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Lossy compression of statistical 
data using quantum annealer
Boram Yoon1*, Nga T. T. Nguyen2, Chia Cheng Chang3,4,5,6 & Ermal Rrapaj4

We present a new lossy compression algorithm for statistical floating-point data through a 
representation learning with binary variables. The algorithm finds a set of basis vectors and their 
binary coefficients that precisely reconstruct the original data. The optimization for the basis vectors 
is performed classically, while binary coefficients are retrieved through both simulated and quantum 
annealing for comparison. A bias correction procedure is also presented to estimate and eliminate 
the error and bias introduced from the inexact reconstruction of the lossy compression for statistical 
data analyses. The compression algorithm is demonstrated on two different datasets of lattice 
quantum chromodynamics simulations. The results obtained using simulated annealing show 3–3.5 
times better compression performance than the algorithm based on neural-network autoencoder. 
Calculations using quantum annealing also show promising results, but performance is limited by the 
integrated control error of the quantum processing unit, which yields large uncertainties in the biases 
and coupling parameters. Hardware comparison is further studied between the previous generation 
D-Wave 2000Q and the current D-Wave Advantage system. Our study shows that the Advantage 
system is more likely to obtain low-energy solutions for the problems than the 2000Q.

Today’s scientific computing and experiments often produce petabytes of floating-point data that need to be 
stored for post-processing or transferred to different computing centers. For example, modern lattice quantum 
chromodynamics (QCD) simulations targeting accurate precision generate O(PB) of data1,2 and store the data on 
storage systems for long-term analysis. In many applications, only a few significant figures of the stored data are 
required for the analysis, so lossy data compression algorithms are considered as viable approaches to reducing 
the data storage requirement and increasing the effective bandwidth for data movement.

Various lossy data compression algorithms recently proposed for floating-point arrays of scientific data 
include ISABELA3, ZFP4, SZ5–7, and NUMARCK8. ISABELA provides in-situ compression based on interpola-
tion using B-splines9 after sorting multidimensional scientific data. ZFP uses block transformation for decor-
relation and bit-plane encoding for a fixed-rate lossy compression. SZ is an error-bounded lossy compression 
algorithm based on fitting and predicting the successive data points. NUMARCK achieves the data compression 
by approximating the temporal changes using the K-means data clustering algorithm10.

For statistical data, it is possible to detect the correlation pattern of the data components using machine 
learning techniques and exploit the learned correlation for efficient lossy data compression. An example is the 
approaches based on the autoencoder11–13. Unsupervised machine learning techniques allow us to find efficient 
codings of the input data. They work as data compression algorithms since the coding is typically a lower-
dimensional representation of the original data. The compression performance of the representation learning can 
be maximized by restricting the codes to be binary variables so that each code can be stored in a bit. However, 
an encoder with binary codes generally involves binary optimization for finding the optimal codes, which is an 
NP-hard problem.

Quantum annealing is an approach to solving such optimization problems using adiabatic quantum computa-
tion (AQC). In contrast to the gate model quantum computation14,15, AQC performs an adiabatic time evolution 
from a ground state of a simple initial Hamiltonian to the state of the final Hamiltonian of the target problem16–18. 
When the Hamiltonian is evolved sufficiently slowly, the adiabatic theorem guarantees that the state remains in 
the ground state of the instantaneous Hamiltonian. Quantum annealing is AQC with a relaxation of the adiabatic 
condition in an open system at finite temperature19. It solves combinatorial optimization problems using the 
quantum effect tunneling through barriers between local minima20–23. Although its ability to demonstrate the 
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quantum speedup over classical computation is still controversial24, quantum annealing has been successfully 
applied to various NP-hard and NP-complete problems25–29.

The quantum processor of the D-Wave systems realizes the quantum annealing to find low-lying energy states 
of the target Ising Hamiltonian starting from the transverse field Hamiltonian30. In general, the quantum anneal-
ing will require an exponentially large number of samples in order to recover the most optimal solution to large 
binary optimization problems. However, the annealing time for each sample takes only O(10) microseconds. 
Furthermore, we show in this work that low-energy solutions, which can be obtained from only a small number 
of samples, are sufficient for our proposed sparse coding compression algorithm.

In this paper, we propose a new data compression algorithm based on a representation learning. For a 
maximum compression, we use binary codes, and formulate the problem in a quadratic unconstrained binary 
optimization (QUBO) form so that it can be solved on Ising solvers such as the D-Wave quantum annealer, as 
described in “Method” section. As a result, the algorithm guarantees the compression ratio while optimizing for 
the smallest loss. We also present a bias correction procedure that removes the bias and estimate the errors due 
to the inexact reconstruction from the lossy-compressed statistical data. In “Numerical experiments” section, 
the proposed compression algorithm is demonstrated for two different lattice QCD datasets using simulated 
annealing, and D-Wave’s 2000Q and the Advantage System.

Method
Data compression.  The goal of this algorithm is to find a matrix φ ∈ R

D×Nq and binary coefficients 
a
(k) ∈ {0, 1}Nq that precisely reconstruct the input vectors X(k) ∈ R

D such that X(k) ≈ φa(k) for all data index 
k = 1, 2, 3, . . . ,N . The procedure defines a mapping from X-space to a-space:

Here the coefficients in the a-space are restricted to binary variables so that it can be stored in a single bit. Addi-
tionally, we restrict Nq ≪ N so that the memory usage of φ is comparatively small to the uncompressed data, 
which for high-statistics datasets where compression is necessary is of N � O(104) . As a result, the data in a
-space uses less memory space than those in X-space, and results in data compression.

One possible solution of the mapping ( {a(k)} and φ ) can be obtained by minimizing the mean square error 
of the reconstruction as following:

When the underlying data exhibits heteroskedasticity, a weight factor of inverse variance, 1/σ 2
Xi

 , needs to be 
multiplied to each term of the least-squares loss function to avoid the algorithm focusing on the reconstruction 
of the large-variance components of the input vector and to make the reconstruction error uniform. The same 
effect can be achieved by standardizing the input data X in the data preparation. The resulting optimization 
problem is mapped to a QUBO

through the transformation given below:

Note that structure of the transformation is similar to the one used in sparse coding31–33, but the compression 
algorithm does not require the constraints 

[

φTφ
]

i
= 1 , placed in the sparse coding.

After obtaining the solution of a(k) for a given φ , we update φ using stochastic gradient decent on a classical 
computer. The optimizations for a(k) and φ are iterated until they reach to a stationary solution. The procedure 
can be summarized as following. 

(1)	 Initialize {a(k)} and φ with random numbers or initial guesses.
(2)	 Take a random mini-batch of size Nb from the N samples of X(k).
(3)	 Within the mini-batch, fix φ and find {a(k)} that minimizes Eq. (2).
(4)	 Within the mini-batch, fix {a(k)} and update φ towards the optimum solution of Eq. (2) with a learning rate 

η.
(5)	 Repeat (2)–(4) until it reaches the minimum reconstruction error.

Here the mini-batch size Nb and the learning rate η control the convergence of the algorithm.

Bias correction.  In many scientific applications, such as the Monte Carlo simulations, our major concern is 
the expectation value of a function of the statistical variables 〈f (X)〉 . With the samples X(k) , the expectation value 
is usually estimated by a simple average over k. When using the compressed data in a-space, however, the lossy-
compression introduces reconstruction error X(k)  = φa(k) ≡ X̃

(k) . As a result, a simple average 1N
∑N

k=1 f (X̃
(k)) 

as an estimator of 〈f (X)〉 is biased.

(1)
{
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An unbiased estimator ŌBC can be defined by using a small portion of the original data X(k):

Here the first term on the right hand side is a sloppy estimator of 〈f (X)〉 , and the second term is a bias correction 
term that makes the estimator satisfy �ŌBC� = �f (X)� . Note that in the second term, we use the first Nbc samples 
out of total N samples as a bias correction dataset, assuming the data samples are independent and identically 
distributed. Depending on the data characteristics, however, one could take the maximally separated or randomly 
chosen Nbc samples for the bias correction dataset.

In addition to the {a(k)} and φ , for a bias correction in the reconstruction, one needs to store the Nbc samples 
of the original data {X(k)|k = 1, 2, . . . ,Nbc} . As explained in “Quality indicator for lossy-compression” section, the 
statistical error of ŌBC induced by the bias correction term depends on Nbc and the correlation between f (X(k)) 
and f (X̃(k)) . For a good compression, which yields high correlation between correlation between f (X(k)) and 
f (X̃(k)) , the bias f (X)− f (X̃(k)) can be estimated precisely from a small number of samples, so one can take 
Nbc ≪ N . A similar structure of bias correction has been demonstrated in the machine learning regressions on 
statistical data34,35.

In the calculation of the statistical error of ŌBC , the correlation between the sloppy estimator and the bias 
correction term should be taken into account. One approach to make the procedure simple is binning the data 
so that each bin has a certain number of bias correction data samples and the data in different bins are uncor-
related with each other. Assuming that the number of bins Nbin divides N and Nbc , Eq. (5) can be rewritten as

where M = N/Nbin and Mbc = Nbc/Nbin . In this rearrangement, the statistical error of ŌBC can be calculated 
by σŌBC = σŌBC,b/

√
Nbin . Again, note that the first Mbc samples in each bin are used for the bias correction, but 

one can take maximally separated or randomly chosen samples for the bias correction dataset, depending on 
the characteristics of the data.

Quality indicator for lossy‑compression.  To measure the quality of lossy-compression on statistical 
data, we define the Q2 as

where σ 2
Xi−X̃i

 is the variance of Xi − X̃i . This parameter is an indicator of the statistical error increase due to the 
lossy-compression after the bias correction as following. Consider a simple bias-corrected average of independent 
observables

The variance of the i-th component of X̄ can be approximated as

where the first approximation assumes a small correlation between the two terms in Eq. (9), and the second 
approximation assumes a good lossy-compression that gives σ 2

X̃i
≈ σ 2

Xi
 . Assuming a small reconstruction error 

satisfying σ 2
Xi−X̃i

/σ 2
Xi

≪ N/Nbc , the expected statistical error increase due to the bias correction can be estimated 
as
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ŌBC,b
i ,

(8)Q2 ≡
1

D

D
∑

i=1

σ 2
Xi−X̃i

σ 2
Xi

,

(9)X̄
BC =

1

N

N
∑

k=1

X̃
(k) +

1

Nbc

Nbc
∑

k=1

(

X
(k) − X̃

(k)
)

.

(10)σ 2
X̄BC
i

≈
1

N
σ 2
X̃i
+

1

Nbc
σ 2
Xi−X̃i

(11)≈
σ 2
Xi

N

(

1+
N

Nbc

σ 2
Xi−X̃i

σ 2
Xi

)

,

(12)
σX̄BC

i

σX̄i

≈ 1+ α
N

2Nbc

σ 2
Xi−X̃i

σ 2
Xi

,



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3814  | https://doi.org/10.1038/s41598-022-07539-z

www.nature.com/scientificreports/

where α = 1 and σ 2
X̄i

= σ 2
Xi
/N . It shows that the increase of the statistical error compared to that of the original 

data is proportional to ratio of the number of bias correction data, N/Nbc , and the normalized variance of the 
reconstruction error, σ 2

Xi−X̃i
/σ 2

Xi
 . Hence, we define the quality of the compression by taking an average of 

σ 2
Xi−X̃i

/σ 2
Xi

 over the all vector elements as given in Eq. (8).
Note that, when data have autocorrelation, the bias correction dataset can be chosen such that they have 

smaller autocorrelation than the original data by taking a wide separation in the trajectory direction of the auto-
correlation. It makes the bias correction more efficient, suppresses the statistical error increase, and yields α < 1.

Boosting.  In practice, the binary optimization in Eq. (2) is difficult to solve for a large Nq . Although a quan-
tum annealer is employed to solve the optimization problem, the maximum number of fully-connected qubits is 
limited to O(100) for the current quantum processors. However, the problem can be decomposed into a linear 
combination of smaller Nq by applying the idea of Boosting36,37.

Assume that we have a matrix φ1 and vectors {a(k)1 } of Nq1 binary elements that approximately reconstruct 
the input vectors X(k) ≈ φ1a

(k)
1  . We can find another set of solutions of φ2 and {a(k)2 } of Nq2 binary elements 

reconstructing the reconstruction error of φ1a
(k)
1  by taking X(k) − φ1a

(k)
1  as new input vectors. By combining 

the two sets of solutions, we can build a precise reconstruction of X(k) as

where the total number of binary coefficients representing an input vector X(k) is Nq1 + Nq2 . This procedure 
can be repeated to an arbitrary number of sets of solutions. For an ideal binary optimizer, decomposing the 
problem into a smaller number of binary elements makes the solution worse than the full solution because the 
decomposition ignores the correlation between the different sets, that potentially reduces the reconstruction 
error. For realistic binary optimizers, however, boosting can provide a better solution.

Numerical experiments
Test data.  In this study, we use the Monte Carlo simulation data of lattice QCD, a theory of quarks and 
gluons, and their interactions. The lattice QCD simulations produce large amounts of data that need to be stored 
for analysis, but the data are correlated with each other, so a data compression algorithm exploiting the cor-
relation can obtain a better compression ability. Among various lattice QCD observables, in this study, we use 
the three-point correlation function data of nucleon vector and axial-vector (axial) charges, which describe the 
response of a nucleon to particles such as the neutrino. For most of the test cases, we shape the data into 10 inde-
pendent sets of 3200 vectors with 16 components, so each dataset has N = 3200 and D = 16 . As illustrated in 
Fig. 1, there are strong correlations between the 16 components. Since the vector data show a stronger correlation 
than the axial-vector data, we expect the proposed algorithm to give a better compression (smaller Q2 ) for the 
vector data than the axial-vector data. We standardize the data as a pre-processing step to obtain a homogeneous 
reconstruction error on all 16 components.

Experiments with simulated annealing.  First, we carry out the demonstration of the proposed com-
pression algorithm with simulated annealing38,39 on classical computers by employing the D-Wave’s simulated 
annealing sampler implemented in the D-Wave’s Ocean library40. In the simulated annealing, we take the mini-
mum energy solution from the 150 runs (num_reads=150), while all other parameters are set to their default 
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Figure 1.   Correlation pattern of the 16 components of the vector (left) and the axial-vector (right) data. Red 
indicates the high correlation (correlation coefficient = 1), and white indicates no correlation.
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values. As described in supplementary section 1, we find that the simulated annealing with num_reads=150 gives 
close to the exact solution up to around Nq = 20 , and the quality of the solution deteriorates as Nq is increased.

To find the solutions {a(k)} and φ of the optimization problem in Eq. (2), we iterate the optimization in φ and 
{a(k)} as described in “Data compression” section. In this study, φ is updated as follows. After obtaining the solu-
tion φ̃ that minimizes the reconstruction error of the mini-batch using the L-BFGS-B algorithm41, we update φ as

Here the learning rate η is continuously decreased from the initial value η0 as the number of training epochs 
( nepoch ) is increased, following η = η0 × 0.8nepoch . For the batch size and initial learning rate, we use Nb = 50 
and η0 = 0.9 as we find that those give the best or close to the best results after exploring a grid of Nb and η0 . The 
final results are obtained with 30 epochs of training steps.

To compare with the compression performance of the proposed algorithm, we study the conventional data 
compression algorithms using principal component analysis (PCA) and neural-network-based autoencoder. PCA 
finds orthogonal directions that maximize the variance as principal components. By saving only the coefficients 
of the first few principal components, the PCA works as a lossy data compression algorithm. We reconstructed 
the data from the first Nz principal components to obtain the data compression. Autoencoder also provides 
data compression by constraining the number of codes ( Nz ) to a small number42,43. We used a fully connected 
neural-network encoder and decoder with three hidden layers of (D, 128, 64, 32,Nz) and (Nz , 32, 64, 128,D) with 
rectified linear unit (ReLU) activation functions. For the training, we use the Adam optimizer44 implemented 
in the PyTorch python library45 with the learning rate of 0.01 and the batch size of 3200, which are the optimal 
hyperparameters determined from a grid search. After 5000 epochs of training, we continue the training until 
we reach a better reconstruction error than the best reconstruction error we have obtained in the first 5000 
epochs and stop the training.

The results are summarized in Table 1 and Fig. 2. The results show that the boosting approach gives better 
results than the full calculation for Nq > 32 , where the simulated annealing fails in finding the close-to-ground 
solution. The comparison between different algorithms shows that the autoencoder outperforms the PCA, and 
the proposed binary compression outperforms the autoencoder. The compression quality ( Q2 ) of the autoencoder 
with Nz number of codes can be obtained using the proposed binary compression algorithm with the number of 
bits around Nq ≈ 10Nz . Considering single-precision floating-point numbers, which usually occupying 32 bits 
for a number, the proposed algorithm provides the same quality of compression as the autoencoder approach 
using about 3–3.5 times smaller memory space.

We also carry out a scaling test by observing the data compression performance for different dimensions of 
the lattice QCD simulation data, D = 8, 16, 32 , and 48. In this test, the data correlation pattern is kept the same 
as the one described in Fig. 1: D can be decomposed into four blocks, and the data points within a block have a 
stronger correlation than the data points between different blocks. Results are presented in Fig. 3. The two upper 
plots show that the compression algorithm becomes more efficient, which means the smaller reconstruction error 
for a fixed compression rate, as the data dimension becomes larger. This is because larger dimensional data has 

(14)φ ← φ + η(φ̃ − φ).

Table 1.   Q2 , defined in Eq. (8), of the binary compression (BC) algorithm we propose with Nq qubits (left) and 
classical approaches of the principal component analysis (PCA) and autoencoder (AE) with Nz codes (right) 
for the vector and axial-vector data. The results with Nq = Nq1 + Nq2 shows the compression with the boosting 
explained in “Boosting” section. Results are averaged over 10 independent sets, and the errors are calculated as 
the standard deviation of the mean. A smaller Q2 indicates a better reconstruction.

Nq  Vector Axial

(Nq1 + Nq2) Q
2(BC) Q

2(BC)

8 0.1115(65) 0.251(11)

16 0.0156(14) 0.1062(74)

8+8 0.0276(42) 0.1247(64)

24 0.00404(68) 0.0620(73)

32 0.00152(15) 0.0365(61)

16+16 0.00164(33) 0.0396(71)

48 0.00081(9) 0.0154(11)

24+24 0.00016(2) 0.0151(26)

64 0.00063(6) 0.0163(22)

32+32 0.000052(2) 0.0047(5)

Nz

Vector Axial

Q
2(PCA) Q

2(AE) Q
2(PCA) Q

2(AE)

1 0.326(24) 0.160(16) 0.501(13) 0.250(11)

2 0.1103(91) 0.0243(23) 0.2760(97) 0.0822(58)

3 0.0356(31) 0.00454(36) 0.1803(72) 0.0419(25)

4 0.00021(2) 0.00019(1) 0.1073(52) 0.0256(11)
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by 32× Nz , assuming single-precision floating-point numbers. For binary compression algorithm of Nq >= 48 , 
we use the boosting approach with Nq1 = Nq2 = Nq/2.
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a larger number of correlated data components that can be exploited for efficient data compression. The two 
bottom plots show that the data compression performance of the binary compression algorithm with Nq = 32 
is similar to that of the autoencoder with Nz = 3−3.5 for all different data dimensions. These results support 
that, considering single-precision floating-point numbers for the autoencoder codes, the binary compression is 
about 3–3.5 times more efficient than the autoencoder. Note that, however, this performance gain should depend 
on the correlation pattern of the data.

Experiments with D‑Wave 2000Q.  To verify the usability of the existing quantum hardware for the 
proposed compression algorithm, we carry out the a(k)-optimization of Eq. (2) using the D-Wave 2000Q quan-
tum processor with the φ obtained using the simulated annealing as described in “Experiments with simulated 
annealing” section. The major issue with the D-Wave quantum annealer is that the h and J parameters have poor 
precision when implemented in the D-Wave QPU, even though they are specified as double-precision floating-
point numbers in the program, due to the integrated control errors46. Since the parameters are normalized by 
the maximum absolute value of h and J, small-value elements are more sensitive to the integrated control errors. 
When there are large scale variations in the h and J parameters, furthermore, the information of the small-value 
elements could be washed off due to the errors, and the annealing results may be different from the true solution 
of the original problem.

In the data compression problem, to minimize the effect of the fidelity loss in the final results, we restrict 
the maximum absolute value of the matrix elements of φ by 1. It prevents a large maximum absolute value of h 
and J, which introduces a large distortion of the small-value elements. Due to the limited D-Wave access time, 
we carry out the study only for one set of N = 200 samples. For this study, we obtained solutions to this QUBO 
problem on the D-Wave 2000Q quantum hardware that are drawn from 5000 reads using a series of 20 differ-
ent chain strengths within the range (2.0, 3.0). Results are taken from the lowest energy points among overall 
5000× 20 solutions of the 2000Q machine. The embedding procedure is repeated only for a new input but was 
kept unchanged as we changed the chain strength values. In a control run, we find that even if one runs a new 
embedding each time a new chain strength changes, the final results do not differ from the method described 
above. However, the later approach that requires a new embedding solution for each chain strength will require 
more pre-processing time.

Table 2 shows the Q2 values of the binary compression algorithm on D-Wave 2000Q in comparison with the 
simulated annealing optimizer. When Nq ≤ 16 , D-Wave shows similar performance as the simulated annealing, 
but when Nq > 16 , D-Wave shows worse performance than the simulated annealing. The reconstruction error, 
represented by Q2 , is decreased as Nq is increased on the simulated annealing, but no significant decrease of the 
Q2 is observed on the D-Wave for Nq > 32 compared to the results from Nq = 32 . As expected, constraining 
max(|φij|) = 1 improves the results on the D-Wave for Nq ≥ 32 , but the D-Wave results are still worse than the 
simulated annealing. Note that, due to the limited D-Wave access time, the results were obtained with a fixed φ 
obtained using the simulated annealing. Hence, the results show a comparison of the optimization performance 
for a given problem. If φ were obtained directly from the D-Wave quantum annealer, however, optimal constraints 
to meet the hardware limitations would have been imposed, naturally, and it might have resulted in a better com-
pression performance than those of the max(|φij|) = 1 constraints. Note that the quality of the solutions from the 
D-Wave quantum annealer is dependent on the nature of the data. In general, we expect better D-Wave quantum 
annealing results for a dataset that gives smaller scale variations in the h and J parameters through Eq. (4).

Table 2.   Q2 values of the binary compression algorithm on D-Wave 2000Q quantum annealer (D-Wave) 
and the simulated annealing (Sim.Ann.) with ( max(|φij|) = 1 ) and without (Free φ ) the constraints on the 
elements of φ . Results are obtained from a set of N = 200 vector and axial-vector data. Numbers in the 
parenthesis are the statistical error of the 200 samples estimated by the bootstrap method47.

Q
2 (Vector)

Free φ max(|φij|) = 1

Nq D-Wave Sim.Ann. D-Wave Sim.Ann.

8 0.104(11) 0.104(11) 0.099(10) 0.099(10)

16 0.0124(16) 0.0120(16) 0.0192(25) 0.0197(27)

32 0.0068(12) 0.0014(02) 0.0046(10) 0.0033(06)

48 0.0066(10) 0.0007(01) 0.0048(11) 0.0015(03)

60 0.0099(19) 0.0007(01) 0.0025(04) 0.0006(01)

Nq

Q
2 (Axial)

Free φ max(|φij|) = 1

D-Wave Sim.Ann. D-Wave Sim.Ann.

8 0.289(22) 0.289(22) 0.297(30) 0.297(30)

16 0.1117(87) 0.1101(87) 0.129(20) 0.135(20)

32 0.1113(86) 0.0366(50) 0.090(11) 0.072(12)

48 0.092(15) 0.0214(34) 0.0751(71) 0.0303(39)

60 0.0962(70) 0.0175(16) 0.0886(86) 0.0221(20)
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Comparison of D‑Wave 2000Q with advantage systems.  We benchmark the D-Wave Advantage 
system in comparison with the 2000Q using the a(k)-optimization problem in Eq. (2). For axial and vector data 
we compute the cumulative distribution function (CDF) of the normalized reconstruction error for systems of 
size Nq = (32, 60) . To minimize possible biases due to a specific choice of embedding, we employ the heuristic 
solvers provided by Dwave to find an embedding for each configuration and proceed to collect at least 1500 
samples (per configuration). The chain strength during embedding was determined by the maximal coupling in 
absolute value, multiplied by a hyperparameter which we call chain strength multiple. The number of physical 
qubits, in practice, is many times higher than the logical qubits required, due to hardware connectivity. There 
are cases where the physical qubits that are strongly coupled to behave as one logical qubit, return different 
values and we discard these samples, as non viable solutions, from our calculation of the distribution func-
tion. (For axial data, Nq = 32 : 150 qubits Advantage/350 qubits 2000Q, Nq = 60 : 600 qubits Advantage/1600 
qubits 2000Q. For vector data, Nq = 32 : around 180 qubits Advantage/380 qubits 2000Q, Nq = 60 : 600 qubits 
Advantage/1400 qubits 2000Q). As the number of qubits increases the fraction of feasible samples decreases. 
Also, the fraction of the CDF with small reconstruction error decreases. By trial and error, we find that setting 
chain strength multiple to a value greater than 1 reduces the number of viable solutions from the Advantage 
system, but it improves the results from 2000Q. For the samples collected for axial data, we set them to 0.8 and 
1.6 respectively.

As can be seen from Figs. 4 and  5, when Nq = 32 , both hardware perform rather well, and the new Advantage 
system has better statistics and overall higher quality of sub optimal solutions. In the case of Nq = 60 , the differ-
ence between the two hardware becomes less distinct and the CDF is peaked on solutions with high reconstruc-
tion error. As we did not apply boosting for these experiments, the quality degradation as the number of qubits 
increased can be ascribed to the connectivity of the hardware.

Discussion
In this paper, we presented a new lossy compression algorithm for statistical data based on the representation 
learning with binary variables. The algorithm finds a set of basis vectors, which is common for all data, and their 
binary coefficients ( Nq ) that precisely reconstruct each D-dimensional input vector. The algorithm provides data 
compression because the Nq-dimensional binary representation requires much smaller storage space than the 
original data of D-dimensional floating-point numbers. We also presented a bias correction procedure estimating 
the errors due to the inexact reconstruction of the lossy compression in “Bias correction” section. The compres-
sion algorithm was applied to two lattice QCD datasets in “Numerical experiments” section. With simulated 
annealing, the binary compression algorithm was able to achieve the same quality of reconstruction with 3–3.5 
times smaller storage usage than the algorithm using neural-network autoencoder. The binary optimization 
carried out on D-Wave 2000Q for the compression problems showed promising results, but the performance 
was limited by the integrated control error of the D-Wave QPU, which introduces large uncertainties in the h 
and J parameters. The comparison of D-Wave 2000Q and Advantage systems showed that the Advantage is more 
efficient than the 2000Q in obtaining the low-energy solutions.

The proposed compression algorithm is a natural outlier detector because input data with large reconstruction 
errors can be marked anomalous48. Using the proposed algorithm, furthermore, many operations that need to 
be performed on the floating point numbers X(k) can be replaced by those on single-bit coefficients a(k) with 
much smaller computational cost, because the relationship between X(k) and a(k) is linear ( X(k) ≈ φa(k) ), and 
the single-bit coefficients satisfy 

(

a
(k)
j

)n
= a

(k)
j  for any n, which simplifies power operations. Here are two exam-

ples of the operations in the compressed space:

Figure 4.   Cumulative distribution function (CDF) of the normalized reconstruction error from all feasible 
samples obtained from the D-Wave 2000Q (red) and Advantage system (blue) for the axial-vector data. About 
50% and 38% of the samples were feasible from D-Wave 2000Q and Advantage for Nq = 32 , respectively. For 
Nq = 60 there were about 51% and 18%, respectively.
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•	 Sum of vectors 

•	 Sum of l2-norm squares 

The cost reduction is maximized when D,Nq ≪ N , which is a typical case of many statistical datasets.
In this study, we presented only the results with the φ calculated from the whole dataset. In general, however, 

φ obtained from a smaller subset of the whole data provides a reasonably good compression performance. When 
using a φ obtained from a subset data, some unseen data vectors could yield large reconstruction error. To control 
the error and maintain the quality of the compression, one needs to define a threshold and save the original data 
when the data gives a reconstruction error bigger than the threshold.
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