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Simple Summary: Patagonian moray cod is known to inhabit the cold waters near Antarctica, and it
belongs to the Muraenolepis genus. This genus has seven species, and five of them are recently
reported. The Muraenolepis genus has similar morphological characters, and this is a limitation of
taxonomical classification. In this study, a genome survey and microsatellite marker analysis were
conducted to characterize the genome profile for classification. As a result, genomic data such as
genome size and microsatellite motifs were obtained.

Abstract: The Muraenolepididae family of fishes, known as eel cods, inhabits continental slopes and
shelves in the Southern Hemisphere. This family belongs to the Gadiformes order, which constitutes
one of the most important commercial fish resources worldwide, but the classification of the fish
species in this order is ambiguous because it is only based on the morphological and habitat charac-
teristics of the fishes. Here, the genome of Patagonian moray cod was sequenced using the Illumina
HiSeq platform, and screened for microsatellite motifs. The genome was predicted to be 748.97 Mb,
with a heterozygosity rate of 0.768%, via K-mer analysis (K = 25). The genome assembly showed
that the total size of scaffolds was 711.92 Mb and the N50 scaffold length was 1522 bp. Additionally,
4,447,517 microsatellite motifs were identified from the genome survey assembly, and the most abun-
dant motif type was found to be AC/GT. In summary, these data may facilitate the identification of
molecular markers in Patagonian moray cod, which would be a good basis for further whole-genome
sequencing with long read sequencing technology and chromosome conformation capture technology,
as well as population genetics.

Keywords: Muraenolepis orangiensis; Patagonian moray cod; microsatellite; SSR; Illumina

1. Introduction

The Muraenolepididae family of fishes, known as eel cods, belongs to the Gadiformes
order and inhabits the cold–temperate waters of continental slopes and shelves in the
Southern Hemisphere. They dwell near the bottom of the ocean, at the midwater depth,
or near the surface. The family has the following morphological characteristics: the dorsal,
anal, and caudal fins are all joined; the chin has a barbel; and there are no teeth on the head
of some. The family consists of two genera—Notomuraenobathys (Balushkin and Pirodina,
2010) and Muraenolepis (Günther, 1880) [1,2].

The genus of Muraenolepis is regularly caught around South Georgia and the South
Sandwich Islands [3], and has been reported to be preyed on by the Patagonian tooth-
fish (Dissostichus eleginoides) [4]. Muraenolepis comprises seven species, and five of these
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species have been mostly described recently (Muraenolepis marmorata, Günther 1880; Patag-
onian moray cod, Vaillant 1888; Muraenolepis andriashevi, Balushkin & Prirodina 2005;
Muraenolepis trunovi, Balushkin & Prirodina 2006; Muraenolepis kuderskii, Balushkin & Priro-
dina 2007; Muraenolepis pacifica, Prirodina & Balushkin 2007; and Muraenolepis evseenkoi,
Balushkin & Prirodina 2010) [5–10].

Gadiformes fishes, such as cod and hake, are among the most important commercial
fishes worldwide. Despite their commercial importance, the taxonomic classification of
these fishes is still far from clear, because it is based on morphological data [11]. Likewise,
Muraenolepis fishes have been classified based on their morphological and habitat charac-
teristics; various views have been reported taxonomically, including Gadiformes [5,12].

To overcome the limitations of the morphology-based taxonomic classification of
Muraenolepis fishes, a study has analyzed the mitochondrial 16S and COI sequences of
these fish species, and thereby confirmed that Muraenolepis microps is a junior synonym
of M. marmorata [13]. Morphological characteristics are taxonomically very important.
However, there are species that are difficult to classify accurately based on morphological
characteristics alone, so genome-level information is needed to supplement this. In particu-
lar, the applicability of microsatellites (also known as simple sequence repeats (SSRs) in
differentiating between fish species has been validated [14], and the complete mitochondrial
genome of a Muraenolepis fish species has been sequenced [15].

In this study, we assessed the genomic characteristics of Patagonian moray cod via
a genomic survey based on next-generation sequencing (NGS) and then identified SSRs
that can be used as markers for taxonomic classification. The data from this study may
facilitate further genomic characterization of Patagonian moray cod.

2. Materials and Methods
2.1. Sample Preparation and Sequencing

A sample was collected from the Ross Sea (77◦05′ S, 170◦30′ E on CCAMLR Subarea 88.1),
Antarctica, and then transferred to a freezer at −80 ◦C. The muscle tissue was dissected
from the frozen sample for DNA extraction. The traditional phenol–chloroform method
was conducted to obtain the DNA. The quality and quantity of the DNA were assessed
using a fragment analyzer (Agilent Technologies, Santa Clara, CA, USA) and a Qubit
2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA), respectively. Then, 1 µg DNA
was sheared into 350 bp fragments, using a Covaris S2 system (Covaris, Woburn, MA,
USA). DNA library preparation was performed using TruSeq DNA PCR-Free (Illumina,
San Diego, CA, USA) according to the manufacturer’s protocol. The library quality was
assessed using a Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and then the
Illumina Novaseq 6000 platform with 2 × 150 bp format (Illumina, San Diego, CA, USA)
was used for sequencing.

2.2. Data Analysis for Genome Survey and Microsatellite Identification

The quality (Q) values (Q20 and Q30) were estimated from the primary data using
seqtk version 1.3 (Available online: https://github.com/lh3/seqtk (accessed on 20 January
2020). All of the clean reads were used to conduct the K-mer analysis to estimate the
genome size. Jellyfish version 2.1.4 was used for the K-mer analysis with K-values of 17, 19,
and 25. Based on the K-mer data, GenomeScope was used to determine the genome size,
repeat contents, and heterozygosity rate [16,17]. The draft de novo genome assembly was
carried out using Maryland Super-Read Celera Assembler (MaSuRCA version 3.3.4) [18].
For the genome-wide microsatellite investigation, the QDD pipeline (version 3.1.2) [19] was
used. The microsatellite repeats were investigated for their lengths and nucleotide repeats
(from mononucleotide repeats to hexanucleotide repeats). The analysis was conducted
in three steps, with the parameters of -contig 1, -make_cons 0, and -contig 1. The final
output was used to select the best primer pairs for the microsatellite repeats, and a total of
83 primer pairs were selected according to the following parameters of the QDD pipeline
(version 3.1.2): forward and reverse flanking regions between the SSR and the primer
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sequences ≥ 20 bp, a maximum primer alignment score of 5, the high-quality primer
design defined by the QDD pipeline, and ≥7 motif repeats [20]. Among these primer
pairs, 25 pairs were randomly selected for validation via PCR, performed in a Thermal
Cycler Dice® Touch (Takara Bio, Shiga, Japan). Each PCR tube (20 µL volume) contained
5 µL genomic DNA (20 ng/µL), 1 µL (10 pmole/L) of each forward and reverse primer,
10 µL of 2 × EmeraldAmp PCR Master Mix (Takara Bio, Kusatsu, Japan), and 3 µL of
double-distilled water. The PCR conditions were as follows: 2 min at 94 ◦C, followed by
35 cycles of 94 ◦C for 30 s, 60 ◦C for 30 s, and 70 ◦C for 1 min, and the last extension at
72 ◦C for 10 min. The PCR products were visualized via 4% agarose gel electrophoresis
with a 20 bp DNA ladder (Takara Bio, Kusatsu, Japan).

3. Results and Discussion
3.1. Genome Size Estimation and Genome Assembly

A total of 54.14 Gb of raw data were generated using the paired-end library method
in the Illumina NovaSeq platform. The Q20 and Q30 values were 93.3% and 87.2%, re-
spectively (Table 1). Q20 and Q30 values ≥ 90% and ≥85%, respectively, indicate accurate
sequencing [21]. Therefore, the accuracy of sequencing for the Patagonian moray cod was
high. In addition, the GC content was 49.5% (Table 1). These data were used to estimate the
genome size via K-mer analysis. Based on the 25-mer distribution, the predicted genome
size was approximately 748.9 Mb, and the heterozygous rate was estimated at 0.768%.
The duplication rate was 1.18%, and the highest frequency was nearly 40× coverage
(Table 2 and Figure 1). MaSuRCA was used to perform a genome assembly (Table 3). We ob-
tained 661,719 scaffolds, and the total size of the scaffolds was 711,920,928 bp. The longest
scaffold size was 67,330 bp, and the number of scaffolds longer than 1 Kb was 211,863.
The N50 scaffold length was 1522 bp, and the GC content was 45.7%. These genome
survey results can serve as preliminary data for further whole-genome studies with ad-
vanced sequencing technologies using long read sequencing technology and chromosome
conformation capture technology to achieve a more thorough assembly.

Table 1. Statistics of the genome-sequencing data.

Raw Data (bp) Q20 (%) Q30 (%) GC Content (%)

54,142,458,226 93.3 87.2 49.5

Table 2. Genome size estimation via K-mer analysis.

Genome Size (bp) Heterozygosity (%) Duplication Ratio (%)

17-mer 709,066,708 0.82 1.3
19-mer 723,179,522 0.832 1.23
25-mer 748,978,687 0.768 1.18

Table 3. Statistics of the assembled genomic sequences.

MaSuRCA

Number of scaffolds 661,719
Total size of scaffolds 711,920,928

Longest scaffolds 67,330
Number of scaffolds > 1K nt 211,863
Number of scaffolds > 10K nt 1199

N50 scaffold length 1522
L50 scaffold count 120,833

GC content (%) 45.7
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Err, error rate; Dup, duplication rate. The blue bars and black line show the observed K-
mer distribution and the modeled distribution without the error K-mers (indicated by the 
red line), respectively, up to a maximum K-mer coverage specified in the model (indicated 
by the yellow line). 
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Figure 1. K-mer analysis (K = 25).

Len, estimated total genome length; Uniq, unique portion of the genome (not repeti-
tive); Het, heterozygosity rate; Kcov, mean K-mer coverage for the heterozygous bases; Err,
error rate; Dup, duplication rate. The blue bars and black line show the observed K-mer
distribution and the modeled distribution without the error K-mers (indicated by the red
line), respectively, up to a maximum K-mer coverage specified in the model (indicated by
the yellow line).

3.2. Identification of Microsatellite Motifs

A total of 4,447,517 microsatellite motifs were identified from the genome survey
assembly of Patagonian moray cod. The types of the motifs were dinucleotide, trinu-
cleotide, tetranucleotide, and pentanucleotide, with the fractions of 77.40% (3,430,720),
17.89% (793,122), 3.97% (175,791), and 0.74% (21,801), respectively (Table 4). The most
frequent dinucleotide motif was found to be AC/GT (61.21%), followed by AG/CT
(24.80%), AT/AT (13.83%), and CG/CG (0.16%). The most abundant trinucleotide mo-
tif was found to be AGG/CCT (29.04%), followed by AAT/ATT (18.99%), ACC/GGT
(14.34%), AAC/GTT (9.62%), AAG/CTT (9.03%), ATC/GAT (6.49%), AGC/GCT (5.24%),
ACT/AGT (3.89%), CCG/CGG (2.69%), and ACG/CGT (0.67%). Regarding the tetranu-
cleotide and pentanucleotide motifs, the most frequent motifs were ACAG/CTGT (27.78%)
and AGAGG/CCTCT (32.37%), respectively (Table 4). To compare the microsatellite motifs
of Patagonian moray cod with other species, the microsatellite motif analysis results of
Trematomus loennbergii and Pogonophryne albipinna were used [22,23]. When comparing
the number of microsatellites, Patagonian moray cod had the most SSRs, and there was
no significant difference in the number of SSRs between T. loennbergii and P. albipinna.
When comparing the repeat type, it was confirmed that the ratio of trinucleotides was
slightly higher in Patagonian moray cod than in other species. Additionally, unlike other
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species, Patagonian moray cod did not have a hexanucleotide type (Table S1). Based on the
microsatellite motif analysis and the parameters of the QDD pipeline, 83 primer pairs were
selected (Table S2). To ensure the usability of these microsatellite markers, 25 primer pairs
were randomly selected and used for PCR with the genomic DNA of Patagonian moray
cod. Consequently, 15 primer pairs were observed to yield only a single band (Figure 2).

Table 4. Distribution of the microsatellite motifs.

Repeat Motif
Number of Repeats

5 6 7 8 9 10 11–20 >20 Total

Dinucleotide (3,430,720)

AC/GT 329,788 224,159 178,326 154,725 144,969 134,928 710,095 223,051 2,100,041
AG/CT 230,644 141,955 96,287 67,788 50,979 39,120 158,771 65,210 850,754
AT/AT 119,678 76,695 51,221 38,042 31,331 24,631 122,875 10,068 474,541
CG/CG 3286 1359 427 156 141 15 0 0 5384

Trinucleotide (793,122)

AGG/CCT 64,598 41,234 30,104 21,653 15,244 10,409 42,322 4735 230,299
AAT/ATT 40,273 26,132 19,051 14,810 12,857 9999 26,160 1321 150,603
ACC/GGT 37,009 28,553 19,322 12,185 6659 4288 5583 102 113,701
AAC/GTT 31,660 18,564 11,204 5687 3476 1592 3708 404 76,295
AAG/CTT 18,427 12,484 7928 6032 4720 3360 11,275 7388 71,614
ATC/GAT 14,451 10,771 6815 4771 3575 2427 7904 795 51,509
AGC/GCT 16,945 9439 5433 3676 2141 1205 2433 324 41,596
ACT/AGT 9510 6022 4239 2686 2189 1570 4066 564 30,846
CCG/CGG 10,871 5428 2073 1244 695 401 616 0 21,328
ACG/CGT 2637 1513 640 252 123 53 113 0 5331

Tetranucleotide (175,791)

ACAG/CTGT 12,245 8574 5599 3472 3155 2310 7692 510 43,557
AGGG/CCCT 10,965 6691 4420 2849 2176 1828 1754 0 30,683
ACGC/GCGT 1952 1653 885 758 607 757 3761 786 11,159
AAAG/CTTT 2532 1485 1131 527 407 380 2587 802 9851
AAAC/GTTT 3692 2538 1319 861 371 258 254 0 9293
AAAT/ATTT 3812 1907 822 476 285 98 520 89 8009
ACTC/GAGT 1846 1499 853 459 319 828 1834 215 7853
ACAT/ATGT 2236 1207 920 565 375 481 1481 171 7436
AAGG/CCTT 2474 1144 607 304 178 136 655 242 5740
ATCC/GGAT 2643 1129 527 344 110 128 473 77 5431

Others 14,624 7669 4304 2517 1748 1238 4132 547 36,779

Pentanucleotide (32,801)

AGAGG/CCTCT 2090 1072 733 467 606 365 2378 33 7744
AATGT/ACATT 976 554 333 225 82 12 9 0 2191
AATCT/AGATT 1044 392 244 183 72 42 9 0 1986
AACAC/GTGTT 897 358 270 149 69 15 45 0 1803
AGGGG/CCCCT 968 419 161 113 15 0 0 1676
AATAT/ATATT 431 319 201 116 129 60 180 0 1436

Others 2932 1735 739 694 268 212 509 0 7089

Total 1,008,087 649,482 459,698 350,482 291,381 243,972 1,126,900 317,515 4,447,517
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agarose gel electrophoresis was used. The number is primer pairs order.

With the advance of NGS technology and bioinformatics tools, genome survey se-
quencing and K-mer analysis have developed rapidly, assisting with the prediction of
genome size and characteristics in non-model species without basic genomic information.
According to a flow cytometry-based approach, previous studies have estimated that the
genome sizes of several species living in Antarctica were 0.7–1.4 Gb [24]. Recent studies
using NGS technology estimated the genome sizes of Antarctic fishes at 0.6–1 Gb [25–29].
In this study, the genome size of Patagonian moray cod was 0.7 Gb and it was within the
range of the previously reported genome sizes of Antarctic fishes. Therefore, the genome
size of Patagonian moray cod is an acceptable result. For the genome assembly, if the
heterozygosity rate is more than 0.5%, it is difficult to assemble. The heterozygosity rate of
Patagonian moray cod was 0.7%. It might have been affected by the use of short scaffolds
based on short read sequencing technology. In addition, the GC content is also one of
the factors affecting sequence bias; if the GC content is more than 65% or less than 25%,
sequence bias may influence the genome assembly quality [30–32]. The GC content of Patag-
onian moray cod was 45.7%, and this was within the range from 25% to 65%, which was
a normal range. Therefore, the assembly result of this study might be of acceptable range,
and the GC content of Patagonian moray cod would be not affected by genome sequence
quality. This is the first report of a genome survey of Patagonian moray cod, and these data
provide a preliminary understanding of the genome characteristics of Patagonian moray
cod. However, a further study with long read sequencing technology and chromosomal-
level scaffolding technology is needed to obtain more high-quality genome information for
Patagonian moray cod. For identifying the microsatellite markers, using genome survey
data has cost- and time-effective advantages compared with the traditional microsatellite
marker development method. In this study, the most frequent motifs were dinucleotide
repeat motifs, except for the mononucleotide repeat motif, and the less abundant din-
ucleotide repeat motifs were CG/CG. This result was comparable with other previous
studies on microsatellite repeats using Danio rerio, Oreochromis latipes, and O. niloticus [33],
and this may be because cytosine is methylated with thymidine [34]. The tendency of the
overall motif frequency was quite similar to other studies with fishes [35,36]. This data may
be useful in identifying the microsatellite markers of Patagonian moray cod. Moreover,
if further studies using various Muraenolepis populations are conducted, more meaningful
data for molecular marker development would be obtained.
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4. Conclusions

In the present study, the genome of Patagonian moray cod was assembled, and the
microsatellite motifs were characterized. Therefore, the genome size of Patagonian moray
cod was estimated at 748.9 Mb, based on the K-mer analysis. In addition, SSR analysis
yielded 4,447,517 SSRs, and the most abundant repeat motif was found to be a dinucleotide,
with the most frequent dinucleotide motif of AC/GT.

These genomic data may be useful for verifying taxonomical classifications, and it
would be basic information for developing novel molecular markers in various populations.
However, further studies, such as a more complete genome assembly at the chromoso-
mal level, and validation experiments using various Muraenolepis populations, would
be needed.
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