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Mast Cell Activation Protects
Cornea by Promoting Neutrophil
Infiltration via Stimulating ICAM-1
e’ and Vascular Dilation in Fungal
Rt Keratitis
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. The role of mast cells (MCs) in fungal infection is largely unknown. This study was to explore a protective
role and mechanism of MCs in fungal keratitis. Experimental fungal keratitis (FK) mouse model was
developed. Mice untreated (UT) or receiving corneal wound without fungal infection (Mock) were

. used as controls. Large number of connective tissue MCs was found in normal mice. MC activation

. with degranulation was largely observed, and the percentage of degranulated/total cells was high in

. FK. Dilated limbal vasculature with increased permeability, as well as largely infiltrated neutrophils

. with stimulated ICAM-1 protein levels were observed in corneas of FK mice, when compared with

© Mock and UT mice. Interestingly, pretreatment with cromolyn sodium (Block) significantly blocked
MC degranulation, dramatically suppressed vascular dilation and permeability, and markedly reduced
neutrophil infiltration with lower ICAM-1 levels in FK mice at 6-24 hours. Furthermore, the Block
mice manifested prolonged disease course, increased pathological damage, and vigorous fungus
growth, with much higher corneal perforation rate than FK mice at 72 h. These findings reveal a
novel phenomenon that MCs play a vital role in protecting cornea against fungal infection through

. degranulation that promotes neutrophil infiltration via stimulating ICAM-1 production and limbal

. vascular dilation and permeability.

. Fungal keratitis (FK), also known as keratomycosis or mycotic keratitis, is an infection caused by opportunistic
. pathogenic fungi. In the developing countries, it occurs mainly among male populations at low levels of edu-
: cation, who engage in agricultural activities, and is frequently accompanied by a history of plant trauma. Most
© patients eventually require surgery (59.45%), at a low level of pharmaceutical cure rate (40.55%). In the large
. sample of clinical epidemiology studies, Fusarium?=, Aspergillus’, and Candida albicans were the main pathogens
. of FK, and Fusarium manifests with more serious symptoms and poor efficacy of treatment'.
In fungal diseases, different types of immune cells are involved in the antifungal process with distinct mech-
anisms. Infiltrated inflammatory cells were mainly neutrophils followed by macrophages in corneas of patients
. and mice'!. Neutrophils are attracted by chemokines in the affected area via neutrophil surface integrins. Then
. these immune cells subsequently transmigrate from blood vessels of limbus to the site of infection. Neutrophils
© can distinguish the site of the micro-organisms to initiate endocytosis and release extracellular traps, and final
- kill micro-organisms'2.
: Mast cells (MCs) are bone marrow progenitor-derived immune cells that mature in tissues affected by the
. local microenvironment. MCs are mainly distributed in the transitional areas between the body and outside. MCs
can participate in numerous biological processes, including infection control, wound healing, inflammation and
immune tolerance. In infectious diseases, MCs play a critical role by releasing previously stored particulate mate-
rials as well as new synthetic substances in vascular permeability and angiogenesis'*~'%, fibroblast proliferation,
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Figure 1. Connective tissue mast cells were verified in cornea. (A) The corneas of normal mice were cut into
eight pieces after immunofluorescent staining. In the whole cornea, there were no CD117-positive cells in
central, paracentral and peripheral cornea (left). CD117-positive cells were present on the corneal limbus and
conjunctiva (right). Scale bar for 500 pm. (B) The fluorescent images (x20) captured from one piece of the
cornea merged into a single image (left). Photos (x20) of the same area were taken under a light microscope
after toluidine blue O (TB) staining (right), Scale bar for 100 pm. (C) MCs (green) were located around the
blood vessel (left, red) and nerve (right, red) in the corneal limbus. Scale bar for 100 pm. (D) MCPT-6 positive
(left, red, 100x) and MCPT-1 negative (right, 100x) Cells were verified CTMC in cornea. Green indicated the
MCs, and blue indicated nuclei. Scale bar for 10 um.

and scarring formation. MCs also induce the expression of ICAM-1 in endothelial cells through the release of
cytokines to promote neutrophil chemotaxis'® and perform antimicrobial actions by secreting antimicrobial pep-
tides defensins'’. Studies on corneas infected by virus in MC-knockout mice manifest increased virus load and
leukocyte infiltrations, but decreased corneal transparency®. When MCs encountered Candida albicans, they can
digest spores by endocytosis'. After toe pads were inoculated with the fungus, MC activation-associated proteins
can be detected in the serum of guinea pigs®®. However, no direct data demonstrated the role of MCs or their
anti-fungal mechanism in fungal keratitis.

To investigate how MCs influence corneal fungal infection, we established the mouse model of fungal kera-
titis with Fusarium Solani to explore possible functions and mechanisms of MCs during fungal infection in the
cornea. We found that MCs activation initiated by fungi infection contributed to the neutrophil infiltration by
influencing the expression of ICAM-1 to the infected cornea and result in protection in FK.

Results

Connective tissue mast cells were observed to be located in the corneal limbus. MCs are dis-
tributed in the ocular surface*'~?*. To reveal the characteristics of these cells, we used classic staining methods—
toluidine blue staining combining the whole-mount technique to verify the distribution of MCs in the cornea and
conjunctiva. Consistent with previous studies, we found the presence of a large number of MCs in the conjunc-
tiva (Fig. 1A) and limbus. These cells were toluidine blue and CD117 positive (Fig. 1B), which was a construc-
tive expressed molecular on the MC during maturation. MCs also located near to the blood vessels and nerves
(Fig. 1C).

MCs have been known to consist of at least two types, connective tissue mast cells (CTMCs) and mucosal mast
cells (MMCs) based on to their locations and enzymes. Some researchers show both types of cells may co-exist
in some areas. Studies show that mouse MC protease (nMCPT)-6 was specifically expressed in CTMC while
mMCPT-1 existed only in MMCs. To determine the MC subtypes in the limbus, the corneal whole mounting and
immunofluorescence staining technique was applied. Our results found that the MCs in limbus were mMCPT-6
positive but mMCPT-1 negative cells (Fig. 1D), indicating they were CTMCs.

MCs were largely activated in fungal keratitis. MC cytoplasm contains a large number of particles.
When MCs are irritated by parasites, bacteria, and other pathogens, granules wrapped in cytoplasm are released
into the matrix of surrounding tissue?®. In order to observe whether the fungal infection trigger MC degranu-
lation in the cornea, we established FK models to observe the presentation of activated (degranulated) MC in
corneal limbus. We found that a large number of particles were around the MCs after 6 hours of corneal irritation
by fungal infection or trauma (Fig. 2A). The number of MCs was 645 = 26 cells per cornea in normal mice, and no
significant change of the MC number was observed in Mock, FK and Block group. The percentage of degranulated
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Figure 2. Mast cells were activated by fungal irritation. (A) Corneal whole mounts were used for the MC
activation morphological analysis. The UT cornea was compared to the Mock group, FK group and Block group
after 24 h of stimulation with the fungi or trauma. Cromolyn sodium suppresses the degranulation of mast cells
at 0, 6, 12, 24 h. (B) The ratio of activated/total MCs per cornea (5-6 eyes per group) in the UT group, mock
group, and FK group at different times were analyzed. Scale bar for 200 pum. *P < 0.05, **P < 0.01, ***P < 0.001.

over total MCs in FK-infected corneas was 37.87%, 37.27%, 27.88%, 26.63%, 30.71%, 25.75% at 6 h, 12h, 24h,
36h, 48h and 72 h, respectively, which were significantly higher than that in Mock and Block (Fig. 2B).

Mast cell degranulation stimulated vessels dilation in corneal limbus.  The vascular diameter con-
trols the speed of blood flow and numbers of immune cell infiltration. In order to determine the effect of MCs on
blood vessel, we utilized cromolyn sodium, immunofluorescence staining, and Evans blue (EB) to detect changes
in the vessel diameter and vessel permeability in the process of FK.

The vessel diameter was 24.06 £ 4.63 pm in normal corneas (Figs 3A and 4A), and it was 24.21 +4.79,
24.38+4.46 and 25.67 £5.15pm at 6h (P=0.830), 12h (P=1.000) and 24h (P =0.250), respectively, in the
Mock group, which was not statistically different. But it considerably widened to 29.53 +5.23, 30.14 £ 4.36,
34.09+6.29pmat 6h (P<0.01), 12h (P<0.01) and 24h (P < 0.001) respectively, in FK mice. When MC activa-
tion was blocked, the vessel diameter remained at low levels with 23.96 4 5.34 um at 6h, 23.02+ 5.67 pm at 12h,
which was as same as the Mock group at 6h (P=0.706), 12h (P=0.108), but lower than that of the FK group (6 h,
P <0.001; 12h, P<0.001). Although the vessel diameter of the Block group rose to 31.06 & 5.97 pm at 24 h, which
higher than that of the Mock group (P < 0.001), it was still lower than FK group (P =0.028) (Figs 3A and 4A).

The EB concentration used to analyze vascular permeability (Fig. 4B) was at a low level of 0.26 4+ 0.03 ug/L in
normal corneas. The EB concentration of the Mock group was considerably increased to 0.80+0.27, 0.90 +0.37,
0.96 £0.25ug/L at 6h, 12h, and 24 h respectively, higher than that of normal corneas (6h, P<0.001; 12h,
P=0.001;24h, P <0.001). The EB concentration of the FK group sustainably increased to 0.95 4 0.26, 1.45+0.39,
3.54+0.17pg/L at 6h, 12h and 24 h respectively in FK group, and higher than that the Mock group at 12h and
24h (12h, P=0.001; 24 h, P<0.001). When MC activation were blocked, the EB concentration were decreased to
0.95+0.20,2.47 £0.351g/L at 12h and 24 h, lower than the FK group (12h, P=0.009; 24h, P < 0.001).

Mast cell degranulation increased ICAM-1 expression. In addition to vascular changes, ICAM-1
is crucial for neutrophil migration into the sites of infection through the vascular wall*>?*. An enzyme-linked
immune-sorbent assay was used to investigate whether ICAM-1 protein expression changed by MC activation.

Intercellular adhesion molecule varied following the vascular dilation and increased permeability during
inflammation in FK model, Mock group, and Block group (Fig. 4C). We confirmed that ICAM-1 expression is at
alow level (27.27 x 10734+9.24 x 10~ ng/pg) in normal corneas, MC activation irritated by fungi triggered the
expression of ICAM-1 to 61.15 X 107>+9.61 x 1073, 63.53 x 107> £11.18 X 1073, 69.28 x 107> £9.61 x 10> ng/
pg at 6h, 12h and 24h, respectively (Fig. 4C). After MCs activation was pharmacologically blocked, ICAM-1
expression decreased to 21.01 x 107+ 6.51 X 10> ng/pg at 6 h, 31.04 x 107>+ 5.57 x 10~ ng/pg at 12h and
29.40 X 10724 1.22 x 10> ng/pug at 24 h, which was similar to the UT mice (6h, P=0.499;12h, P=0.445; 24 h,
P=0.646) and significantly lower than the FK group (all P value < 0.001).
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Figure 3. Vessel dilation and neutrophils infiltration were suppressed by blocking of mast cell degranulation.
(A) After fungi or trauma irritation, The CD31-PE labeled vessels (red) in the limb were also captured using a
fluorescence microscope in the FK group (top) and Block group (bottom) at 0h, 6h, 12h, and 24 h. Scale bar
for 100 pm. (B) Gr-1-FITC labeled neutrophils were also captured by confocal laser scanning microscopy in the
Mock group (top), FK group (middle), and Block group (bottom) at 0h, 6h, 12h, and 24 h. Scale bar for 40 pm.

Mast cell degranulation promoted neutrophil infiltration. Neutrophils are the earliest and the most
innate immune cells infiltrating to the infected area during earlier stage of fungal keratitis'®. They play a crucial
role in killing fungi during infection®. To determine the role of MCs in the chemotaxis of neutrophils, we used
cromolyn sodium, the mouse model of FK, and immunofluorescence staining to observe chemotaxis of neutro-
phil to the central cornea.

We found immune cell infiltration at the early stage of fungal keratitis. In wild type mice, neutrophils were
only distributed in the corneal limbus with a density of 248 £ 68 cells per cornea (Figs 3B and 4D). Neutrophil
infiltration increased to 1085 £ 57 cells at 6 h in the Mock group, and also increased slightly to 1216 4298,
1987 £ 340 cells at 12h and 24 h, respectively. Neutrophil infiltration in the FK group significantly increased
to 1258 + 98 cells, in contrast to the Mock group (P=0.023) at 6 h; it was increased to 1847 £ 258 cells at 12h
(P=0.015) and 5046 £ 258 cells at 24 h (P < 0.001), significantly higher than that of Mock group. When MC
activation was blocked, the number of neutrophils was decreased to 511 £ 92 cells at 6 h, lower than the Mock
group (P < 0.001) and FK group (P < 0.001), but similar to normal corneas (P=0.094, Figs 3B and 4D). After
12h and 24 h stimulation by fungi, the neutrophil infiltration in the Block group showed a very small increase,
but was still significantly lower than the trauma group (P=0.040, P=0.011) and FK group (P < 0.001, P < 0.001)
(Figs 3B and 4D).

Mast cell activation was related to clinical and pathological process of fungal keratitis. To
investigate the effects of MC activation on the clinical process and pathological change of FK, we treated animals
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Figure 4. Blocking of mast cell degranulation depressed vessel changes, ICAM-1 expression and neutrophils
infiltration. (A) The vessel diameters of the Block group was compared to the UT group, Mock group, and FK
group at 6h, 12h, and 24 h after the fungi infection (n=>5 or 6 per group). (B) The blood vessel permeability of
the corneal limbus were examined with EB concentration (n=>5 or 6, per group). (C) ICAM-1 concentration
in the Block group was compared to the UT group, Mock group, and FK group at 6h, 12h, and 24 h after fungi
infection (n =6 per group). (D) The number of infiltrating neutrophils (Gr-1 + cells) were analyzed at 6h, 12h
and 24h (n=5 per group). *P < 0.05, ¥**P < 0.01, ***P < 0.001. The data are representative of two independent
experiments.

with cromolyn sodium and observed the corneal changes with a slit lamp microscope and pathological staining.
Before (0h) and after (6h, 12h, 24 h, 36h, 48h, 72 h) establishing the fungal keratitis model, digital photos of the
mouse corneas were captured under a slit-lamp microscopy (Fig. 5A).

In the Mock group, there was just slight edema in 6h and 12 h, and corneal grey-white infiltration occurred
after 24 h. In the FK group, the clinical manifestations were similar to the Mock group with scratching and coeno-
bium only in the central cornea at 6h and 12 h. The central and paracentral cornea had a large area of gray-white
infiltration with the iris visible, trauma in central cornea, and hypopyon occurred in the anterior chamber at
24h. The clinical manifestations continued to worsen at 36 h, with corneal gray-white infiltrated lesions, iris not
visible and increasing opacity. While corneal edema aggravated and hypopyon existed at 48 h, the central corneal
lesions were reduced. And it showed only central corneal lesions at 72 h, with peripheral corneal transparent and
no edema.

In the Block group, the corneal clinical manifestations were similar as that of the FK group and the Mock
group at 6h and 12 h, with no consequential differences in clinical scores (P=1, n =6 for each time point of the
cornea) between the FK group and Block group (Fig. 5A,C). However at 24 h (Fig. 5A): the Block group was char-
acterized as transparent cornea, the iris was clearly visible, with significant differences with FK group in clinical
score (Fig. 5A). The differences consisted at 36 h, with no hypopyon formations. Although the Block group man-
ifested corneal opacity at 72h, it differed from the FK group in lesion characteristics under the slit lamp micro-
scope: restricted dry and dense lesions in the FK group suggested the recovery process of corneal inflammation;
however, moist and crisp lesions in the Block group revealed a severe inflammatory reaction. By a total of three
batches of experiments (six eyes per group), the clinical score in the Block group was greater than that of the FK
group at 72 h (Fig. 5C), and also perforated rates were higher than FK group (P =0.023) (Fig. 5D).

Along with the slit lamp images, histological staining was also performed to understand the histopathology
changes underlying the corneal clinical symptom (Fig. 5B). In the FK group, only a small amount of inflammatory
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Figure 5. Mast cells activation decreased peroration rates. Photographs showing changes in the corneas were
taken under slip-lamp microscopy (A) at Oh, 6h, 12h, 24h, 36 h, 48 h, 72 h after fungi or/and trauma irritation.
HE staining were performed to observe the general pathological changes at different time points (B). Clinical
scores (C) were assessed under slit-lamp microscopy at 6h, 12h, 24 h, 36 h, 48h, and 72 h after the hypha
treatment. The peroration rates (D) of the Block group and FK group were compared (6 per group, 4 batches,
mean and s.d,) at 72h. *P < 0.05, ¥**P < 0.01, ***P < 0.001.

cell infiltration were present in the cornea at 6h and 12h, and the organizational structure showed no difference
from the normal corneas. At 24 h, there was a great deal of inflammatory cell infiltration in the cornea with
immune cell underneath the endothelium, as well as increased corneal thickness, and the matrix structure dis-
appeared. Although corneas were damaged, scar tissue within the cornea was formed at 72 h. In the Block group,
HE staining showed it underwent no damage in the structure when comparing with the FK group at 6h and12h
(Fig. 5B), with almost no inflammatory cell infiltration, and it only showed increased corneal thickness without
structural destruction at 24 h (Fig. 5B). The differences between the FK group and the Block group were also man-
ifested by clinical scores (P < 0.001) (Fig. 5C). After 72 h, the normal corneal morphology disappeared, and all
that remained was the organization framework with large number of immune cells adhering to the endothelium.

HRT3 confocal microscopy, GMS (Gomori’s methenamine silver) and immunofluorescence staining were
performed to examine the growth of fungi. HRT3 images (Fig. 6A) showed that fungus growth was vigorously
in 12-36h, but significantly reduced at 48 h, and there was few fungi detected at 72h in the FK model. The same
results were also showed by GMS staining (Fig. 6B). Fungal volume from immunofluorescence staining (Fig. 6C)
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Figure 6. Effects of mast cell activation on corneal histopathology and hyphae. Following photographs of mice
corneas under the slit lamp, HRT3 confocal microscopy images (A) were screened at 12h, 24 h, 36h, 48h, and
72h. The hypha was high reflective filament, and the light scatter could be masking it. The GMS staining for FK
models was performed (B) to observe the fungi growth at different times. (C) The volumes of the CFW-positive
hypha in the FK group (6 eyes per group, in 4 batches) and the Block group (6 eyes per group, in 4 batches) was
measured by the Imaris software. Scale bars for 100 pm (B).

was at low level at 6-12h (P=1.000, P=1.000), increased significantly at 24 h (P < 0.001), reached the peak at
36h (P=0.019), then significantly decreased to low level at 48 h, and very few at 72h in the FK group. However,
the strong growth of fungi continued and lasted from12 to 72 h in the Block group (Fig. 6C), much higher than
FK group at 48-72h, (P < 0.001), which suggested that block of blocking MC activation decreased neutrophil
suppression of fungal growth in keratitis.

These findings suggest that MC activation by corneal central fungi may cause early neutrophil infiltration
from the limbus site and thus lead to severe clinical manifestations in the early stage of fungal keratitis, indirect
anti-fungal activity, and finally preventing the late tissue damage caused by fungi growth, decreasing the perfo-
ration rate in the late stage.

Discussion

MC:s play a key role in the fight against bacterial infection and viral infection?®?, however their role remains
poorly understood in the process of corneal fungal infection. This research found that MCs, which are mainly
distributed in the corneal limbus, play a dominant role in controlling the fungus infection of the cornea by sev-
eral mechanisms. This conclusion is based on following evidence: (1) Fungi infection can induce activation and
degranulation of MCs in the limbus; (2) cromolyn, the MC stabilizer for degranulation, can significantly prolong
the course of disease, increase pathological damage, and increase the perforation rate of fungal keratitis; (3) cro-
molyn reduces neutrophil infiltration to the site of the fungal infection in the central cornea; (4) MC activation
can increase ICAM-1 expression.

Bacteria, parasites, fungi and other physical stimuli can promote MCs activation through the recognition
receptors on the cell surface. In the vitro studies, these microbes can directly stimulate the MC degranulation.
In this study, the central cornea was irritated by fungi causing MC activation in limbus signaling there are some
mechanisms during cell activation. Neurons can secrete nerve growth factors and inflammatory factors, which
can bind to the receptors on MC surface following different stimuli*’. So we conjecture that fungi irritated corneal
central nerve fibers to secrete nerve factors and inflammatory factors, then induction of MC degranulation via
receptors on MC surface. However, detailed studies are required to establish the definitive mechanism.
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Many immune cells participate in fungal infection. There are few evidences on MC in FK. Studies show
that MCs can directly kill microorganisms®, and also kill bacteria indirectly by chemotaxis of neutrophils*-3.
MCs can also make direct contact with the bacteria to produce a variety of antibacterial substances, and they
can phagocytize and subsequently display the bacterial antigens on their cell surfaces?®*. Recent findings have
revealed that MCs form the extra-cellular traps which can trap the bacteria to some location to facilitate the
anti-bacterial reaction®*°. We demonstrated that MCs have an indirect effect on killing fungi in the pathogenesis
of FK, via reducing fungal growth by promoting neutrophil infiltration. MC activation is needed for controlling
the invasion of fungi was also similar to the study on rat model of acute invasive fungal rhino sinusitis®’. In a
HSV-1 keratitis animal model, research shows that MCs knock-out can reduce the infiltration of neutrophils in
the cornea, so as to promote the elimination of virus tilter's. In our study, effects of MC activation blocked by
cromolyn on neutrophil infiltration is also similar, but the effect on the elimination of fungi is opposite to that of
HSV-1, and further studies are needed.

MCs are necessary for corneal wound healing and coordinating neutrophil and platelet recruitment®®. Eric
Pearlman research team confirmed that in the infectious keratitis, corneal haze formation was consistent with
neutrophils infiltration®”-*°. The fungal load in neutrophil-knockout mice was higher than the controls*, showing
that neutrophils are crucial to produce a fungicidal effect. Neutrophils engulf the spores and then kill the fungi
or spore through oxygen-dependent or oxygen-independent mechanisms; it can also be formed by extracellular
traps to limit fungal hyphae and spore wavering, and then ultimately digest the hyphae or spore through enzymes.
In the present study, MCs were located only in the limbus, while the fungal hyphae in the cornea were mainly
located in the central cornea. Neutrophils were attracted to the corneal center, where MCs were activated by the
fungi. Therefore, it is clear that MCs play an important role in the chemotaxis of neutrophils in fungal keratitis,
which have antifungal effects indirectly.

MCs which locate around the blood vessels can promote changes in vascular diameter*!. Changes of blood
vessels were different when MCs activated by different stimuli*?: After intraperitoneal injection of saline, there
were no change in the diameter of the peritoneal blood vessels; after 48/80 stimulation, the vascular diameter
decreased at the first 9 days, and then gradually return to normal. The different effect of the two stimuli on vessel
diameter may be due to the degree of MC stimulation. Our results suggest that MC activation is less likely to be
caused by trauma than by fungal stimulation. This may explain why trauma stimulus does not cause a change in
the vessel diameter, whereas a persistent stimulation of the fungus causes increases. Experimental studies showed
that 48/80 stimulation of MCs in the early tissue culture (6-8 days) did not increase the vascular permeability of
macromolecules, while promotion of vascular permeability of macromolecules occurred in the late stage (9-10
days)®. Strbian et al. found that cromolyn could restrict hemorrhage formation induced by plasminogen activa-
tor**. Evans blue can bind with albumin to form Evans blue- albumin complex. In this study, vascular permeabil-
ity detected by Evans blue concentration was increased by fungal irritation and was higher than trauma irritation
but can be suppressed by cromolyn sodium in Block group.

MC activation promotes neutrophil infiltration, blood vessel diameter increases, and ICAM-1 changes. In fun-
gal keratitis, corneal infiltration of inflammatory cells is mainly due to neutrophils. ICAM-1 plays an important
role in the chemotaxis of neutrophils during inflammation**¢. The infiltration of neutrophils in the blood vessel
is divided into three steps: rolling, adhesion, and penetrating. ICAM-1 is crucial for neutrophil amoeboid move-
ment through the vascular wall to the damaged site. We confirmed that the increased expression of ICAM-1 in the
cornea initially then decreases in the late stage in the FK group were coherent with the changes in the number of
infiltrated neutrophils. The neutrophil infiltration and ICAM-1 expression were blocked by MC inhibitors during
the early stage of fungal keratitis.

There are two factors inducing perforation in FK: one is the virulence or mechanical penetration of the fungus
itself, and the other is the destruction of the inflammatory cells to the cornea. When neutrophils kill fungi, the
intracellular enzyme is released, causing the destruction of corneal tissue*’. Neutrophil chemotaxis was inhibited
in the MC non-activation group, which made it unable to kill fungi. Consequently, the fungal virulence effect is
far greater than the destructive effects of neutrophils on the tissue organization, which may be the reason that the
perforation rate of the block group was higher than that of the FK group. This demonstrated that MC activation
was required for controlling fungal keratitis.

In this experiment, the choice of cromolyn sodium as a MC stabilizer, has certain limitations. Cromolyn
sodium can affect macrophages and other inflammatory cells, and it is unclear whether there is an immunosup-
pressive effect on other cells of the corneal tissue. In addition, studies have shown that in mice, effects of cromolyn
sodium on MC membrane stability is lower than that of the other animal in vivo effect*®. Cromolyn may have an
effect on the degranulation of other granule cells, such as neutrophils, basophils. To investigate this role, our next
step will be to use MC knockout mice to verify this effect. In addition, the role of MCs in mice may be different
with that in the human body, and the specific role in the human body still needs further experimental study.

In the present study, we showed connective MCs are found in the corneal limbus and conjunctiva. Corneal
fungal infection led to degranulation of these MCs. MC activation can promote vascular changes and increase
ICAM-1 expression, thereby promoting neutrophil chemotaxis, as well as affect corneal transparency in the early
stage and decrease the perforation rate. The specific reason for MC degranulation caused by fungi infection still
needs further investigation. This study adds to evidence on the pathogenesis of fungal keratitis, and may provide
information for the treatment of fungal keratitis in the future.

Materials and Methods

Animals.  All experimental protocols used in these studies were maintained and animals euthanized according
to the protocols approved by the Ethical Committee of Experimental Animal Care of Henan Eye Institute. Eight-
week-old C57BL/6 ] male wild-type mice were purchased from the Model Animal Research Center of Nanjing
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University (MARC) (Nanjing, China). The mice were maintained on a 12:12-day cycle in a temperature-con-
trolled room at 25 °C.

Mast cell stabilization and the FK model.  Before injection, cromolyn sodium (Sigma-Aldrich, St. Louis,
MO) was dissolved in phosphate-buffered saline (PBS, 0.01 M) at a concentration of 4 mg/ml. The cromolyn
sodium solution was protected from light during preparation. To stabilize the mast cells, cromolyn sodium
(100 mg/kg body weight; Sigma-Aldrich) or vehicle (0.01 M PBS) was administered to the mice by a single intra-
peritoneal (i.p.) injection for 30-120 min before and after the model*, and then additional injections were given
every six hours for the duration of the experiment.

The C57BL/6] mice were randomly divided into three groups, which were the UT group, Mock group, FK
group, and Block group, according to the littermate grouping method. The mice were anesthetized by an intra-
peritoneal injection of sodium pentobarbital (80 mg/kg body weight), and 1% (weight/volume) tetracaine hydro-
chloride eye drops were used for corneal surface anesthesia. Then, under a dissecting microscope, the FK model
infected with Fusarium solani (. 3.1791) was built referring to previous methods*’: using sterile knife to make
crossing scratch on the corneal central with the depth of under Bowman’s membrane, then bamboo sticks with
fungi hypha scratch 2 to 3 times following the crossing bottom to mimic the natural fungi infection in cornea.
Corneas of the Mock group were processed the same procedure above, except fungi infection.

Corneal clinical score and confocal microscopy. Corneas of three groups were continuously observed
and photographed at the corresponding time points under a slit-lamp microscope (SL-8Z, TOPCON, Japan) and
a HRT3 confocal microscope (Heidelberg, Germany). Clinical scores were recorded under slit-lamp microscope
according to lesion area, depth, corneal neovascularization and others®. Parameters of lesion area, depth, corneal
neovascularization were given a grade from 0 (normal) to 4 (very severe), and others that contained hypopyon,
hyphema, descemetocele and perforation grade from 1 to 4. The fungi hypha and immune cells infiltration were
observed by the HRT3 confocal microscope.

Histologic preparations. For the histologic analysis, mice were euthanized by cervical dislocation at dif-
ferent time points, and the whole cornea and partial sclera were removed and then fixed in 10% neutral formalin
(F) for 120 min. Two-micrometer sections were separately stained with Gomori methenamine silver (GMS), or
hematoxylin-eosin (HE), and reviewed by light microscopy.

Observation of Flat-Mounted Cornea.  The mice were euthanized by cervical dislocation at different time
points. Whole eyes were removed and then fixed with an alcohol-formaldehyde solution (AF) for 120 min. The
cornea was trimmed to retain the limbus, but the iris and ciliary body removed. After washing five times with
0.01 M PBS (10 min each), the corneas were dipped in the following solutions in sequence: a 0.2% Triton-BSA
solution for 30 min, a 2% BSA solution for 30 min, and the primary antibodies (anti-mouse CD117-FITC pro-
vided by Zhijie Li, anti-mouse Tubulin-PE, anti-mouse CD31-PE, anti-mouse MCPT-1, anti-mouse MCPT-6, and
anti-mouse Gr-1-FITC, were purchased from eBioscience) incubation for one night. Then, the secondary anti-
bodies (Alexa568, Alexa488, eBioscience) were incubated for 6hours, washed; incubated in CFW (Sigma-Aldrich,
St. Louis, MO) for 30 min, washed; incubated with DAPI for 30 min, and washed. The corneas were then flat
mounted with four or eight radial cuts (all of incubation sustained at 4 °C). After multiple immunofluorescence
and CFW staining procedures, the flat-mounted corneas of the model groups were photographed by confocal
laser scanning microscopy (Z axis, Z=5pm). The image analysis was performed by visual inspection of the indi-
vidual image sections. The different corneal layers were identified by their characteristic morphometric features.
Representations of the morphological analyses of the neutrophils and fungal volumes were performed using the
Imaris software, version 7.3.1 x 64 (Bitplane, Zurich, Switzerland).

Vessel diameter and Limbal Vascular permeability. Vessel diameter detection: The Vessel diameter
detection was based on the corneal whole-mount technique. Vessel diameter was detected under fluorescent
microscope. The limbal microartery in the four equal parts of the cornea was select and captured under 40X
objective lens. Then the diameter of limbal microartery was detected on AR software. The limbal microartery is
located between two capillary veins. There were four values per cornea, six corneas in every group.

Limbal Vascular permeability: Evans Blue (EB, Sigma, St Louis, MO) in normal saline (2%, 4 ml/kg) was
injected intravenously after operation. The mice were killed by cervical dislocation 1h later and corneas were
trimmed. After the tissue was then dried at 100 °C for 24 h, the samples were homogenized in methylformamide
(Yongda, Tianjin, China) with 200 ul per cornea, incubated for 24 h at 60 °C, and centrifuged for 5min at 1000 g.
The absorbance (A) of supernatants was analyzed at 632 nm using Envision Multi label plate reader 2104 (Perkin
Elmer, USA). The amount of EB (j1g/g) was calculated through standard curve established by known concentra-
tions of EB.

Statistical analysis. The statistical significance of the differences between groups at different times was
determined by the one-way analysis of variance test, followed by the least significant difference t (LSD-¢) test or
Kruskal-Wallis Rank Sum test using SPSS V.17.0. A P value of < 0.05 was considered significant. The data are
expressed as the means & STD.

References
1. Sauer, A. et al. In vitro efficacy of antifungal treatment using riboflavin/UV-A (365 nm) combination and amphotericin B. Invest
Ophthalmol Vis Sci 51, 3950-395 (2010).
2. Gopinathan, U. et al. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care
center in South India. Cornea 21, 555-559 (2002).

SCIENTIFICREPORTS | (2018) 8:8365 | DOI:10.1038/s41598-018-26798-3 9



www.nature.com/scientificreports/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34,

35.

36.
37.

38.

39.
40.

41.

42.

43.

44,

45.

46.

. Bharathi, M. J., Ramakrishnan, R., Vasu, S., Meenakshi, R. & Palaniappan, R. Epidemiological characteristics and laboratory

diagnosis of fungal keratitis. A three-year study. Indian ] Ophthalmol 51, 315-321 (2003).

. Xie, L., Zhong, W, Shi, W. & Sun, S. Spectrum of fungal keratitis in north China. Ophthalmology 113, 1943-1948 (2006).
. Bharathi, M. . et al. Microbiological diagnosis of infective keratitis: comparative evaluation of direct microscopy and culture results.

Br ] Ophthalmol 90, 1271-1276 (2006).

. Xuguang, S., Zhixin, W., Zhiqun, W., Shiyun, L. & Ran, L. Ocular fungal isolates and antifungal susceptibility in northern China. Am

J Ophthalmol 143, 131-133 (2007).

. Gopinathan, U, Sharma, S., Garg, P. & Rao, G. N. Review of epidemiological features, microbiological diagnosis and treatment

outcome of microbial keratitis: experience of over a decade. Indian ] Ophthalmol 57, 273-279 (2009).

. Wang, L. et al. Spectrum of fungal keratitis in central China. Clin Experiment Ophthalmol 37,763-771 (2009).
. Basak, S. K., Basak, S., Mohanta, A. & Bhowmick, A. Epidemiological and microbiological diagnosis of suppurative keratitis in

Gangetic West Bengal, eastern India. Indian ] Ophthalmol 53, 17-22 (2005).

Thomas, P. A. & Kaliamurthy, J. Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect 19, 210-220
(2013).

Zhong Jing et al. Inhibition of trem-1 and dectin-1 alleviates the severity of fungal keratitis by modulating innate immune responses.
Plos One 11, e0150114-e0150114 (2016).

Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens.
Nat immunol 15, 1017-25 (2014).

Sayed, B. A., Christy, A. L., Walker, M. E. & Brown, M. A. Meningeal mast cells affect early T cell central nervous system infiltration
and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J immunol 184, 6891-900 (2010).

Coté, J., Chan, H., Brochu, G. & Chan-Yeung, M. Occupational asthma caused by exposure to neurospora in a plywood factory
worker. Br ] Ind Med 48, 279-282 (1991).

Vasiadi, M. et al. Rupatadine inhibits proinflammatory mediator secretion from human mast cells triggered by different stimuli. Int
Arch Allergy Immunol 151, 80-88 (2010).

Zhang, J. et al. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS One.
6(1), €14525 (2011).

Nardo, A. D., Vitiello, A. & Gallo, R. L. Cutting edge: mast cell antimicrobial activity is regulated by casicadin antimicrobial peptide.
J Immunol. 170, 2274-2278 (2003).

Royer, D. J., Zheng, M., Conrady, C. D. & Carr, D. J. Granulocytes in Ocular HSV-1 Infection: Opposing Roles of Mast Cells and
Neutrophils. Invest Ophthalmol Vis Sci 56, 3763-3775 (2015).

Pinke, K. H., Lima, H. G., Cunha, F. Q. & Lara, V. S. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms
involving TLR2 and Dectin-1. Immunobiology 221, 220-227 (2016).

Vardinon, N., Segal, E., Schwartz, J. & Eylan, E. Mast cell sensitizing antibody (MAST CELLSAb) response in experimental
candidiasis: chromatographic studies. Acta Allergologica 30, 120125 (1975).

Miller, S. et al. Human conjunctival mast cell responses in vitro to various secretagogues. Ocular Immunology & Inflammation 4,
39-50 (1996).

. Graziano, F. M. et al. Conjunctival mast cells in ocular allergic disease. Allergy Asthma Proc 22, 121-126 (2001).
. Liu, J. et al. Mast Cells Participate in Corneal Development in Mice. Sci Rep 5, 17569 (2015).
. Antsiferova, M. et al. Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis. J Immunol

191(12), 6147-6155 (2013).

Farhood, A. et al. Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion
injury in at liver. Journal of Leukocyte Biology 57(3), 368-74 (1995).

Yujie, G. et al. Platelet-derived Wnt antagonist Dickkopf-1 is implicated in ICAM-1/VCAM-1-mediated neutrophilic acute lung
inflammation. Blood 126, 2220-2229 (2015).

Taylor, P. R. et al. Aspergillus and Fusarium corneal infections are regulated by Th17 cells and IL-17-producing neutrophils. J
Immunol 192, 3319-3327 (2014).

Matsuguchi, T. Mast cells as critical effectors of host immune defense against Gram-negative bacteria. Curr Med Chem 19,
1432-1442 (2012).

Haidl, I. D. & Marshall, J. S. Human mast cell activation with viruses and pathogen products. Methods Mol Biol 1220, 179-201
(2015).

Chéret, J. et al. 425 Mast cells survival and maturation in human skin are regulated and maintained by sensory nerve fibers. J Invest
Dermatol 2016 136, S75-S75 (2016).

Christy, A. L., Walker, M. E., Hessner, M. J. & Brown, M. A. Mast cell activation and neutrophil recruitment promotes early and
robust inflammation in the meninges in EAE. ] Autoimmun 42, 50-61 (2013).

Meuser, B. et al. Mast cell function and death in Trypanosoma cruzi infection. Am J Pathol 179, 1894-1904 (2011).

Chiba, N. et al. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment
into the airway. Journal of immunol 194, 3840-3851 (2015).

Malaviya, R., Navara, C. & Uckun, F. M. Augmentation of mast cell bactericidal activity by the anti-leukemic drug, 4-(3’bromo-4'-
hydroxylphenyl)-amino-6,7-dimethoxyquinazoline. Leuk Lymphoma 43, 1329-1332 (2002).

Branitzki-Heinemann, K. et al. A novel role for the transcription factor HIF-1alpha in the formation of mast cell extracellular traps.
Biochem ] 446, 159-163 (2012).

Campillonavarro, M. et al. Listeria monocytogenes induces mast cell extracellular traps. Immunobiology 222, 432 (2017).

Liu, H. et al. Mast cell degranulation in a novel fungus concentration-dependent rat model for acute invasive fungal rhinosinusitis.
Pathology 46, S75-S75 (2014).

Burns, A, Liu, Q, Li, Z. & Smith, C. Mast Cells and the Inflammatory Response to Corneal Epithelial Abrasion. Invest Ophthalmol
Vis Sci 54, 3912 (2013).

Lee, J. E. et al. Inhibition of Corneal Inflammation by the Resolvin E1. Invest Ophthalmol Vis Sci 56, 2728-2736 (2015).

Leal, S. M. et al. Fungal antioxidant pathways promote survival against neutrophils during infection. J Clin Invest 122, 2482-2498
(2012).

Doyle, M. P, Linden, J. & Duling, B. R. Nucleoside-induced arteriolar constriction: a mast cell-dependent response. Am ] Physiol
266, 2042-2050 (1994).

Jakobsson, A. E. Angiogenesis induced by mast cell secretion in rat peritoneal connective tissue is a process of three phases.
Microvasc Res 47, 252-269 (1996).

Rizzo, V. & DeFouw, D. O. Mast cell activation accelerates the normal rate of angiogenesis in the chick chorioallantoic membrane.
Microvasc Res 52, 245-257 (1996).

Strbian, D, Karjalainen-Lindsberg, M. L., Kovanen, P. T, Tatlisumak, T. & Lindsberg, P.]. Mast cell stabilization reduces hemorrhage
formation and mortality after administration of thrombolytics in experimental ischemic stroke. Circulation 116, 411-418 (2007).
Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat rev Immunol 13, 159-175
(2013).

Gagen, D. et al. ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the
mouse. Exp Eye Res 91, 676-684 (2010).

SCIENTIFICREPORTS | (2018) 8:8365 | DOI:10.1038/s41598-018-26798-3 10



www.nature.com/scientificreports/

47. Wilgus, T. A, Roy, S. & McDaniel, J. C. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care
2,379-388 (2013).

48. Oka, T., Kalesnikoff, J., Starkl, P, Tsai, M. & Galli, S. J. Evidence questioning cromolyn’s effectiveness and selectivity as a ‘mast cell
stabilizer’ in mice. Lab Invest 92, 1472-1482 (2012).

49. Huang, M., Pang, X., Karalis, K. & Theoharides, T. C. Stress-induced interleukin-6 release in mice is mast cell-dependent and more
pronounced in apolipoprotein E knock-out mice. Cardiovasc Res. 59, 241-249 (2003).

50. Zhang, Hongmin et al. Effects of immunocyte on the process of fungal keratitis. Chin ] Exp Ophthalmol 30, 779-784 (2012).

Acknowledgements

This study was supported by National Natural Science Foundation of China (81270991, 81670827), the Scientific
and Technological Project of Henan Province (132102310087, 162300410118), the Scientific and Technological
Project of Zhengzhou (20150213).

Author Contributions
LYW, HM.Z, Y.T.X. designed the research, Y.T.X., S.S.L., G.M.C,, S.Y.H. and Z.J.L. conducted the experiments,
LYW, HM.Z, Y.TX. and Z.].L. analyzed the results, H.M.Z. and Y.T.X. wrote the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

2 License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

SCIENTIFICREPORTS | (2018) 8:8365 | DOI:10.1038/s41598-018-26798-3 11


http://creativecommons.org/licenses/by/4.0/

	Mast Cell Activation Protects Cornea by Promoting Neutrophil Infiltration via Stimulating ICAM-1 and Vascular Dilation in F ...
	Results

	Connective tissue mast cells were observed to be located in the corneal limbus. 
	MCs were largely activated in fungal keratitis. 
	Mast cell degranulation stimulated vessels dilation in corneal limbus. 
	Mast cell degranulation increased ICAM-1 expression. 
	Mast cell degranulation promoted neutrophil infiltration. 
	Mast cell activation was related to clinical and pathological process of fungal keratitis. 

	Discussion

	Materials and Methods

	Animals. 
	Mast cell stabilization and the FK model. 
	Corneal clinical score and confocal microscopy. 
	Histologic preparations. 
	Observation of Flat-Mounted Cornea. 
	Vessel diameter and Limbal Vascular permeability. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Connective tissue mast cells were verified in cornea.
	Figure 2 Mast cells were activated by fungal irritation.
	Figure 3 Vessel dilation and neutrophils infiltration were suppressed by blocking of mast cell degranulation.
	Figure 4 Blocking of mast cell degranulation depressed vessel changes, ICAM-1 expression and neutrophils infiltration.
	Figure 5 Mast cells activation decreased peroration rates.
	Figure 6 Effects of mast cell activation on corneal histopathology and hyphae.




