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Abstract

Hyperspectral imaging has demonstrated its potential to provide correlated spatial and
spectral information of a sample by a non-contact and non-invasive technology. In the
medical field, especially in histopathology, HSI has been applied for the classification and
identification of diseased tissue and for the characterization of its morphological proper-
ties. In this work, we propose a hybrid scheme to classify non-tumor and tumor histological
brain samples by hyperspectral imaging. The proposed approach is based on the identifica-
tion of characteristic components in a hyperspectral image by linear unmixing, as a features
engineering step, and the subsequent classification by a deep learning approach. For this
last step, an ensemble of deep neural networks is evaluated by a cross-validation scheme
on an augmented dataset and a transfer learning scheme. The proposed method can clas-
sify histological brain samples with an average accuracy of 88%, and reduced variability,
computational cost, and inference times, which presents an advantage over methods in
the state-of-the-art. Hence, the work demonstrates the potential of hybrid classification
methodologies to achieve robust and reliable results by combining linear unmixing for
features extraction and deep learning for classification.

1 INTRODUCTION

Traditional histopathology evaluation has been an important
tool in cancer diagnosis for more than a century. With this tool,
the evaluation is carried out by manual analysis of the morpho-
logical and texture characteristics present in the sample, as well
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as the reaction to different types of reagents [1, 2]. However, tra-
ditional histological evaluations can be very subjective. A major
advance is CAD, where digital data from samples is used to
speed up diagnosis [2, 3]. An example of CAD is the use of
RGB images to improve pathological studies, since histopathol-
ogy images are characterized by repetitive patterns on various
scales that are suitable for automated recognition [2, 3].

Recently, CAD has evolved considerably through digital
image analysis, and new tools have emerged that allow the acqui-
sition of multimodal information, such as HSI, which provides
co-registered spatial and spectral information of samples [4, 5].
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HSI captures information along the electromagnetic spectrum
mainly from the visible to near-infrared regions, that is, HSI
provides from tens to thousands of two-dimensional images,
each one acquired at a certain wavelength [6–8]. In HSI, the
information contained at each spatial point or pixel is known
as spectral signature, and it characterizes the components of
the sample [5, 6]. Although HSI has demonstrated its poten-
tial benefits in histopathology, this technology faces several
key challenges. One is the high dimensionality of the data,
which increases the difficulty in the feature extraction step and
makes algorithms computationally expensive. To address this
issue, classification and identification methods based on dimen-
sional reduction have been proposed to improve performance,
while reducing the complexity of the method [9, 10]. How-
ever, another important challenge is the presence of mixtures of
components in the same pixel, a situation that complicates the
analysis and classification task [11]. Due to this phenomenon,
SU techniques have been used in the literature to identify the
components that make up mixed pixels [12]. Thus, SU allows
unmixing the elements in the sample, so obtaining the spectral
response of pure materials (endmembers) and calculating their
relative proportions (abundances) from the HS data [12, 13].
This processing step could generate classification maps from
the resulting abundances. In the state of the art, there are exam-
ples of SU in medical image processing for classification and
detection tasks. In [14], two approaches for the classification
of craniotomy HS images were presented for the detection of
type IV GB, while [15] uses SU to study H&E for histopatho-
logical analysis of cellular tissues. Finally, [16] describes
a method for the analysis of Raman microspectroscopy
data by SU.

Lately, DL methods have been extensively used in computer
vision tasks due to the rapid technological advancements in digi-
tal hardware [17]. Therefore, multiple solutions that incorporate
DL have been adopted in medical image analysis, which have
been reviewed in [18, 19]. In [20], a UNet was suggested for
nuclei segmentation in histopathology images, and in [21], an
ensemble of deep multi-scale networks for the classification of
breast cancer images. In fact, machine learning and DL have
also been implemented in conjunction with HSI to extract fea-
tures and classify tissue samples through (i) convolutional neural
networks (CNN) for breast cancer cells, glioblastoma tumor
cells and colorectal resections [22–24], (ii) super-pixel represen-
tations and support vector machines for glioblastoma tumor
detection [25], and (iii) multi-layer perceptrons for esophageal
adenocarcinoma specimens [26]. These examples demonstrate
the scope and opportunity area of machine learning and DL
to effectively analyze histopathology HS samples. However,
this research line is relatively incipient [18], since the applica-
tions of HSI in the biomedical field are still experimental. One
disadvantage of DL is that these algorithms could be computa-
tionally expensive and require complex hyperparameter tuning
[17]. However, one promising strategy is transfer learning to
alleviate the training stage and decrease intra and inter-patient
variability [27].

In an attempt to overcome potential problems in DL archi-
tectures, some efforts have focused on using SU and DL to

perform HSI classification [28, 29]. These methodologies pro-
pose the decomposition of HSI into abundance maps and
endmembers, which serve as a features engineering step for the
DL architectures. These proposals have two advantages. The
first one is that they reduce the dimensionality of the input data
to the DL architectures [28, 29]. The second advantage is that
by this dimensional reduction, the proposed DL classifiers can
have simple architectures, facilitating their implementation in
high performance computing platforms, and, hence, reducing
their execution time. Even, in some cases, this joint framework
could potentially improve the classification results by reducing
the chances of overfitting [28, 29].

Considering the advantages of combining SU and DL for
classification, this paper proposes a methodology that applies
both techniques to histopathology HSI. The proposed hybrid
scheme incorporates the information obtained from the SU
stage into the classification process from a new perspective.
Hence, unlike most proposals in the literature that rely on the
abundance maps for classification [28, 29], our proposal focuses
on the characteristic spectral information of each HS image
that is obtained through SU, that is, just the endmembers are
used as input features. In this way, the most representative spec-
tral signatures per pixel are used to characterize the overall HS
image. This approach also provides robustness to the classifi-
cation results compared to the methods in the state-of-the-art
when there is only a label at an image-level, that is, there is no
pixel-level ground-truth available. In our proposal, a prepro-
cessing chain is applied first to the histopathological brain HS
images, then SU is used to obtain endmembers and abundance
maps for features engineering. The endmembers dataset is used
to train an ensemble of deep NNs, which performs a binary clas-
sification of the HS images to distinguish between tumor and
non-tumor tissue. The ensemble of NNs is trained using a trans-
fer learning methodology [27]. Our overall approach has three
main benefits: (i) decrease the input data needed in the classi-
fication stage, which in turn reduces the computational cost of
training; (ii) reduce the presence of overfitting, and (iii) decrease
the variability of the classification results by the ensemble
of deep NNs. Our proposal is compared with two state-of-
the-art approaches based on machine learning and DL to
illustrate its advantages in terms of accuracy and computational
cost [23, 25].

2 HYBRID CLASSIFICATION SCHEME

Figure 1 illustrates the proposed hybrid classification approach,
which consists of seven steps (A) to (G). These steps are
presented in detail next.

2.1 Histopathology hyperspectral database

The database for this work consisted of a set of HS images
acquired from histological samples of human brain tissue, as
described in [23, 25]. HS images were captured using an Olym-
pus BX-53 microscope (Olympus, Tokyo, Japan) equipped with
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FIGURE 1 Overall diagram of the proposed hybrid scheme for processing and classification of HS images.

a scanning HS camera of type Hyperspec VNIR A-Series from
HeadWall Photonics (Fitchburg, MA, USA). The HS cam-
era was set at a 20× magnification, producing a HS image
of size 375 𝜇 m × 299 𝜇 m. The acquisition system is pre-
sented in more detail in [30]. The spectral range of the HS
images covers 400 to 1000 nm with a spectral resolution of
2.8 nm; so the resulting HS images have 1004 × 800 pixels
with 826 spectral channels. Figure 2a shows an example of HS
images for the two classes studied in this work: non-tumor and
tumor.

The database was obtained from histological samples of 13
patients (P1,…,P13) with GB tumors (grade IV). Different
regions of interest were selected in the samples, based on pathol-
ogist annotations, from which a maximum of 10 HS images
per region (as described in [23]) were acquired, producing 494
HS images. Out of these HS images, 328 corresponded to the
non-tumor class, while 166 were classified as tumor. The distri-
bution of tissue on the slides per patient is shown in Figure 2b.
As can be seen, the number of images labeled as non-tumor
is different in each patient. Only HS images from the tumor
class were available for some patients, that is, patients P9 to
P13. This distribution of the data established three main prob-
lems: (i) the limited number of patients and samples; (ii) not
all samples contain both classes (non-tumor and tumor), with
only eight patients having both types; and (iii) the data set is not
balanced between both classes, as more non-tumor images are
available. As a consequence, we chose a cross-validation proce-
dure to evaluate our hybrid classification scheme to avoid bias
and overfitting during the learning stage. For cross-validation,
four folds were selected by subsets of independent patients for
training, validation and test (see Figure 2c). A random assign-
ment of the samples in each fold was followed to guarantee that
each sample was presented once in the testing subset and by
selecting patients with both types of labeled data (non-tumor

and tumor) in the validation subset. Therefore, at least, three
patients with just tumor information were assigned to the train-
ing subset. A similar cross-validation distribution was used in
previous works with the same database [23, 25].

2.2 Pre-processing chain

The acquired HS images required a preprocessing chain, which
is based on two main steps. The first consisted of transforming
the images from radiance to normalized transmittance using a
white reference image captured in a blank area of the patho-
logical slide. Subsequently, neighboring spectral bands were
averaged to remove redundant information, due to the high cor-
relation between adjacent spectral bands, reducing the number
of spectral bands from 826 to 275. At the end of the prepro-
cessing chain, a normalization to sum one was applied to the
spectral signatures per pixel of the HS images. This normal-
ization step standardize all the spectral signatures and prepare
them for subsequent stages.

Prior to the normalization stage, the HS data was visualized
to assess the complexity of the classification problem. This task
was carried out by selecting different regions corresponding to
cell nuclei and their external structures in images of both classes
and different patients. An example of this visualization is shown
in Figure 3. After obtaining data from the different regions
(selected with red, blue, green, and black circles in Figures 3a
and 3b), the spectral signatures of the selected areas were ana-
lyzed by their mean and standard deviation for both classes,
see Figure 3c. In this figure, we can observe the great similarity
between the spectral signatures of non-tumor and tumor classes.
This similarity can be measured by the correlation coefficient
between the mean spectral response of each class. Therefore,
a high correlation can be observed, very close to a perfect
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FIGURE 2 Database overview: (a) Example of a pathological sample with annotations of the regions with tumor (red line) and non-tumor (blue line) tissue
macroscopically made by the clinical experts on the slide after diagnosis, and examples of non-tumor and tumor HS images used in this study for classification
(imaged at 20×); (b) number of tumor and non-tumor HS images acquired from each sample per patient; and (c) distribution of the data for each patient in the
proposed partitions (‡ patients with only tumor).

alignment (correlation > 0.98), due to the H&E staining pro-
cess. In other words, because the same reagents were applied
to both classes, the spectral response tends to be very simi-
lar in both cases. This observation implied that differentiating
between both two types of tissue was not feasible by simply ana-
lyzing the spectral signatures, so a more involved classification
scheme was required.

2.3 Data augmentation

In general, the size of the database used for training a classi-
fier has a direct impact on its results. Typically, increasing the
size of the database can enhance performance, up to a cer-
tain point beyond which further augmentation does not yield

significant improvements [31, 32]. Thus, a larger database pro-
vides more diverse examples, which can help the classifiers to
learn robust features and generalize better to unseen data [31,
32]. However, the quality of the data is equally important as
the quantity [32]. A large database with poor quality data might
not produce better results than a smaller one with high qual-
ity [32]. Therefore, the database has to be representative and
accurately labeled to avoid biases and errors in the classification
task [32].

In this work, we have 494 HS images from the studied
database; these data are used to train, validate, and test the clas-
sifier. As shown in Figure 2, each fold has approximately 320
HS images for training, 50 for validation, and 124 for testing.
However, this reduced database poses a limitation for the learn-
ing process of the hybrid classifier. Therefore, to overcome this
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FIGURE 3 Preview example of the spectral information in the HS
images: (a) and (b) HS image with tumor and non-tumor tissue, respectively
(the examples of selected regions are labeled with a circular marker to analyze
their spectral information); and (c) mean average spectral signatures and
standard deviations: tumor cells (red), non-tumor cells (blue), tumor
background tissue (black), and non-tumor background tissue (green).

condition, data augmentation was performed to ensure suffi-
cient data for proper learning. For this goal, the pixels of each
HS image were divided into ten random subsets, as shown in
Figure 1c, and subsequently SU was applied to the spectral sig-
natures of these pixels. This division of HS images into subsets
increases the input features for classification. Each subset pos-
sesses a distribution of information similar to that of the original
HS image. As a result, the data augmentation step generated
10 times more features for each HS image, which translates to
10 × 494 = 4940 input features in total, representing the infor-
mation of the entire database. In addition, up to 20 random
subsets were also evaluated for each HS image without improve-
ments in the initial classification tests. These subsets were now
used to compute the SU stage, to obtain the distinctive fea-
tures for training, validating, and testing the classifier. Thus,
the proposed data augmentation step enables more consistent
training with reduced variation when classifying high-resolution
images.

2.4 Spectral unmixing

SU is employed as a preliminary step to the classifier to obtain
characteristic input features. Thus, the abundances and charac-
teristic endmembers were estimated from each subset of pixels

created in the data augmentation stage. In a general sense,
endmembers are representative of each component in the HS
image, while the abundance maps indicate the proportion of
such components at each pixel. The SU stage was carried out by
the EBEAE algorithm described in [13], using the N-FINDR
scheme [33] as the endmembers initialization method. Other
linear unmixing algorithms such as sparse non-negative matrix
factorization, non-smooth non-negative matrix factorization or
their variants could be also applied [34], but EBEAE was cho-
sen due to its robustness to different types and levels of noise,
low complexity and its excellent performance when evaluat-
ing various types of multi- and hyperspectral biomedical data.
The hyper-parameters of EBEAE were set to 𝜌 = 1 (similar-

ity weight), 𝜇 = 0 (entropy weight), error threshold 𝜖 = 1 × 10−6,
and a maximum number of iterations (maxiter ) of 10. The lin-
ear unmixing process assumed four characteristic components,
that is, N = 4. These hyper-parameters were tuned manually
following the guidelines in [13] and [14].

2.5 Microscope light removal

There is an intrinsic problem with the histological samples, since
there are areas without tissue, so there is direct transmission of
light from the microscope. To rule out this problem, after the
SU stage, the endmember with a flat spectral signature corre-
sponding to these regions is eliminated. This phenomenon can
be visualized in Figure 1d, specifically in the information con-
tained in endmember 3, which due to the sum-to-one restriction
applied by EBEAE, results in a spectral signature with uniform
information in practically all bands. As a result, recalling that
there are 275 bands in the HS images, this endmember can be
identified by the following optimization procedure:

p∗ = arg min∀p̃∈

‖‖‖‖p̃ −
1

275
1
‖‖‖‖, (1)

where  = {p1, … , pN } represents the set of estimated end-
members by EBEAE, 1 is a vector with just unitary entries,
and ‖.‖ denotes the Euclidean norm. In this way, end-
member p∗ corresponds to the spectral signature of the
regions that do not have cellular tissue information in the HS
image, so this endmember is discarded as an input feature
during classification.

2.6 Concatenated endmembers

After the endmembers were estimated in each subset, they
have to be ordered for a fair comparison, since EBEAE does
not guarantee a consistent ordering. For this purpose, a sub-
set is selected randomly as a reference for each fold, and its
order of endmembers is used as a guideline for the remaining
ones, where the Euclidean distance acts as a similarity index.
The ordered endmembers were concatenated into an aug-
mented vector containing the spectral information, as shown
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FIGURE 4 Proposed architecture of the three level-zero NNs.

in Figure 1f. As a result, there is only one vector of dimension
3 × 275 = 825 to represent each subset. This severe features
extraction step is based on the assumption that the concate-
nated spectral components in tumorous and non-tumorous
tissue samples provides distinctive information for classifica-
tion. Another important factor for choosing just endmembers
and discarding the abundance maps is that only one global label
is available for each HS image. Therefore, the spatial properties
of each class are unknown, which makes their use challenging,
and just using endmembers provided remarkable error metrics
with low complexity, as it is shown in Section 3. Nonethe-
less, in our initial experiments, we also trained classifiers with
abundance maps yielded significantly lower results compared
to endmembers.

2.7 Classifier training

The classification stage considered a deep NNs ensemble to
decrease the variability of a single NN architecture, that is, to
add robustness to this process, while seeking to improve the
overall accuracy of the proposed methodology by a transfer
learning approach [27, 35, 36]. The ensemble was built by join-
ing three identical level-zero NNs. This number of NNs was
experimentally selected to keep the classification performance
stable, since increasing in more than three level-zero NNs did
not present a significant difference. The proposed architecture
is presented in Figure 4, and included an input layer of 825 fea-
tures (concatenated endmembers), and four hidden ones with
{1000, 200, 100, 20} neurons, respectively, to build a hierarchi-
cal learning structure in the network. In our methodology, the
optimization of the number of layers and neurons per layer
was also conducted experimentally, while keeping the network
simple as possible and ensuring maximum performance. Each

internal layer had an activation function LeakyReLu (with slope
for negative values 𝛼 = 0.1), L2 regularization of 0.0002, and a
dropout stage of 50%. These two last elements were included
to avoid overfitting during the learning process. The output
layer had only a sigmoid activation function (binary classifi-
cation problem), and the binary crossentropy cost function
was used to adjust the weights [37]. To reduce the variabil-
ity in the results, the uniform variance scaling method was
used as an initialization method for all layers [38], both in
the level-zero NNs and in the ensemble. The training of both
architectures used a minibatch of 100 elements with a learn-
ing rate of 0.001, and the number of epochs was set to 500
and 100 epochs for the zero and one level NNs, respectively.
As previously described, the input data to the level-zero NNs
considered the training sets in each fold in Figure 2c by using
only the concatenated endmembers of the subsets related to
each HS image with dimension 825. After training the NNs,
they are saved and coupled to the deep ensemble or level-one
network.

The deep NNs ensemble or level-one network uses the three
pre-trained level-zero networks by following a transfer learning
methodology (i.e. during the training of the level-one network,
the weights of the level-zero NNs were frozen) [27]. Figure 5
presents the general architecture of the deep ensemble, where
the outputs of the level-zero NNs were discarded (see Figure 4)
to couple with the level-one network. So, in the deep NNs
ensemble, the outputs of the three level-zero networks gener-
ated a vector of 60 input elements. This vector is processed by
a NN formed by three hidden layers of {300, 200, 32} neurons
with LeakyReLu activation function (with slope for negative
values 𝛼 = 0.1 in each layer), L2 regularization of 0.0002, and
a dropout stage of 50%. Once more, the binary crossentropy
cost function was used to tune the weights. Similar to the level-
zero networks, the level-one NNs were optimized to achieve
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FIGURE 5 Proposed architecture of the NNs ensemble, or level-one NN.

maximum performance through a simple architecture. An ini-
tial hidden layer of 300 neurons was chosen to enhance the
representability and interconnection of the layers with the data
from the three level-zero NNs. The aim of this selection was
to ensure optimal information flow and effective integration
across the network. In addition, a sigmoid activation function
was chosen in the output layer, which produced a bounded
output between zero and one, which is rounded to generate
the classification result. Finally, the overall deep NNs ensemble
returned a binary value, zero for the non-tumor classes and one
for tumor classes, which was verified by the labeling performed
by the clinical experts.

3 RESULTS

In this section, we describe the results obtained using the pro-
posed hybrid classification methodology. In this evaluation,
an independent classifier is trained for each proposed fold in
Figure 2c). The pre-processing and SU stages were carried out
in MATLAB®, and the resulting data per patient was saved
for later use. Meanwhile, the deep NNs ensemble was trained
and evaluated in Python using TensorFlow modules [39]. Both
tasks were performed on a computer with a 4.2 GHz Intel Core
i7 quad-core processor and 16 GB of RAM. The classification
results were evaluated by considering the labeling of the clini-
cal experts as ground-truth, and the following metrics: accuracy,
sensitivity, specificity, precision, and F1-score [40, 41]. These
metrics are standard for evaluating performance in classifica-
tion tasks with respect to true-positive and true-negative values.
The learning process for the level-zero and level-one NNs was
carried out by all the available training data in each fold. The
accuracy, sensitivity, specificity, precision, and F1-score of the
training phase were on average above 94% ± 3%, with minimal
variability across different folds. On the other hand, the valida-
tion results for each fold were reduced on average to 77% ± 30%

across all metrics, translating to a 17% decrease compared to the
training stage, with an increase in variability among the folds.
However, the validation results were linked to a single patient in
all folds (see Figure 2c), so the decline in performance is likely
attributed to the lack of generality in the validation data. This
same behavior was observed in the comparison methods from
the state-of-the-art [23, 25].

3.1 Test results

In this section, we present the classification results for the
test set for each fold in Figure 2c. These results are shown in
Figure 6. In the first instance, the resulting accuracy, sensitivity,
specificity, precision and F1-score were 88% ± 7%, 78% ± 17%,
80% ± 16%, 84% ± 11%, and 92% ± 6%, respectively. In this
way, the performance metrics showed improvement compared
to the validation results with lower variability. As shown in
Figure 6, the best performance metrics were reached in Fold 1,
followed by Fold 4. Meanwhile, the lowest values for sensitivity,
precision and F1-score were obtained in Fold 2.

Finally, Figure 7 presents the classification results for each
patient evaluated with this methodology. Figure 7 shows that
only four patients have an accuracy lower than 80% (P4, P6, P10
and P12), two were between 80% and 90% (P2 and P5), while
the rest obtained a performance greater than 90%; and a similar
performance trend is observed in the other metrics. When ana-
lyzing cases with the lower performance, patients P4, P6, P10,
and P12 were classified with the models trained with the data
from Folds 2 and 4. However, these models showed good per-
formance in the rest of the patients (P3, P8 and P13), being Fold
2 the one with the lowest performance in all metrics. It should
be clarified that the specificity can only be calculated for patients
with both types of classes (patients P1 to P8), so patients P9 to
P13 presented a sensitivity of 100%. The overall high perfor-
mance in the performance metrics suggests that our proposal
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FIGURE 6 Experimental results of the test set in each fold by using the hybrid classification scheme.

FIGURE 7 Performance metrics per patient in the test set for the NNs ensemble. P9 to P13 have only tumor class samples, so it is not possible to obtain the
specificity metric.

could serve as a potential CAD to detect histopathology HS
images with tumor presence.

3.2 Comparison with state-of-the-art
methods

3.2.1 Performance metrics

Table 1 shows the results of the hybrid classification scheme
compared to two methodologies published in the state-of-the-
art with the same database and machine learning approaches
[23, 25]. The first one is a SVM classification, which was trained
by a superpixels scheme [25]; where specifically the results at
the image level were used. Meanwhile, the second compari-
son method is a patch-based CNN [23]. Both algorithms were
trained with the same data except for patient P6, since an anno-
tation error was detected during the CNN implementation.
These annotation errors were corrected both in the SVM work
with superpixels [25] and in this work. Therefore, to provide a
fair comparison, patient P6 was not included in the calculation

of the total means and standard deviations. Hence, the mean
accuracy obtained with the hybrid classification scheme was 3%
higher than the CNN-based approach, and 6% higher than the
SVM with superpixels, including a reduction in the standard
deviation. This behavior is repeated in the specificity met-
ric, where the proposed approach obtained 82% ± 33% against
78% ± 34% and 77% ± 16% of the SVM-based, and CNN-based
approaches, respectively. On the other hand, when examining
the sensitivity results, the SVM-based approach reached the
best performance with 91% ± 22%, followed by the CNN-based
approach with 88% ± 13%, and finally the proposed method-
ology with 83% ± 24%. The sensitivity performance for the
SVM-based approach is consistent, since it was optimized with
respect to this metric [25]. However, the proposed methodol-
ogy in this paper maintains a balance between sensitivity and
specificity at an overall level. In this way, our results indicate that
the classification of HS images can be achieved by their spectral
characteristics without observable overfitting. Additionally, the
proposal presented a clear improvement with respect to CNN-
and SVM-based approaches [23, 25], both of which use spatial
and spectral information.
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TABLE 1 Comparison of results between the hybrid classification scheme, and previous works using a superpixel SVM-based approach [25], and a CNN-based
methodology [23], highlighting in bold the best results.

Hybrid classification scheme SVM-based approach [25] CNN-based approach [23]

Patient Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

P1 0.92 0.86 0.94 1.00 1.00 1.00 0.93 0.91 0.96

P2 0.88 0.91 0.86 0.94 0.83 1.00 0.89 0.99 0.83

P3 0.97 0.88 1.00 1.00 1.00 1.00 0.85 0.91 0.80

P4 0.79 0.16 0.98 0.79 1.00 0.73 0.57 0.57 0.58

P5 0.81 0.72 0.83 0.68 1.00 0.63 0.69 0.81 0.64

P6* 0.78 0.29 0.90 0.90 0.50 1.00 − − −

P7 0.98 1.00 0.97 0.35 1.00 0.10 0.66 0.71 0.63

P8 0.96 1.00 0.94 0.96 0.83 1.00 0.96 0.96 0.96

P9 0.95 0.95 NA 0.95 0.95 NA 0.99 0.99 NA

P10 0.75 0.75 NA 0.25 0.25 NA 0.89 0.89 NA

P11 1.00 1.00 NA 1.00 1.00 NA 0.92 0.92 NA

P12 0.70 0.70 NA 1.00 1.00 NA 0.92 0.92 NA

P13 0.98 0.98 NA 1.00 1.00 NA 0.99 0.99 NA

Avg. 0.89 0.83 0.82 0.83 0.91 0.78 0.86 0.88 0.77

Std. 0.10 0.24 0.33 0.27 0.22 0.34 0.14 0.13 0.16

NA = metrics not applicable, this is because both classes were not present in these patients.
*Data not available for the CNN-based approach, these data are excluded from the calculation of the mean (Avg.) and standard deviation (Std.).

TABLE 2 Comparison of training time, inference time, and storage size
between the hybrid classification scheme, and previous works using a
superpixel SVM-based approach [25], and a CNN-based methodology [23].

Method

Training time

(min)

Inference

time per

image (s)

Storage

size

CNN-based
approach [23]

NA 72 768 GB

SVM-based
approach [25]

≈240 1440 0.870 GB

Hybrid classification
scheme

AD proposal 7 18 0.023 GB

NA = data not available for the CNN-based approach.

3.2.2 Data size and computational time

In addition to these results, the hybrid classification scheme
significantly reduced the data size and computational time for
the learning stage, and inference time for evaluation. One side
of this trend can be observed by analyzing the input data for
each methodology, which is presented in Table 2. Hence, the
CNN-based approach used 49,565 image patches of 87 × 87
pixels with 275 bands, which requires an approximated size in
memory of 768 GB. On the other hand, the data for the SVM-
based approach used 426,260 superpixels with 275 bands, and
this information spanned approximately 0.87 GB of memory
space. However, our hybrid classification scheme significantly
reduced the required information, that is, only 4,940 vectors

with 875 elements each, which translates to 22.9 MB; this is
a ×38 reduction than the SVM-based scheme in [25]. There-
fore, the proposed approach involved a reduction in memory
and computational overhead to perform data classification. This
property is also reflected in the training time of each methodol-
ogy in each fold (see Table 2), since the SVM-based approach
required 4 hours to perform the training, while the proposal
of zero-level NNs needed approximately 7 min, respectively.
Note that in the case of the CNN-based approach [23], it
was necessary a more powerful processing equipment, since
the computational time required more than a day to complete
the training.

3.2.3 Inference times

Finally, when analyzing the inference times presented in Table 2,
the proposed hybrid classification scheme achieved the lowest
value compared to the CNN-based, taking 25% of the infer-
ence time of this DL scheme. On the other hand, in the case
of the SVM-based method, the difference is much more signif-
icant, requiring only 1.25% of the time. These improved results
are due to the lower complexity of the proposed hybrid clas-
sification scheme. Hence, the optimization of the deep NNs
ensemble had 3,229,925 total trainable parameters. Of these
parameters, 1,048,320 corresponded to the ones of each level-
zero NN, while the level-one NN had only 84,965. Additionally,
when analyzing the HS image evaluation, the main complex-
ity in the Big  analysis lies in the SU stage, which has a
value of 

(
maxiter ⋅ K ⋅ (L + N 4)

)
, where L represents the
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number of spectral bands and K the number of pixels to be
analyzed within the HS image. Hence, the SU stage could be
considered the bottleneck in the hybrid classification scheme.
Similarly, the main limitation in the SVM-based approach is
the bottleneck caused by the superpixel generation. Although
the superpixel algorithm is highly parallelizable, the current
implementation in [25] is iterative, leading to high inference
times. In addition, in the original paper where this algo-
rithm was used for HS histological data, the authors mention
that the number of superpixels per image was overestimated,
which further increased the computational time required for
the generation of superpixels. Nevertheless, either the pro-
posed hybrid scheme or the comparison methods are feasible
for parallelization, which would reduce training and inference
times considerably.

4 CONCLUSIONS

In this study, we demonstrated the potential of a hybrid clas-
sification scheme that combines SU and an ensemble of deep
NNs for the identification of histopathology samples affected
by GB tumor. The proposed methodology relies on SU as a
features engineering step, and an ensemble of deep NNs for
binary classification. Our results showed improvements in the
proposed method against two approaches in the state-of-the-
art with the same database in terms of performance metrics,
data size, and computational and inference times [23, 25]. The
proposal reached accuracy and specificity with an average of
89% and 82%, respectively, with a reduced variability. Mean-
while, sensitivity was the only metric (average of 83%) in which
the comparison methods were superior to the proposed one.
Furthermore, our hybrid scheme significantly reduced the com-
putational cost to perform the classification step, resulting in
shorter learning stages and inference times without compro-
mising performance. These processing results open up the
possibility that the proposed approach could be used in clini-
cal applications to identify regions in histological brain samples
for further analysis by a pathologist.

Despite the improvements achieved by the proposed
method, our work presents some limitations. The most signif-
icant is the reduced amount of data available for training and
evaluating the model. Although this issue is partially mitigated
by the data augmentation strategy, there is a risk of overfit-
ting. The second limitation lies in the macroscopic labeling,
which restricts the effective identification of the characteristic
components of each class at the cellular level. Lastly, there is
awareness of spectral alterations caused by physical effects at
different magnifications used for analysis in histopathological
samples, especially at 50x and 100x levels. However, the means
to attenuate these alterations without losing relevant informa-
tion remain limited. In future work, we plan to increase the
database with patients who jointly present both classes (tumor
and non-tumor) in the histological samples to improve the clas-
sification metrics and further ensure the generalization of the
proposed solution in a broader dataset. In addition, we will

investigate the influence of magnification and its adverse effects
on the classification process.

We also suggest exploring new directions in line with the
proposed hybrid classification scheme. This goal involves con-
sidering classifier alternatives, such as attention-based methods
and even quantum learning techniques. Furthermore, we pro-
pose exploring various deep learning strategies applied in
remote sensing that could be feasible for implementation in HS
histopathology imaging. Similarly, the possibility of expanding
the proposed hybrid scheme to perform pixel-level classification
in an HS image will be evaluated. This expansion is consid-
ered once pixel-level labeling has been generated to achieve
a more precise identification of the characteristic components
of each class, increasing accuracy at the expense of a rise in
computational cost.
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