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Abstract: Fish viral diseases represent a constant threat to aquaculture production. Thus, a better
understanding of the cellular mechanisms involved in establishing an antiviral state associated with
protection against virus replication and pathogenesis is paramount for a sustainable aquaculture
industry. This review summarizes the current state of knowledge on five selected host innate immune-
related genes in response to the most relevant viral pathogens in fish farming. Viruses have been
classified as ssRNA, dsRNA, and dsDNA according to their genomes, in order to shed light on
what those viruses may share in common and what response may be virus-specific, both in vitro
(cell culture) as well as in vivo. Special emphasis has been put on trying to identify markers of
resistance to viral pathogenesis. That is, those genes more often associated with protection against
viral disease, a key issue bearing in mind potential applications into the aquaculture industry.
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1. Introduction

Following virus challenge, fish mount an early antiviral response by activating the
innate immune system [1–3] and later on another response takes place in the way of
antibody production [4,5] and cytotoxic T-cell immunity [6]. Here, the focus will be set on
the activation of five genes in the interferon pathway that could be regarded as the most
relevant in the response to viral infection in fish. The five selected genes are the most widely
reported virus-induced genes associated with antiviral activity in fish: type I interferon
(ifn) [7] the myxovirus resistant protein (mx) [8], the interferon stimulated gene 15 (isg15) [9],
viperin (also named vig, rsda2) [10], and the grass carp reovirus induced gene (gig) [11].

Interferons (IFN) are secreted proteins in the range of 20–23 KDa. After binding to a
receptor on the cell membrane, they activate a number of cellular pathways that ultimately
lead to the transcriptional activation of the interferon-stimulated genes (ISGs) [7]. Two
types of interferons have been found in teleost fish: type I and type II [12,13]. In this work,
the term interferon (ifn) will refer to type I interferons (IFNα and IFNβ).

Mx proteins (60–70 KDa) belong to the superfamily of interferon-induced GTPases.
Mx genes are highly polymorphic, with three Mx isoforms (Mx1, Mx2, Mx3) in salmonids
and perciforms, and up to seven isoforms (MxA to MxG) in zebrafish [8]. ISG15 is a highly
conserved ubiquitin-like protein (15 KDa) with antiviral activity [9,14]. Originally reported
as a VHSV-induced gene (vig) in rainbow trout leukocytes [15,16], Viperin (42 KDa) is one
ISG with direct antiviral activity [10]. Unlike the other four antiviral genes that are present
in all vertebrates, Gig proteins are specific for fish. They display good antiviral activity and
may be induced both in an ifn-dependent as well as an ifn-independent way [11].

There is an extensive body of literature on the activation of the innate immune response
following viral infection of fish. A fair number of reviews have covered this subject, focusing
either on one specific virus or one fish species [17–19]. A large portion of the data available
on fish immune response against viral infection has been drawn from studies conducted
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on cyprinid and salmonid fish species. This is not surprising, since carp and salmon are
arguably amongst the most widely cultivated fish species globally [20]. Thus, specific
sections dealing with those two groups of fish will be presented, while other fish will be
discussed together in a separate section. “Other fish” will mainly refer to orders Perciformes
(i.e., sea bass, sea bream, tilapia) and Pleuronectiformes (flat fish species).

2. ssRNA Viruses

Viruses with single-stranded RNA (ssRNA) genomes comprise the largest number of
viruses reported to cause disease in farmed fish, including long time known pathogens of
carp (spring viremia of carp virus, SVCV) and pathogens affecting salmon such as salmon
infectious hematopoietic necrosis virus (IHNV), infectious salmon anemia virus (ISAV),
salmonid alphavirus (SAV), and viral hemorrhagic septicemia virus (VHSV) (Table 1).

Table 1. Viruses cited in this work.

ssRNA Name Acronym Main host

Amnoonviridae Tilapia lake virus TiLV Tilapia
Nodaviridae Nervous necrosis virus NNV Perciformes

Orthomyxoviridae Infectious salmon anemia virus ISAV Salmonid
Rhabdoviridae Hirame novirhabdovirus HIRRV Salmonid

Infectious hematopoietic necrosis virus IHNV 1 Salmonid
Spring viremia of carp virus SVCV Cyprinid

Viral hemorrhagic septicemia virus VHSV 2 Salmonid
Togaviridae Salmonid alphavirus SAV Salmonid

dsRNA

Birnaviridae Infectious pancreatic necrosis virus IPNV Salmonid
Reoviridae Chum salmon reovirus CSV Salmonid

Grass carp reovirus GCRV Cyprinid
Piscine reovirus PRV Salmonid

Totiviridae Piscine myocarditis virus PMCV Salmonid

dsDNA

Herpesviridae Channel catfish virus (Ictalurid herpesvirus) CCV Ictalurid
Cyprinid herpesvirus CyHV Cyprinid

Iridoviridae Infectious spleen and kidney necrosis virus ISKNV S. chuatsi
Lymphocystis disease virus LCDV Sea bream, sole

Rock bream iridovirus RBIV O. fasciatus
1 Salmonid novirhabdovirus; 2 Piscine novirhabdovirus.

2.1. ssRNA Virus Infection of Cyprinid Fish

Rhabdoviruses are arguably one of the viral families with greater impact on farmed
fish. With respect to cyprinid species, SVCV is the most widely spread viral pathogen [21].
SVCV has been shown to be a powerful inducer of ifn expression in carp cells [22,23].
Likewise, the up-regulation of ifn gene expression by SVCV infection has been found in
zebrafish cells [24–26]. Also in SVCV-infected zebrafish cells, mx gene transcription appears
to be activated as early as 1hpi [27], suggesting an interferon-independent stimulation of
mx in this case. In some instances, even an abortive infection with a fish rhabdovirus can
lead to higher ifn and mx expression in cultured cells [28]. The stimulation of the vig/viperin
gene expression has been reported in SVCV-infected cells [29–32]. SVCV infection has been
also shown to up-regulate the transcription of the gig gene and the synthesis of GIG protein
in zebrafish cells [33].

Along with the in vitro studies on cell culture, the in vivo interferon response of fish
to rhabdoviruses has been largely examined in a number of cyprinid fish species. Increased
levels of ifn and mx gene expression have been reported in carp and goldfish infected with
SVCV, not only in internal organs, but also in skin [34–37].
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Although not an aquacultured species, zebrafish (also a cyprinid fish) has been an
extensively employed experimental model to investigate innate immune response to rhab-
doviruses [38–40]. Overall, there is ample evidence of SVCV being a powerful inducer
of all five genes (ifn, mx, isg15, vig/viperin, and gig) in zebrafish and carp [24,26,32,41–43].
Interestingly, in SVCV-infected zebrafish, some isoforms of the mx gene had their expression
increased while other isoforms seemed to be down-regulated [25,44]. In contrast, none of
the four zebrafish ifn genes were induced in larvae challenged with IHNV [45], which is
suggestive of significant differences in the innate immune response between the larvae and
adult state in fish. In fact, infections with IHNV and SVCV do trigger ifn expression in adult
zebrafish [46]. Moreover, the levels of mx expression remain high in zebrafish that survived
a VHSV challenge [38]. The stimulation of mx gene expression appeared particularly high
in the gills [27] and liver [40] of the infected fish. Ifn expression was high in the kidney,
whereas vig/viperin gene expression was found up-regulated in every tissue [47].

2.2. ssRNA Virus Infection of Salmonid Fish

SsRNA viruses are good inducers of ifn response in salmon cells [48]. Regarding
the timing of gene expression, interferon-stimulated genes would be expected to be up-
regulated after interferon induction, but that does not seem to be always the case. For
instance, in salmon cells infected with ISAV, a peak of isg15 at 24 hpi is followed by high
ifn expression at 48 hpi [49]. In contrast, a delayed (5dpi) up-regulation of both ifn and mx
genes in SAV-infected salmon cells have been reported [50].

Infection with a virulent strain of VHSV provokes the transcriptional activation of ifn
and mx in rainbow trout [51]. The ex-vivo transfection of rainbow trout red blood cells
(RBCs) with a G-VHSV plasmid DNA vaccine has been reported to trigger mx expres-
sion [52]. The up-regulation of mx gene expression (with up to 1700-fold increment in
liver) has been reported in salmonid fish infected by IHNV [53–56], as well as in salmon
displaying clinical signs but not experiencing mortality [57]. ISAV infection of salmon
also leads to increasing ifn and mx levels, albeit at later times (not until 6–8 days post
challenge) [58,59]. This may be one of the cases where the innate response would be more
a consequence of the ongoing viral replication rather than an early antiviral response of
the fish, something that has been also suggested in IHNV-infected salmon [55]. Similar
to viral infections of carp, the up-regulation of gig or gig-like gene expression has been
reported in ISAV-infected salmon [60]. The transcriptional activation of gig along with that
of mx and vig/viperin has been observed in salmon between 2 and 4 weeks after challenge
with SAV [61–63].

2.3. ssRNA Virus Infection of Other Fish

Many species of fish other than cyprinid and salmonid fish are known to be susceptible
to ssRNA virus infections, also displaying a subsequent activation of the interferon pathway.
In Pleuronectiformes (flatfish species), a potent induction of ifn and mx gene expression
have been detected after challenge with rhabdoviruses HIRRV (hirame novirhabdovirus)
and VHSV [64–68], with up to 16.000-fold increment of ifn levels at day 3 after VHSV
infection. Likewise, high RNA expression levels of mx has been measured in the kidney
and spleen of VHSV-infected perch [69].

Nodaviruses pose a major threat to cultured marine fish worldwide, particularly
perciforms species. Nervous necrosis virus (NNV)-infected seabass displays strong ifn, mx,
and isg15 responses in 6–12 h both in the kidney and brain [70,71]. The up-regulation of mx
has been reported in barramundi brain cells persistently infected with nodavirus [72,73].
On this regard, the capsid protein of nodaviruses has been pointed out to be a strong
inducer of innate immune genes transcription [74].

Both ifn and mx responses have been detected in tilapia lake virus (TiLV)-infected
tilapia and zebrafish larvae [75,76].
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3. dsRNA Viruses and Poly I:C

The Birnaviridae and Reoviridae families of viruses with double-stranded RNA
(dsRNA) genomes include two very important fish pathogens such as grass carp reovirus
(GCRV) and IPNV (Table 1). DsRNA has been recognized as one molecular pattern sensed
as “strange” by the cell. Thus, dsRNA is regarded as a very effective inducer of the innate
immune cell response. In particular, the synthetic dsRNA polyinosinic-polycytidylic acid
(poly I:C) has been so widely used to study the cell response to dsRNA that it deserves an
inclusion in this section along the response to actual dsRNA viruses.

3.1. dsRNA Virus Infection and polyI:C in Cyprinid Fish

Poly I:C consistently induces a rapid and strong interferon response in carp and
zebrafish cells [22,23,25,26,29,77]. Mx RNA levels increased significantly following epithe-
lioma papulosum cyprini (EPC) cells treatment either with poly I:C or with conditioned
medium from cells treated with poly I:C [78]. As proof that it is a good virus mimic,
poly I:C has been shown to be an effective inducer of gig and vig/viperin gene expression
in vitro [10,33,79]. It is worth mentioning that the gig gene was discovered precisely in
reovirus-infected cells [11].

The infection of zebrafish cells with GCRV led to an increase in mx gene expression
levels over 100-fold [27]. Notably, fish reoviruses have the remarkable capacity of induc-
ing interferon and interferon-mediated response even when the viral particle has been
inactivated [7,11,80,81], which is suggestive that the input of dsRNA may be sufficient to
trigger the cell response without the need of viral replication. High transcription levels
of mx that correlated with the production of interferon-like activity in supernatants of
birnavirus-infected cyprinid fish cells has also been reported [82,83].

In vivo, poly I:C has been most frequently delivered to fish by intraperitoneal (i.p.)
injection. The transcriptional activation of ifn and mx genes in head kidney following i.p.
injection of poly I:C has been determined in a zebrafish model [84] with a peak of expression
after 48 h [85]. Intramuscular injection has also been proven effective in triggering a host
response to poly I:C in cyprinid fish [86].

GCRV infection elicits a transcriptional activation of mx and isg15 in the spleen and
kidney of carp, with the more virulent strains being the more potent inducers [87,88].
Following GCRV infection of goldfish, ifn RNA levels were particularly high in the skin [37].
This finding would be an indication that epithelial tissues may have been overlooked in
the study of the immune response in fish.

3.2. dsRNA Virus Infection and polyI:C inSalmonid Fish

Many viruses of salmonid fish have been shown to be inhibited in some degree by the
treatment (usually prior to infection) of the cells with poly I:C. Depending on the particular
cell line, cells can be simply exposed to the synthetic dsRNA, whereas in some other cases a
transfection reagent was required for poly I:C to enter the cells and exert the antiviral effect.
The latter is the case of the rainbow trout gill (RTgill) cell line where ifn gene expression
was significantly increased after poly I:C transfection [89]. In salmon, chinook salmon
embryo cells (CHSE-214) cells transfection is also required for poly I:C to trigger ifn, mx
and vig/viperin transcription [90,91]. In other salmonid cell lines, simple exposure to poly
I:C is sufficient to induce mx gene expression [92]. Taken together, these studies support
the notion that a robust ifn/mx response would be the main factor underlying the antiviral
state induced by poly I:C.

Some authors have investigated the molecular weight-dependent activity of poly I:C,
finding that high molecular weight (HMW) poly I:C is a stronger inducer of mx than the
low molecular weight (LMW) poly I:C in rainbow trout gonad (RTG-2) cells [93]. This
was somehow expected since the HMW poly I:C is closer to the size of the viral dsRNA
genomes. Indeed, viral dsRNA isolated from reovirus-infected cells has been proven an
effective inducer of interferon [94].
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Further support for the poly I:C treatment accurately mimicking viral infection in vitro,
the birnavirus IPNV has been proven to be good inducer of antiviral genes (ifn and mx)
in cells where IPNV can establish a productive infection [56,95]. Likewise, transcriptional
activation of mx has been observed in rainbow trout cells infected with chum salmon
reovirus (CSV) [96]. Interestingly, in the abortive infection of rainbow trout RBCs with
IPNV, still ifn and mx gene expression was found up-regulated [97].

Considering the strong antiviral effect of poly I:C in cell culture, it is not surprising
to find in the literature a number of attempts to prove the antiviral activity of poly I:C
in the whole fish, with reports of successful application of poly I:C in VHSV-challenged
fish [84,98]. It is worth mentioning that previous poly I:C inoculation resulted in higher
anti-VHSV antibody production in flounder [98].

In piscine reovirus (PRV)-infected salmon, higher levels of ifn, mx, isg15, and vig/viperin
genes expression have been determined [57,99]. PRV is one virus capable of establishing
productive infection in RBCs where it triggers a rapid (as early as 1dpi) ifn response
followed by a peak of mx expression [100].

The birnavirus IPNV has been a classic model of dsRNA virus infection in salmonids.
Several authors have demonstrated that the RNA levels of ifn, mx, and gig genes were
increased in salmon fish challenged with IPNV [59,101–103].

The less studied piscine myocarditis virus (PMCV) also induces a response in infected
salmon that is highlighted by the overexpression of the antiviral gene vig/viperin [104].

3.3. dsRNA Virus Infection and poly I:C in Other Fish

Other groups of teleost fish respond to poly I:C stimulation in a similar way to
that of cyprinid and salmonid fish. Catfish cell lines exhibit a rapid (in only 6 h after
stimulation) up-regulation of ifn, mx, and isg15 after exposure to poly I:C both in vitro and
in vivo [105,106]. In vivo, i.p. injection of poly I:C also correlates with increased mx and
isg15 levels in rock bream and large yellow croaker [107,108].

Regarding the response to a dsRNA virus challenge, bluegill (Lepomis machrochirus)
cells infected with infectious pancreatic necrosis virus (IPNV) show increased levels of ifn
and mx from early times of infection [95].

There is a limited number of studies on fish other than cyprinids and salmonids. In one
rare example on IPNV infection in cod causing death, the induction of isg15 following IPNV
challenge has been reported [9]. In birnavirus-infected flounder, mx was overexpressed at
the transcriptional level [109].

4. DNA Viruses

Like ssRNA and dsRNA, a pathogen–derived dsDNA can be sensed as “strange” by
cell pattern recognition receptors and mount a reaction to that exogenous molecule [110].
The two major groups of fish DNA viruses are the Iridoviridae and Herpesviridae families.

The iridovirus LCDV (lymphocystis disease virus) activates mx gene expression in
Senegalese sole [111] as well as other cytokines. High Mx protein levels in RBIV-infected
turbot have been also reported [112]. In contrast, neither ifn nor mx mRNA levels were
increased in sea bream infected with LCDV [113]. The activation of mx transcription has
also been observed in mandarin fish challenged with infectious spleen and kidney necrosis
virus (ISKNV) [114].

In herpesvirus-infected carp, the interferon response shows a good correlation with
viral loads [47,115]. In any case, the innate immune response of fish to herpesviruses seems
to be variable. While ifn expression levels did not show significant differences in cyprinid
herpesvirus (CyHV)-infected carp [116], stimulation of mx transcription did occur in catfish
infected with channel catfish virus (CCV) [106].

5. Comparative Summary of ssRNA, dsRNA and DNA Viruses

Molecular patterns associated to pathogens are recognized by the cell pattern recog-
nition receptors. One group of receptors with a decisive role in sensing foreign ssRNA,
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dsRNA, or DNA are the toll-like receptors (TLRs). In fish as well as in other vertebrates,
while TLR9 recognizes pathogen DNA, TLR3 is the receptor for foreign dsRNA, and both
TLR7 and TLR8 would sense viral ssRNA [117].

Overall, from the available information in the literature, it can be concluded that ssRNA
viruses and dsRNA viruses elicit a rather similar host innate immune response (Table S1).
Discrepancies come up when comparing RNA and DNA viruses. Whereas the majority
of the RNA viruses reviewed in the previous sections replicate in the cytoplasm, the life
cycle of many DNA viruses requires the cell nucleus. Although there are exceptions to this
principle (i.e., orthomyxoviruses such as ISAV with nuclear transcription and replication),
it can be taken as a rule of thumb. Thus, for a given virus, having either a nuclear or a
cytoplasmic life cycle may result in differences regarding the modulation of the innate
immune response within the infected cell. The transcriptional activation of vig/viperin gene
was first found only in RNA virus-infected fish, but later on the up-regulation of vig/viperin
in iridovirus-infected fish was also reported [118,119]. Recently, microarray analysis has
revealed the stimulation of gig in salmon infected with a poxvirus, in addition to mx, isg15,
and vig/viperin [120].

As a general rule, RNA viruses tend to activate the transcription of a wider number of
antiviral genes, while the response to DNA viruses seems restricted to fewer genes (Table 2).
Four of the key innate immune genes (ifn, mx, isg15, vig/viperin) appear to be up-regulated
by almost every RNA virus studied. In studies conducted with both types of viruses,
differences between RNA and DNA viruses have been reported. For instance, in carp cells,
the herpesvirus CyHV seems to be a poor inducer of interferon compared to SVCV [22].
This lack of IFN stimulation upon CyHV challenge has been verified in vivo [121].

Table 2. Innate immune genes ifn, mx, isg15, vig/viperin, and gig stimulation by viruses of teleost fish.

ssRNA CYPRINIFORMES SALMONIFORMES OTHERS

TiLV ifn, mx
NNV mx ifn, mx, isg15
ISAV ifn, mx, isg15, gig
IHNV ifn ifn, mx, vig
SVCV ifn, mx, vig, isg15, gig
VHSV ifn, mx, vig ifn, mx, isg15 ifn, mx
SAV ifn, mx, vig, gig

dsRNA/polyIC CYPRINIFORMES SALMONIFORMES OTHERS

poly I:C ifn, mx, vig, gig ifn, mx, vig ifn, mx, isg15
IPNV mx ifn, mx, gig ifn, mx, isg15
CSV mx

GCRV ifn, mx, isg15
PRV ifn, mx, isg15, vig

PMCV vig

dsDNA CYPRINIFORMES SALMONIFORMES OTHERS

CCV mx
ISKNV mx
LCDV mx
RBIV mx, isg15, vig

With respect to poly I:C compared to viral RNA, some differences have been found as
well regarding the cell response. In salmon TO cells, while poly I:C stimulation triggers first
ifn gene expression followed hours later by an increase of mx RNA levels, ISAV infection
resulted in a rapid overexpression of mx and isg15 genes followed by a late induction of ifn
gene expression [122]. In some instances, the differences are related to the specific isoform
of the gene that is activated; in rainbow trout, while poly I:C stimulated mx3 expression,
VHSV induced mx1 and mx2 [123].
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6. Correlation between Up-Regulation of Innate Immunity Genes and Protection from
Viral Infection and Disease

As previously discussed, there is ample support for the activation of innate immune
genes after viral challenge in farmed fish species. Now the key question is: Does it really
matter? Does the interferon-mediated response guarantee protection against disease,
limiting morbidity and ensuring fish survival? Let us evaluate the evidence.

One point that should be underscored in the first place: a robust interferon response
does not necessarily mean survival to virus infection. SVCV is a potent inducer of interferon
and Mx in carp cells, but the outcome after exposure to SVCV is the death of the infected
cells nevertheless [22,124]. This situation has been confirmed in vivo, with high ifn and mx
induction but also high mortality in SVCV-infected zebrafish [124,125]. The transcriptional
induction of the mx gene is considered a hallmark of the antiviral response in fish. Challenge
with a virulent strain of VHSV leads to high interferon and mx induction but also high
mortality in infected rainbow trout [51]. Thus, in some virus-host situations, a potent
ifn response would be more the result of increasing viral replication rather than an early
mechanism of antiviral defense [55]. Salmonid fish cell lines such as RTG-2 have shown
good responsiveness to VHSV infection. Interestingly, the low pathogenic strains of VHSV
exhibit the higher stimulation capacity of mx gene expression, leading to the hypothesis
that the highly pathogenic VHSV strains would be somehow able to restrict mx expression
at least in vitro [126].

In contrast to viral infections in the whole fish, the transfection of cultured fish cells
with plasmids encoding interferon or other interferon-stimulated antiviral genes has been
usually successful in halting viral replication [14,36,80]. In one case, the inhibition was
achieved by the overexpression of the antiviral gene gig in carp cells infected with the
reovirus GCRV [80]. Conditioned medium from cells producing interferon has been in some
instances capable of blocking viral (SVCV and GCRV) replication in cell culture [37,77], evi-
dencing the synthesis and release of antiviral factors to the medium by the transfected cells.

Poly I:C has consistently demonstrated its capacity to protect (either completely or
partially) cells from the virus-induced cytopathic effect. Examples of the antiviral activity
of poly I:C are found in rainbow trout cells infected with VHSV [89,94,127], salmon cells
infected with IPNV [90], and sea bream cells infected with birnavirus [128]. In contrast,
poly I:C was not so successful in blocking nodavirus replication in grouper cells [129]. The
same antiviral effect can be induced by in vitro synthesized dsRNA [79] or with isolated
viral dsRNA [94]. The novel CRISPR/Cas genome-editing tool is currently assisting in
the elucidation of the detailed mechanism underlying poly I:C induced antiviral effect, by
knocking out candidate genes along the interferon pathway one by one [130–132].

The protective effect of poly I:C has been corroborated in vivo in zebrafish intraperi-
toneally injected with poly I:C and challenged with VHSV [85]. However, it appeared to be
more a delay in virus-induced pathogenesis and mortality than actual protection [84]. In
olive flounder, a drastic decrease of VHSV-induced mortality can be achieved by poly I:C
administered intraperitoneally [133]. In a similar way, RBIV iridovirus replication in rock
bream was inhibited by i.p. injection of poly I:C [107].

Intramuscular injection of turbot with a plasmid encoding interferon reduced the
mortality caused by VHSV from 100% to 47%, in conjunction with a 200-fold up-regulation
of mx gene expression in muscle [67]. Additionally, the high transcriptional levels of
mx found in zebrafish survivors of a VHSV challenge may be associated with their high
resistance to a second VHSV infection [38], although in this case the role of the adaptive
immune response should not be neglected. In contrast, the injection of a mx gene encoding
plasmid into turbot did not appear to induce any degree of protection against RIBV [112].
Correlation between higher interferon production and resistance to IPNV has been reported
in Atlantic salmon [102]. However, the higher levels of mx and other interferon stimulated
genes in IPNV-infected salmon may just be a result of the higher viral replication in
susceptible fish [103]. Likewise, in SVCV-infected carp, a stronger interferon response was
directly correlated with higher viral loads [47]. In contrast, zebrafish rag −/− mutants
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defective in adaptive immune response have been used to associate higher innate immune
response with less susceptibility to SVCV infection [134].

Evidence in favor of the protective efficacy of the innate response has been found by
analyzing the susceptibility to viral disease of selected populations of fish, where genetically
resistant individuals seemed to exhibit a stronger innate immune response [135–137]. In
some other instances, however, up-regulation of ifn, mx, and vig/viperin was associated with
acute infection [55]. In tilapia infected with TiLV, higher mx response did not correlate with
reduced infection [75].

Overall, the real protective effect of a strong ifn/ifn-induced gene response in vivo
remains inconclusive, although there is a body of evidence pointing to the fact that a
natural endogenous innate immune response would not suffice to stop virus spread in
the organism.

7. Final Remarks

In the last decade, a large body of knowledge on the innate immune response in teleost
fish has been built up by researchers on viral diseases of fish. The question is how the fish
farming industry can benefit from all this available information.

As a starting point of thinking, viruses exist because they “learned” how to overcome
the natural host immune response, reaching a situation where the production of interferon
and other antiviral proteins become ineffective against virus replication within the host.
However, that does not necessarily mean that viruses would prevail against a human-
engineered, enhanced immune response elicited by a specific treatment or vaccine. There-
fore, when thinking on prophylactic measures, we should not only focus on improving the
capacity of producing neutralizing antibodies, but rather on triggering a rapid and robust
antiviral state in the fish by means of the innate immune system. The experimental results
reviewed in here indicate that the latter may be feasible. However, first there are some
issues that will have to be sorted out. For instance, little information is available on the
duration of the antiviral effect established through the interferon and related pathways.
This is a key factor, since a long-lasting exacerbated innate response could be deleterious to
the fish. Therefore, a novel way of thinking is that protection against disease in the long
term might come from the more durable epigenetic changes in the host chromatin [41,137],
resulting in a faster and enhanced response upon a second pathogen invasion.

Better understanding of the key responders to viral infection will boost the advance-
ment of fish vaccinology. In that regard, the knowledge on some lesser-known areas such
as mucosal immunity should be expanded. The use of omics techniques will contribute
to provide an unbiased and comprehensive picture and may lead to the discovery of new
players in the virus-host interplay. With such a multiplicity of factors playing a part in
viral pathogenesis (e.g., species susceptibility, genetic variability among fish individuals,
age/size of fish, water temperature, and virulence of viral isolates), establishing clear
cut patterns is not going to be an easy task. This could be further complicated by the
emergence of novel aquatic viruses under changing climatic conditions and increasing sea
water temperatures in the coming years.
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