a basis for discussion
of therapeutic approaches. In healthy individuals, phos-
phate homeostasis is maintained by regulation of dietary
absorption by the gastrointestinal (GI) tract, bone turn-
over and mineralization, and renal excretion [12]. Follow-
ing renal filtration, most of the serum phosphate is
reabsorbed across the epithelium of the kidney proximal
tubule (Figure 1) [13]. The sodium-dependent phosphate
co-transporter proteins play a role in this process, med-
iating phosphate reabsorption from the filtrate across the
renal proximal tubules (NaPi-2a and 2c) and phosphate
absorption across the intestinal apical brush border
(NaPi-2b; Figure 1) [13, 14]. In patients with impaired
renal function, this homeostasis is disrupted as renal
excretion of phosphate generally declines with increasing
severity of CKD [12]. Initial compensatory mechanisms,
including elevated secretion of parathyroid hormone
(PTH) and fibroblast growth factor-23 (FGF-23) and tem-
porarily elevated serum phosphate levels, reduce
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phosphate reabsorption and thus maintain serum phos-
phate levels in normal to near-normal range. However,
hyperphosphataemia occurs almost inevitably in the
later stages of CKD, when dietary intake of phosphate
exceeds the rate of renal excretion (Figure 1) [12, 13].

Multiple putative mechanisms link elevated serum
phosphate levels with increased CV morbidity and mor-
tality. These include the direct mechanisms of vascular
injury by means of vascular calcification, oxidative stress
or endothelial dysfunction [12]. Indirect mechanisms
associated with CV damage include chronically increased
levels of FGF-23 [15], inhibition of calcitriol synthesis and
increased levels of PTH [12]. Strictly speaking, the effect
of high phosphate levels on the progression of secondary
hyperparathyroidism is also in part a direct one, by
prolonging the half-life of PTH mRNA in the parathyroid
gland and favouring PTH secretion [16].

Of these pathogenetic mechanisms, research in
patients with CKD has largely focused on the role of elev-
ated phosphate levels in vascular calcification. Hyperpho-
sphataemia drives vascular calcification by regulating
gene expression in vascular smooth muscle cells, causing
them to undergo an osteochondrogenic phenotype
change [5]. Vascular calcifications are associated with CV
morbidity and are an independent predictor of all-cause
and CV mortality in patients with CKD [17, 18]. Even in
patients with CKD who were not receiving dialysis
(N = 181), those with a coronary artery calcification score

of >100 AU (Agatston unit) were found to have a signifi-
cantly higher risk of cardiac death or myocardial infarc-
tion than those with a score of ≤100 AU [hazard ratio
(HR) for the former group: 4.11, confidence interval (CI):
1.77–9.57, P < 0.0006] [19]. Together, these observations
support the link between vascular calcification, CV events
and increased mortality. Given the high rate of CV mor-
tality in patients with CKD, the necessity of screening
patients for vascular calcification, determining which
patients are at high risk of CV events and which steps to
take to attenuate further progression, is a matter of
ongoing debate [20]. Regardless of the outcome of this
debate, evidence points to a role of hyperphosphataemia
in the pathogenesis of CKD-associated CV complications,
making it a focus of clinical management of the disease.
However, of note in this context is that definitive data
from prospective interventional studies comparing the ef-
ficacy of phosphate binder treatment with that of no
phosphate binder treatment in patients with CKD stages
3–4 not receiving dialysis are scarce. Whereas one short-
term study (N = 148) reported no beneficial effect from
various phosphate binders on the progression of arterial
calcification [21], a longer study (N = 90) demonstrated
that non-calcium-based binders halted the progression
of vascular calcification [22]. As yet, no prospective study
has evaluated the long-term effects of phosphate binder
treatment versus no phosphate binder treatment in dialy-
sis patients.

Fig. 1. Phosphate homeostasis is dysregulated in patients with late-stage CKD. Reprinted with permission from Macmillan Publishers Ltd [13].
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Does evidence support assessment of FGF-23
to guide treatment decisions?

A cornerstone of clinical monitoring in patients with im-
paired renal function involves assessing and managing
serum phosphate levels. The Kidney Disease: Improving
Global Outcomes (KDIGO) and Kidney Disease Outcomes
Quality Initiative (KDOQI) guidelines highlight the impor-
tance of regular determination of serum phosphate and
provide recommendations for phosphate levels (Table 1)
[3, 23]. It is also acknowledged that serum phosphate
fluctuates more than, for example, serum calcium; as
such, trends in serum phosphate, rather than single
values, should drive treatment choices [3, 4]. In this
context, the more recent KDIGO guidelines no longer rec-
ommend target levels of the calcium × phosphate
product [3], because this is indeed mostly driven by the
serum phosphate concentrations and because serum
calcium levels are not predictive of overall calcium
balance.

Serum phosphate does not increase until the estimated
glomerular filtration rate falls below 0.5 mL/s/1.73m2

(30 mL/min/1.73m2), and as such it has been asserted
that it may not be a sufficiently sensitive indicator of
phosphate overload [6]. This has led to the investigation
of possible alternative markers for future use in the clini-
cal management of patients with CKD [24].

Emerging data highlight the potential of circulating
FGF-23, a phosphatonin hormone that is released from
osteocytes, most likely in response to phosphate overload
[6], as a novel marker to identify patients with CKD who
are at the highest risk of disease progression, CV disease
and death [24–26]. In addition, it has been proposed that
assessment of FGF-23 levels could help detect individuals
who might benefit from early phosphate-lowering inter-
ventions before the onset of overt hyperphosphataemia
[24–28]. Of particular interest is the proposal that elev-
ated serum FGF-23 is independently associated with
adverse outcomes in patients with CKD [6]. As such, it
may be a biomarker of phosphate status, reflecting
underlying disease progression.

The primary physiological roles of FGF-23 are two-fold:
it inhibits the reabsorption of renal phosphate, thereby
increasing the rate of urinary phosphate excretion, and it
suppresses the production of 1,25-dihydroxyvitamin D
and increases its catabolism by the kidney, thereby pro-
tecting the body from excessive vitamin D exposure
(Figure 2) [29, 30]. As such, FGF-23 plays a central adap-
tive role in phosphate and 1,25-dihydroxyvitamin D
homeostasis in healthy individuals, but may equally be
involved in the pathogenesis of CKD [31]. In patients with
CKD, circulating concentrations of FGF-23 increase pro-
gressively with declining renal capacity for phosphate
excretion [27, 31]. Findings from animal studies and
genetic research suggest that elevated FGF-23 may

reflect pathogenetic changes in bone and/or kidney
health [32, 33]. Other studies have shown an indepen-
dent association of FGF-23 with early pathogenetic
mechanisms, such as increased left ventricular mass
[34–36]. Taken together, these studies suggest that fea-
tures such as left ventricular hypertrophy, which are com-
monly observed in patients with CKD, may be an adverse
consequence of adaptive mechanisms that involve
FGF-23, triggered in response to phosphate overload [6].
Although FGF-23 may have the potential to provide a

better understanding of long-term phosphate status
compared with the assessment of serum phosphate
alone, the solution may not be entirely simple. The mech-
anism which regulates FGF-23 secretion from bone
remains unclear, and the presence of modulators, or the
down-regulation of co-factors such as klotho, may con-
found any signal from FGF-23 relating to underlying
disease progression [33]. From a practical perspective,
there is no validated standard assay for FGF-23 yet, and
consequently, no reference range for interpretation of
FGF-23 levels in clinical practice. Furthermore, in a recent
study in a rat model of CKD, specific antagonism of
FGF-23 increased mortality risk in the animals [37],
calling into question the feasibility of developing thera-
pies targeting FGF-23. In the meantime, assessment of
FGF-23 may provide additional insights into the effect of
different treatments on CKD progression to those pro-
vided by serum phosphate assessments. For example, an
open-label randomized trial in 100 patients with stage 4
CKD showed that sevelamer was associated with a sig-
nificant decrease in FGF-23 levels (P = 0.002) and increase
in flow-mediated vasodilation (P < 0.001) from baseline
compared with calcium acetate; both treatments were
associated with a significant reduction in serum phos-
phate from baseline (P < 0.01), although this was more
marked with the phosphate binder sevelamer [38]. None-
theless, the measurement of serum phosphate and the
fractional excretion of phosphate remain the primary
tools for the physician, with regular determination of
serum phosphate being the most frequently used par-
ameter to evaluate phosphate load in clinical practice.

Can adequate phosphate control be achieved with
dietary restriction?

Achieving recommended guideline serum phosphate
levels can be challenging. In the Dialysis Outcomes and
Practice Patterns Study (DOPPS) II, serum phosphate
levels remained uncontrolled in 56% of patients with CKD
receiving dialysis, with 9% and 47% of patients having
serum phosphate levels <1.13 mmol/L (3.5 mg/dL) and
>1.78 mmol/L (5.5 mg/dL), respectively [39]. While most
of the phosphate burden is due to intestinal absorption,
it remains to be considered that high or low turnover

Table 1. Recommended serum calcium, albumin-corrected calcium, phosphate and PTH levels in stage 5 CKD [3,23]

Organization (year) Calcium CAAlb Phosphate PTH

KDOQI (2003) Not reported Stage 3–4: within the normal range; stage
5: 2.10–2.37 mmol/L (8.4–9.5 mg/dL)

Stage 3–4: 0.87–1.49 mmol/L
(2.7–4.6 mg/dL),
Stage 5: 1.13–1.78 mmol/L
(3.5–5.5 mg/dL)

16.5–33.0 pmol/L
(150–300 pg/mL)

KDIGO (2009) Within the
normal range

Not reported Within the normal range; stage
5D: Toward the normal range

Stage 5D: 2–9× upper
normal limit for the assay
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bone disease may also contribute to intractable
hyperphosphataemia.

Therefore, multiple strategies can be implemented to
control phosphate homeostasis in patients with CKD.
These include dietary restriction and removal via dialysis
or intensive (nocturnal or short daily) dialysis regimens.
Pharmacologic interventions include reduction of intesti-
nal phosphate absorption by administration of phosphate
binders and suppression of PTH secretion and release by
administration of calcimimetics, in order to normalize
bone turnover in high turnover states. In addition, as
overtreatment with active vitamin D analogues may
favour both phosphate absorption and low bone turnover,
dose reduction or cessation may have to be considered in
individual patients.

Dietary restriction of phosphate is recommended in
both the KDIGO and KDOQI guidelines [3, 23]. Support for
this is provided by an observational study, which used
questionnaires to assess dietary phosphorus and protein
intake in 224 maintenance haemodialysis patients over
5 years of follow-up. The impact of phosphorus intake on
patients was clear: higher levels of dietary phosphorus
intake and a higher ratio of dietary phosphorus to protein
were associated with an increased risk of death [40].

However, although dietary phosphate restriction can
reduce serum phosphate levels, drawbacks to this ap-
proach include protein–energy wasting, which is itself an
independent determinant of morbidity and mortality in
dialysis patients [41]. Indeed, the risk associated with
controlling serum phosphate by restricting dietary
protein intake may outweigh the benefit of improved
serum phosphate control [42]. This is supported by a
post-hoc analysis of data from 1751 patients undergoing
haemodialysis who were enrolled in the Haemodialysis
Study, in which the prescribed recommendation for daily
phosphate intake was recorded. The results showed that
prescribed dietary phosphate restriction was not associ-
ated with a survival benefit [43].

A further complication of limiting dietary intake of
phosphorus is that, whilst it may be relatively easy for
patients to avoid foods which are naturally high in phos-
phate, it is more difficult to avoid consumption of pro-
cessed food rich in phosphate-containing additives.
These additives contain a form of phosphate that is more
readily absorbed than that found in foods naturally high
in phosphorus [44, 45]. The findings of the Chronic Renal
Insufficiency Cohort study (N = 2879) showed higher
serum phosphate levels in patients on the lowest income
compared with those on the highest income, despite
comparable phosphate intake. These observations were
thought to reflect the different types of phosphates con-
sumed in the different groups, with those on a low
income consuming greater amounts of convenience food
containing phosphate additives [46]. The widespread use
of phosphate-containing additives has substantially in-
creased our daily phosphate intake, and the frequent
absence of phosphate levels on food labels makes it diffi-
cult to ascertain the phosphate content of food. These
difficulties may even extend to the dieticians providing
guidance to patients, as software programmes used to
assess dietary composition have been shown to underes-
timate the phosphorus content of processed foods [47].

Poor knowledge of phosphate levels in food and phos-
phate management has been reported in haemodialysis
patients, even in those patients taking phosphate binder
medication [48]. In a randomized study, 145 dialysis
patients received education on how to avoid foods contain-
ing phosphorus additives when purchasing food in shops
or when eating out. These patients showed a 3-month
decrease in serum phosphate levels of 0.19 mmol/L
[0.6 mg/dL; 95% CI: –0.32 mmol/L to –0.032 mmol/L (–1.0
to –0.1 mg/dL)] greater than that observed in the control
group (n = 134) which did not receive guidance [49]. This
indicates that patient education can aid dietary phosphate
restriction and contribute to clinically significant improve-
ments in serum phosphate levels.

Fig. 2. FGF-23 regulatory systems in phosphate metabolism. Reprinted with permission from Macmillan Publishers Ltd [30].
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However, even with careful dietary modification,
hidden sources of phosphate mean that dietary limit-
ation of phosphate intake is difficult, and often remains
an inadequate means of controlling hyperphosphatae-
mia. Given these limitations, treatment with oral phos-
phate binders is an essential component of phosphate
management for most patients undergoing dialysis. This
may apply for those patients who are failing to achieve
phosphate control through dietary restriction of phos-
phate intake, but also for those patients who are experi-
encing nutritional problems such as protein–energy
wasting owing to following a strict dietary regimen.

What are the key considerations in phosphate
binder treatment?

Data from three observational studies have shown a sur-
vival benefit associated with the early administration of
phosphate binders [50–52]. In the DOPPS study men-
tioned above, which included 23 894 haemodialysis
patients, 6283 deaths were observed during follow-up
(median time at risk: 1.92 years). Patients receiving phos-
phate binder treatment had a 25% reduction in the risk
of death compared with those who did not receive phos-
phate binders (HR: 0.75; 95% CI: 0.68–0.83); in models
adjusted for nutritional factors, a 12% lower risk of death
was reported (HR: 0.88; 95% CI: 0.80–0.97) [52]. A study
of 8610 incident haemodialysis patients found that
1-year all-cause mortality of patients who received phos-
phate binders within 90 days of starting haemodialysis
(n = 3555) was significantly lower than in those who did
not (n = 5055; relative risk: 0.58; 95% CI: 0.52–0.66,
P < 0.0001) [50]. Recently published data from 6321
patients on haemodialysis included in the COSMOS study
also indicate that the use of phosphate binders, either
alone or in combination regimens, was associated with a
significantly lower risk of all-cause mortality [51].

With evidence suggesting that phosphate binder treat-
ment should be considered a central component of the
management of hyperphosphataemia, it is worth consid-
ering how to optimize this treatment approach. Ideally, a
phosphate binder should effectively bind dietary phos-
phate regardless of pH, have minimal systemic absorp-
tion, few side effects, good palatability, a low pill burden
and be available at a low cost [53].

In the 1970s, aluminium represented the mainstay of
phosphate-binding therapy; this treatment was largely
abandoned when cases of systemic aluminium toxicity
arose [13]. However, it has since been established that
systemic exposure to aluminium can also arise from high
aluminium concentrations in haemodialysis water [54].
The next class of phosphate binders to be introduced,
and still used extensively today, was the calcium-based
binders, calcium carbonate or calcium acetate [13].
Calcium-based binders have been shown to be more ef-
fective in reducing serum phosphate levels than sevela-
mer hydrochloride (HCl) in dialysis patients in the
randomized, double-blind CARE study (N = 100) [55] and
in a retrospective chart review (N = 55) [56]. In addition,
in a prospective 42-month study including 1347 haemo-
dialysis patients, those prescribed sevelamer HCl had a
higher mortality risk compared with those prescribed
calcium carbonate (HR: 1.46; 95% CI: 1.1–1.9) [57].
However, after concerns about hypercalcaemia and the

risk of vascular calcification [58, 59], the option of non-
calcium-based agents was explored further.
One of these compounds is sevelamer, a non-calcium

anion-exchange resin [13, 60]. Sevelamer was initially
available as sevelamer HCl and most clinical studies have
used this formulation. However, sevelamer HCl was
associated with reduced serum bicarbonate concen-
tration, prompting concerns about metabolic acidosis
[61]. Subsequently, a different formulation, sevelamer
carbonate, was developed [62, 63]. A Cochrane review
and meta-analysis of studies including patients with CKD
stages 3–5D according to KDOQI guidelines indicated
that sevelamer significantly decreases end-of-treatment
serum phosphate levels compared with placebo (based
on one study only, including 36 patients), although com-
parisons of reduction in serum phosphate with calcium-
based binders favoured the latter group [64]. In the key
Dialysis Clinical Outcomes Revisited study (N = 2103),
results of the primary analysis did not show any differ-
ence in overall mortality among patients on dialysis
receiving sevelamer compared with those receiving a
calcium-based binder [65]. A randomized, open-label
study compared CV (primary endpoint), overall and non-
CV mortality in incident dialysis patients who were
treated with sevelamer (n = 232) with that in patients
receiving calcium carbonate (n = 234). After a mean
28-month follow-up, CV mortality in the sevelamer group
was ten times lower than that in the calcium carbonate
group (P < 0.001). A significant reduction in all-cause
mortality, though not in non-CV mortality, was also
noted in the sevelamer group [66, 67]. Similar results
were reported in an observational study in patients with
stage 5D CKD, which found a significant reduction in all-
cause and CV cumulative mortality in patients receiving
sevelamer (n = 172) compared with a matched control
group receiving calcium carbonate (n = 264) or no phos-
phate binder (n = 36) [68].
Investigations into the effects of sevelamer on vascular

calcification have shown variable results, with some
reporting that sevelamer attenuated progression of
vascular calcification but others reporting no effect
[22, 69–74]. A recent meta-analysis (N = 3271) suggested
that the effect of sevelamer on vascular calcification in
haemodialysis patients was not significant compared
with that of calcium-based phosphate binders [75].
However, data from three clinical trials, two of which were
included in the meta-analysis, have shown slower pro-
gression of coronary artery calcification in haemodialysis
patients treated with sevelamer compared with those
treated with a calcium-based binder [69, 72, 76]. Given
the discrepancies between study results on this matter,
additional large, prospective studies would be welcome to
ascertain the effect of sevelamer on vascular calcification.
Of note, it has also been reported that sevelamer is
associated with pleiotropic effects in haemodialysis
patients which may be beneficial for vascular protection,
including a prolonged significant rise in serum levels of
the calcification inhibitor fetuin A [77] and lowering of
total and low-density lipoprotein cholesterol [71, 74, 77].
An increased risk of GI side effects has been reported

with sevelamer compared with calcium-based binders
[64], which may contribute to poor adherence. In addition,
a major limitation of both sevelamer and calcium acetate
in terms of their effect on treatment adherence is their
high pill burden (6–12 tablets per day) [12].
Lanthanum carbonate, another non-calcium, metal-

based phosphate-binding agent, has been shown to have
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similar efficacy to both calcium-based phosphate binders
(78% of patients in the control arm were receiving
calcium-based binders; N = 1359) [78] and sevelamer
(N = 181) [79] in terms of reducing serum phosphate
levels in haemodialysis patients. Similar to sevelamer,
recent data suggest that lanthanum reduces FGF-23
levels in patients with stage 3 CKD [80]. Lanthanum car-
bonate is also associated with a lower pill burden than
sevelamer or calcium-based binders [12]. In addition, in a
Phase III, open-label study including 98 haemodialysis
patients, more patients treated with lanthanum carbon-
ate exhibited normalization of bone turnover than those
treated with calcium carbonate, and fewer exhibited
adynamic bone [81]. However, there are concerns about
side effects associated with lanthanum carbonate,
especially GI side effects [82, 83]. In addition, questions
about the potential long-term accumulation of lantha-
num in the liver have been raised, in part owing to the
results from a rat model of chronic renal failure [84].
However, a post-hoc analysis of a subset of data from
four Phase III trials of lanthanum, including data from
some haemodialysis patients who were treated for up to
6 years, showed no detrimental changes in transaminase
or bilirubin levels or significant increase in liver-associ-
ated adverse events compared with control groups [85].

Do patients take their phosphate binders?

One of the major potential drawbacks of treatment with
currently available phosphate binders is that their effec-
tiveness may be compromised by poor treatment adher-
ence, possibly owing to side effects, high pill burden or a
combination of these. Studies have shown that amongst
haemodialysis patients, non-adherent patients are more
likely to have elevated serum phosphate levels than their
adherent counterparts [86, 87]. This is sobering, consider-
ing that the rates of non-adherence to phosphate
binders are reported to range from 22 to 74%, with a
mean in one systematic review of 51% [88]. The wide
variation in reported rates of non-adherence can be at-
tributed to differences in the way non-adherence was
defined and assessed across studies [88].

Pill burden may be an important contributing factor to
poor adherence in patients with CKD. A cross-sectional
study conducted in 233 maintenance dialysis patients in
the US showed that higher pill burden was associated
with reduced adherence and lower health-related quality
of life (HRQoL); almost two-thirds of patients (62%) were
non-adherent [89]. Phosphate binders accounted for
approximately one half of the daily pill burden, with the
median daily pill number required for phosphate binder
therapy being 9 (inter-quartile range: 6) [89]. Further-
more, this study showed that increasing the number of
prescribed pills did not improve phosphate control [89].

These data suggest that the long-term maintenance of
phosphate control using phosphate binders can be
further improved for patients with CKD, in particular by
considering ways of improving adherence, possibly by re-
ducing pill burden.

Need for new therapies

A number of new therapeutic approaches to improve
phosphate control in patients with CKD have been devel-
oped in recent years or are under clinical investigation;
amongst these is intensive haemodialysis (more frequent
or extended dialysis sessions). Analysis of data from the
Frequent Haemodialysis Network Daily and Nocturnal
Trials showed that daily and nocturnal dialysis regimens
were associated with a reduction in mean serum phos-
phate of 0.15 mmol/L (0.46 mg/dL; 95% CI: 0.04–0.25
mmol/L [0.13–0.78 mg/dL]) and 0.40 mmol/L (1.24 mg/
dL; 95% CI: 0.22–0.58 mmol/L [0.68–1.79 mg/dL]) com-
pared with patients receiving conventional haemodialysis
[90]. However, these intensive sessions may only be prac-
ticable for a relatively small proportion of patients [13].

Novel pharmacologic approaches may widen options
for patients with CKD (Table 2). For example, inhibition
of the sodium-dependent phosphate co-transporters
is an additional opportunity for therapeutic inter-
vention to control hyperphosphataemia. Illustrating this
principle, administration of niacin or nicotinamide–which
inhibits the sodium-dependent phosphate co-transporter
NaPi-2b–concomitantly with phosphate binders was
associated with a significant reduction in serum

Table 2. New pharmacological approaches targeting phosphate overload [91, 93, 95–97, 98]

Compound Class Mechanism of action
Stage of clinical
development Company

Niacin/nicotinamide Amide of vitamin
B3

Inhibits the sodium-dependent
phosphate co-transporter

Phase III
ongoing

N/A

Calcium acetate/
magnesium
carbonate

Combination
phosphate binder

Calcium acetate and magnesium
carbonate bind phosphate, forming
non-absorbable complexes

Approved (EU
only)

Fresenius Medical Care

PA21 Iron-based
phosphate binder

Iron(III)-oxyhydroxide binds
phosphate by replacing hydroxide
groups, forming non-absorbable
complexes

Phase III
ongoing

Vifor Pharma Ltd

Ferric citrate Iron-based
phosphate binder

Binds phosphate and forms non-
absorbable complexes

Phase III
ongoing

Numerous, including: Panion & BF Biotech
Inc., Keryx Biopharmaceuticals, Torii
Pharmaceutical Co., Ltd

Colestilan (MCI-196) Non-calcium anion
exchange resin

Binds phosphate and bile acid anions Phase III
ongoing

Mitsubishi Tanabe Pharma Corporation

HS219, a chitosan-
loaded chewing
gum

Natural polymer
(dietary
supplement)

Binds salivary phosphate Phase II
completed

KDL Inc.
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phosphate from 2.1 mmol/L (6.45 mg/dL) to 1.71 mmol/L
(5.28 mg/dL; P = 0.002) during an 8-week study in 33
dialysis patients [91]. There have, however, been reports
of patients experiencing GI side effects (diarrhoea) when
receiving this combination [91, 92]. In addition, existing
approaches can still be refined. There is a need for new
phosphate binders that address the limitations of current
treatments and enable patients to achieve and maintain
adequate control of serum phosphate levels. Potentially,
improved clinical outcomes can be achieved by improving
the side effect profile, reducing pill burden, increasing
treatment adherence, and allowing patients greater nu-
tritional freedom.

A combination calcium acetate/magnesium carbonate
phosphate binder has shown a non-inferior reduction of
serum phosphate levels compared with sevelamer in a
24-week randomized study in 255 haemodialysis
patients, with no difference between groups in episodes
of hypo- and hypercalcaemia [93]. In addition, a novel
iron(III)-oxyhydroxide-based phosphate binder in clinical
development may meet these criteria. Encouraging results
have been reported in Phase I [94] and II studies [95].
In addition, the iron-based phosphate binder ferric citrate
is also undergoing clinical evaluation [96]. The approach
of binding salivary phosphate with a chitosan chewing
gum during periods of fasting, to complement the use
of phosphate binders, is also being investigated [97].

Conclusions

A strong evidence base places the diagnosis and man-
agement of hyperphosphataemia at the centre of patient
care in CKD. Despite this, related diagnostic procedures
and treatment decisions are far from straightforward and
patients still suffer severe clinical complications and
reduced QoL. Now that we have a greater understanding
of the underlying pathophysiology of hyperphosphatae-
mia, our focus can shift to identifying more reliable
diagnostic markers of mineral- and bone-related dis-
orders and more specific treatments to improve patients’
clinical outcomes and their QoL. This requires us to
assess the treatment of hyperphosphataemia in the
context of the wider treatment that patients are receiv-
ing, consider pharmacologic interventions alongside
available options for dialysis and dietary control, and con-
tinue to evaluate novel treatments and their potential
place in the clinic.
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