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Abstract: Reactive Oxygen Species or “ROS” encompass several molecules derived from oxygen that
can oxidize other molecules and subsequently transition rapidly between species. The key roles of
ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells,
increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations,
and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS
production activates myriad downstream survival pathways that further cancer progression and
metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer,
and stromal and immune cells with emphasis on and the transcription machinery involved in redox
homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic
targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR,
2 Deoxyglucose, CPI-613, and Etomoxir.
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1. Reactive Oxygen Species

Reactive oxygen species “ROS” encompass several molecules derived from oxygen which can
oxidize other molecules and subsequently transition rapidly between species [1,2]. ROS are highly
reactive, due to the presence of unstable bonds or unpaired valence electrons [2]. Cellular ROS exist as
free radicals, (hydroxyl, OH−), neutral molecules (hydrogen peroxide, H2O2), or ions (superoxide anion,
O2
−) [2–5]. The one-electron reduction of molecular oxygen forms the short-lived superoxide O2

− as it
dismutates, catalyzed by superoxide dismutase (SOD), forming more stable hydrogen peroxide (H2O2)
that can diffuse across membranes [2]. H2O2 is the most abundant form of ROS found in eukaryotes [3].
Additionally, reactive nitrogen species (RNS) exist within the cell as peroxynitrite (ONOO−), nitric oxide
(NO), and nitrogen dioxide (NO2) [3,6]. RNS are clearly linked to ROS, as evidenced by their crosstalk
and the intersection in their generation, function, and turnover [7,8]. This is particularly evident in
the reaction of O2

− and NO generating ONOO− [7]. Moreover, an analogous relationship is observed
among the thiol oxidation products involved in regulation and cell signaling with nitrosothiols formed
from NO [7–9].
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2. Sources of ROS

Intracellular ROS generation can be instigated by both exogenous and endogenous
stimuli [10]. Exogenous stimuli include environmental stressors such as UV and ionizing radiations
(gamma-ray/x-ray), pollutants, chemicals, heavy metals, as well as xenobiotics (e.g., drugs) [4,10].
Endogenous ROS production is driven by both nonenzymatic and enzymatic reactions [11]. Enzymatic
reactions involved in the cytochrome P450 system, prostaglandin synthesis, respiratory chain, and
phagocytosis all generate ROS as a metabolic byproduct [2,4], whereas nonenzymatic sources include
redox-active metals such as copper (Cu) and iron (Fe) [10]. In addition, hydroxyl radicals are generated
as a byproduct of the Fenton/Haber-Weiss reaction in which H2O2 oxidizes Fe(II) [1,3,10].

The primary generators of endogenous ROS are NADPH oxidase complexes (NOX) (Figure 1)
and the mitochondrial electron transport chain (ETC) [12,13] through the production of superoxide in
the mitochondrial ETC by electron leakage from Complex I (NADPH dehydrogenase), and in Complex
III (ubiquinone-cytochrome c reductase) [3,6]. Electron and proton leaks occur due to inefficient
coupling between phosphorylation and respiration [6]. In the ETC, electrons are transferred through
the reduction of the electron carriers, flavin adenine dinucleotide (FADH2) and nicotinamide adenine
dinucleotide (NADH) [6]. Subsequently, in Complex IV, cytochrome c oxidase (COX) catalyzes the
tetravalent reduction of molecular oxygen (O2) into water as it acts as the final electron acceptor during
oxidative phosphorylation [6].
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[2,7,14] (Figure 2). The duration, localization, and quantity of ROS generation ensure biological 
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NOX is a family of transmembrane enzymes that exists in several isoforms and is ubiquitous in
various cell types [6]. ROS is generated during the activation of NOX in response to cytokines, growth
factors, or G protein-coupled receptor (GPCR) agonists [6]. NOX produces ROS as it catalyzes the
electron reduction of oxygen from the electron carrier NADPH, and its subsequent transfer through FAD
and heme cofactors [3]. Superoxide generated during this process rapidly dismutates to H2O2, which
can then translocate into the cell through specific aquaporin channels in the plasma membrane [6].

3. Physiological Roles of ROS

Many normal physiological processes and cellular functions rely on ROS and redox regulation [2].
Amino acids, especially cysteine, present in several proteins including phosphatases, kinases, receptors,
transcription factors, and ion channels, can be redox-regulated and modified by ROS [2,7,14] (Figure 2).
The duration, localization, and quantity of ROS generation ensure biological specificity [2]. Accordingly,
many biological processes, such as cell differentiation, adaptive immunity, and oxygen sensing rely on
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ROS formed specifically from Complex III of the mitochondrial ETC [1]. Furthermore, ROS produced
in the mitochondrial ETC Complex I has been associated with pathological conditions that arise with
continually elevated cellular levels of ROS, such as inflammatory and immune system dysfunctions,
allergies, neurodegenerative and cardiovascular disease, diabetes, aging, and cancer [6]. ROS can
also act as signaling (Figure 2) molecules at low to moderate levels, and can intervene accordingly in
the cell cycle (Figure 2) via cellular proliferation, growth, differentiation, apoptosis, migration, and
cytoskeletal regulation [2,11]. Biosynthetic pathways (Figure 2), such as the crosslinking of extracellular
matrix proteins and the iodination of thyroid hormone also rely on ROS [2]. Moreover, reproductive
systems depend on ROS to facilitate fertilization and normal maturation [15–17] (Figure 2). In addition,
ROS are important during host defenses, directly and indirectly contributing to the destruction of
microorganisms [18–22] (Figure 2). Thus, the key roles of ROS in biological processes are cell signaling,
biosynthetic processes, and host defense.
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4. Oxidative Stress

Under physiological conditions, there is equilibrium between intracellular exogenous, endogenous
ROS and antioxidants as they regulate the generation and elimination of ROS [5,10]. The cellular redox
balance is regulated by the relative concentrations of oxidized and reduced forms of enzymes, proteins,
RNS, ROS, and thiol-containing molecules [5]. Accordingly, oxidative stress ensues in a biological
system of cells and tissue, when there is an imbalance between the generation of ROS and the proficient
removal of these elements [4,11]. Sustained elevation of ROS, particularly free radicals, causes damage
to DNA, lipids, and proteins [2]. DNA oxidation leads to changes in gene expression, as well as DNA
mutations [2]. Since the mitochondria lack DNA repair enzymes, mitochondrial DNA (mtDNA) is more
sensitive to oxidative stress-induced mutations [1,2]. At the cellular level, superoxide is maintained
at a steady-state concentration in the picomolar range, whereas H2O2 is maintained in the range of
1–10 nM [3]. However, minute and regulated deviations from these steady-state concentrations can
trigger biological responses in the form of ROS signaling cascades [3], triggered as ROS are released
into the cytosol from the mitochondria resulting in excess oxidative stress. In turn, ROS production
increases transiently as the mitochondrial membrane potential is reduced, and subsequently elicits
additional ROS release by neighboring mitochondria that may then induce cell death [3].
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Many cytoprotective enzymes are activated and regulated at the transcriptional level by oxidative
stress [6]. Antioxidant response elements (ARE) facilitate this transcriptional response. These ARE
were originally discovered in the promoters of genes encoding NADPH quinone oxidoreductase-1
(NQO1) and glutathione S-transferase A2 (GSTA2), the two major detoxification enzymes [6]. In several
cell types, the synthesis of antioxidant enzymes including glutathione peroxidase (GPx), thioredoxin
reductase (TrxR), peroxiredoxin 1 (Prdx-1), heme-oxygenase-1 (HO-1), glutathione reductase (GR),
and glutaredoxin (Grx) were found to be ARE-dependent [6]. Elevated ROS also activates the
Nrf2/Keap1 (nuclear factor erythroid 2-related factor 2/ Kelch-like ECH-associated protein 1) pathway,
which regulates an additional intracellular antioxidant defense where oxidative stress causes Nrf2
to translocate into the nucleus to bind with ARE located within the regulatory gene regions and
consequently, regulate the expression of downstream target genes [6].

5. Oxidative Stress and Cancer

An observed hallmark of many tumors and cancer cell lines is the elevated rate of ROS scavenging
to counterbalance the slightly higher levels of ROS present under normal physiological conditions.
This phenomenon is referred to as “mild oxidative” stress, which is associated with the activation of
oncogenic pathways [1,11]. Accordingly, ROS production by cancer cells results from modifications in
numerous signaling pathways that affect cellular metabolism [23]. Oxidative stress can promote cancer
progression via genome instability and chromosomal abnormalities with amplified oncogene activation,
altered cancer cell metabolism, and loss of tumor suppressor genes [4,23,24]. DNA damage results in
hydrolyzed DNA bases, forming adducts that impair the normal growth of cells through the induction
of gene mutations and the alteration of normal physiological transcription [4,25,26]. Furthermore,
a multitude of DNA mutations may result from oxidative stress in the form of DNA-protein crosslinks,
the rearrangement of DNA sequences, base-free sites, gene duplications, the miscoding of DNA
base and sugar subunits, and the activation of oncogenes, as well as strand breaks [2,4]. Moreover,
excessive cellular ROS may accumulate in cancer cells due to the high metabolic rate in the endoplasmic
reticulum, cell membrane, and in the mitochondria. Due to the fact that rapidly proliferating cancer
cells require high levels of ATP to meet their elevated metabolic demands, continuous mitochondrial
respiration is necessary [6,11]. Consequently, mitochondrial ETC and coupling efficiency are impaired
leading to increased leakage of electrons [6] (Figure 1). Thus, cancer cell ROS-derived mutations
promote further ROS production fostering cancer progression [6].

A hypoxic tumor microenvironment triggers the activation of various genes that regulate cell
survival, proliferation, and growth [6], and consequently escalates the generation of ROS in tumors by
HIF-1α (hypoxia-inducible factor 1 alpha) and its target genes [6]. Several cytokines and growth factors
are generated during hypoxic exposure. The activation of these pathways upregulates NOX, increases
ROS production, and hence activates downstream survival pathways [13,23,27]. High ROS levels
promote tumorigenesis through the activation of myriad pathways such as the phosphatidylinositol-3
kinase (PI3K)/ protein kinase B (AKT)/ nuclear factor Kappa-light-chain-enhancer of activated B cells
(NFκB) pathway (Figure 3). Furthermore, it has been reported that ROS contributes to cancer progression
and survival by phosphorylating JUN N-terminal kinase (JNK), promoting expression of cyclin D1 and
activating mitogen-activated Protein Kinase (MAPK) [24,27]. Moreover, an abundance of ROS levels
affects cellular proliferation through the phosphorylation and activation of both extracellular-regulated
kinase 1/2 (ERK1/2) and ligand-independent receptor tyrosine kinase (RTK), angiogenesis through the
release of angiopoietin, vascular endothelial growth factor (VEGF), tissue invasion, and metastasis
through the secretion of metalloproteinase (MMP) into the extracellular matrix. Additionally, such
levels influence Rho-Rac interaction and the overexpression of Met oncogene [13,27]. ROS has been
linked to several significant tumor metastasis processes including survival upon matrix detachment,
loss of cell-to-cell adhesion, and migration and invasion through the cell basement membrane [28].
Several tumor suppressors are inactivated by ROS as they lead to the oxidation of cysteine residues
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at their catalytic sites; phosphatase and tensin homolog (PTEN) and protein tyrosine phosphatases
(PTPs) are examples of tumor suppressors inactivated by ROS [24].
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6. Metabolic Pathways and Redox Homeostasis

6.1. Glycolysis

The most common glycolytic pathway was discovered in the 20th century, where glucose is
transported from the extracellular space to the cytosol by glucose transporters and converted to
glucose-6-phosphate by hexokinases. Subsequently, a series of enzyme-catalyzed reactions occur,
yielding two moles each of pyruvate, adenosine tri-phosphate (ATP), and NADH, per mole of glucose
(summarized in [29]). In addition, Otto Warburg [30–32] reported that even in aerobic conditions
cancer cells have a tendency to undergo glycolytic metabolism instead of the more efficient and
preferred method, i.e., oxidative phosphorylation, a phenomenon that has since come to be known as
the “Warburg effect” [30–32]. One invaluable determinant of cellular redox potential is the continuous
supply of mitochondrial NADH that is necessary for electron transport [33]. Glucose metabolism is an
essential determinant of redox homeostasis in tumors, as glycolytic intermediates are shuttled into the
metabolic pathways that either directly or indirectly generate reducing equivalents, mainly pentose
phosphate pathway (PPP)-derived NADPH or glutaminolysis-derived reduced glutathione (GSH) [34].
When glycolytic rates vary, several cellular mechanisms are in place to sustain redox homeostasis. One
such mechanism is the malate-aspartate the shuttle of tricarboxylic acid (TCA) cycle, which allows
electrons produced during glycolysis to pass the inner mitochondrial membrane; hence, it is aptly
able to restore NADH imbalance. However, when the rate of glycolysis overwhelms the limits of the
malate-aspartate shuttle, the conversion of pyruvate into lactate occurs via lactate dehydrogenase
(LDH) with the production of NAD+ [35]. While the metabolic adaptations of cancer cells are highly
complex, several promising attempts have been made to exploit glucose metabolism to target and
ultimately inhibit cancer progression [36].

6.2. Fatty Acid Oxidation

Fatty acid oxidation (FAO) is a series of measured oxidations that take place in the mitochondria
which allows for long- and short-chain fatty acids to be truncated, leading to the generation of
NADH, FADH2 and acetyl-CoA [37]. All three of these products are consequently used by a cell
in bio-energetic pathways to produce ATP. A significant fraction of acetyl-CoA enters into the TCA
cycle and generates citrate [29]. A portion of this citrate is then exported into the cytosol where
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ATP-citrate lyase (ACLY) breaks it down to oxaloacetate and acetyl-CoA [29]. NADPH can then be
yielded by the oxidative decarboxylation of oxaloacetate to pyruvate by malic enzyme (ME) [29,37].
Alternatively, malate can be produced by the swift reduction of oxaloacetate, which is then reoxidized
after being transported back to the mitochondria [29,37]. The generation of NADPH by FAO prevents
cancer cell death during the loss of matrix adhesion and metabolic stress conditions through the
modulation of the liver kinase B1 (LKB1)/AMPK axis [38]. Importantly, the key FAO regulators,
such as the carnitine palmitoyltransferase-1 (CPT1), are overexpressed in solid and hematologic
malignancies [39,40], and pharmacological inhibition of FAO impairs NADPH production, promotes
oxidative stress-induced cell death and strengthens the proapoptotic effect of cytotoxic agents [41–48].

6.3. Pentose Phosphate Pathway

The pentose phosphate pathway (PPP) is a key glucose catabolic pathway whereby cancer cells
generate marked levels of ribose-5 phosphate, a precursor of nucleotide synthesis. Ribose-5 phosphate
is also a critical substrate for anabolic processes to detoxify harmful ROS [49,50]. The overexpression
of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, enhances the
PPP-dependent production of NADPH [51]. The regulation of G6PD directly depends on the
availability of glucose, as glucose funneling into the oxidative branch of the PPP directly controls the
redox homeostasis [52]. TP53-induced glycolysis and apoptosis regulator (TIGAR) is a homologue
of fructose-2,6-bisphosphatase [10] whose expression inhibits glycolysis, induces a shift toward
the PPP through inhibition of phospho-fructokinase activity and consequently reduces the levels
of fructose-2,6-bisphosphate [10]. This shift toward the PPP leads to the production of NADPH
and reduced glutathione (GSH), the major ROS scavengers [10,53]. The downregulation of TIGAR
expression by the synergistic effect of GO-203, a peptide inhibitor of oncoprotein mucin 1 C-terminal
subunit (MUC-1), and bortezomib, a proteasome inhibitor, results in a decrease of GSH generation,
inducing oxidative stress with ROS-mediated cell death in multiple myeloma cells [53].

6.4. Glutamine Metabolism

Glutaminolysis is yet another pathway mediating the redox balance in cancer cells. As a
nonessential amino acid, glutamine is a glutathione production precursor, an energy generation
intermediate, and a nitrogen and carbon supply for nucleotide biosynthetic procedures [54]. An increase
in glutamine catabolism commonly indicates a reprogramming of tumor metabolism that supports
redox homeostasis, signal transduction, and cell proliferation [54]. Glutamine deprivation can
decrease GSH levels in neuroblastoma cells, modifying the redox balance, impairing cell proliferation,
and increasing their chemosensitivity to alkylating agents [55]. Glutamine can be converted into
glutamate by glutaminase enzymes (GLS1/2); these enzymes contribute directly to glutathione
synthesis and promote cysteine uptake [54]. GLS1 inhibition in P493 B-cell lymphoma (BCL) cells by
bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) has been shown to weaken cell
proliferation, induce DNA fragmentation, and lead to apoptotic cell death. Accordantly, in mice with
Myc-induced hepatocellular carcinoma, genetic silencing of GLS1 significantly impaired tumor growth
and prolonged survival [56]. GLS1 inhibition by BPTES has also been found to selectively suppress the
growth of cancer cells IDH1 and IDH2 mutations [57,58]. The inhibition of glutaminolysis has been
linked with intracellular GSH content diminution and the ensuing production of ROS, particularly
in carcinoma cells with glutamine addiction [59,60]. Finally, for cancer cells and mouse embryonic
fibroblasts, synthetic lethality has been shown to be induced by GSL1 inhibition in combination with the
inhibition of heat-shock protein 90, activating modifications to the mammalian target of the rapamycin
complex I (mTORC1) pathway via increased ER stress and a depletion of GSH that disturbs redox
balance [61].
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6.5. The Serine–Glycine One-Carbon Metabolism (SGOC)

Cancer cells have long been linked with serine–glycine one-carbon metabolism (SGOC) due to the
important role of SGOC in regulating protein synthesis, nucleic acids, and lipids in proliferating cells.
SGOC is a complex biochemical reaction network that integrates input from glucose derivatives, mainly
serine and glycine, as well as amino acids and generates carbon unit outputs (tetrahydrofolate (THF)
and its derivate) [62]. Recently this pathway has also been shown to be crucial in redox balance; serine
is primarily used in mammalian cells mitochondria for NADPH generation [62,63]. Serine catabolism,
along with glycine, is responsible for mitochondrial generation of NADPH [62,63]. The expression
of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), phosphoserine aminotransferase 1,
and 3-phosphoglycerate dehydrogenase, pivotal one-carbon metabolism enzymes, [62,63] is regulated
with by the antioxidant transcription factor Nrf2, supporting nucleotide and glutathione synthesis [64].
Further studies revealed that the use of antifolates such as methotrexate and pemetrexed represents
a cornerstone of antineoplastic therapy against solid and hematologic malignancies [64,65]. Finally,
pathways of one-carbon metabolism in chemo-resistant tumors, can be successfully targeted with
agents that interfere with nucleotide synthesis such as 5-FU or gemcitabine [62].

6.6. Oxidative Phosphorylation

Oxidative phosphorylation (OxPhos) is integral to the maintenance of redox homeostasis as it
serves as a major supplier of ATP in cancer cells by the phosphorylation of ADP by electron transport
in the mitochondria during aerobic respiration [66,67]. Mitochondria not only serve as the major
energy source of the cell, they also produce superoxide anions by the hosted metabolic enzymes and
multiple redox-active complexes. Hence, mitochondria are a significant endogenous ROS generation
source [66,67]. In the ETC, the transfer of electrons from reduced metabolic intermediates, NADH and
FADH2, to molecular oxygen occurs in a process that depends on oxygen availability and mitochondrial
membrane potential status; univalent oxygen reduction into superoxide is supported by semiquinone
radical generation at complexes I, II, and III [12,68–70]. Additional mechanisms for producing
superoxide in mitochondria include the electron transfer flavoprotein-ubiquinone oxidoreductase
mitochondrial system in the inner membrane, mitochondrial glycerol-3 phosphate dehydrogenase,
pyruvate dehydrogenase in the mitochondrial matrix, and 2-oxoglutarate dehydrogenase [12,68–70].

7. Effects of Tumor Microenvironment (TME) Metabolism on Immune Cells and Immunotherapy

A discussion of the effect of tumor cell metabolism on surrounding immune cells in the TME, as
well as the consequences this effect may have on immunotherapeutic options, is warranted. Due to their
hyperproliferative state, cancer cells require a tremendous amount of energy and hence leave their TME
in a state of chronic glucose and nutrient deprivation [71]. In effect, this glucose depleted condition
renders immunotherapy inefficient as several immune cells, including T cells, natural killer (NK) cells,
tumor associated macrophages (TAMs), and dendritic cells (DCs) utilize glucose for sustenance [72–74].
In addition to ATP generation, mitochondrial OXPHOS is a major cellular source of ROS, mainly H2O2

from complex I, II and III [75]. H2O2 has been reported to induce the phenotypic switch of macrophages
and fibroblasts into a pro-inflammatory cancer-associated phenotype that further supports the multistep
cascade of tumor progression and metastasis [76,77]. In addition, ROS play a significant role in lipid
peroxidation that in turn, instigates pro-inflammatory immunosuppressive macrophages [78]. TAMs
are also affected by reduced precursors to energy; lack of metabolites leads to increased polarization of
protumorigenic M2 macrophages which are highly dependent on OxPhos and FAO [79]. In addition,
the high extracellular lactate characteristic of the TME was cause a phenotypic switch from the
pro-inflammatory M1 macrophage to the more immunosuppressive M2 macrophage [80]. Additionally,
the influence of lactate on HIF expression, enhances the levels of arginase I and iNOS in M2-polarized
macrophages [81], resulting in immunosuppressive T cell behavior.
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High levels of ROS in the TME inhibit T-cell proliferation and antitumor function leading to T-cell
hyporesponsiveness. Tumor-infiltrating lymphocytes (TILs) suffer from reduced glycolytic capacity and
cytokine production due to reduced Ca2+ signaling attributed to such a glucose deprived TME [82,83].
Low levels of ROS are required for T-cell activation, proliferation and function as T-cell activation
through stimulation of the T cell receptors (TCR) and costimulatory receptors induce signaling pathways
and transcription factors. TCR-dependent calcium influx into CD4+ T-cells leads to the generation
of mitochondrial ROS from complex I and III of the ETC leading to CD4+ T-cell activation [84].
CD8 TILs exhibit functional and metabolic impairment, with high levels of mitochondrial ROS and
downregulation of mitochondrial superoxide dismutase 2 (SOD2). The functional impairment and the
antitumor activity of CD8 TILs were rescued by mitochondrial ROS scavengers [85,86] as well as the
expression of PGC1α, the key player in mitochondrial biogenesis [87]. Furthermore, both ROS and
RNS inhibit T-cell infiltration into tumors by inactivating CCL2 by nitration [88], and induce T-cell
tolerance through the impairment of responsiveness and binding of CD8+ T-cells to peptide–MHC
complexes [89].

Myeloid-derived suppressor cells (MDSCs), a subset of heterogeneous myeloid cells of
polymorphonuclear (PMN-MDSC) or monocytic (M-MDSC) origin, thrive in conditions with high ROS
levels that maintain the immunosuppressive properties of MDSCs. Consistently, in the TME, MDSCs
produce high levels of ROS as one of the major mechanisms that MDSCs use to suppress not only T
cells but also NK cell responses and cytotoxicity in tumors [90,91]. Importantly, redox-signaling and
oxidative stress responses in MDSCs are mainly regulated by HIF-1α and Nrf2, both of which are
critical orchestrators of MDSC fate and function [90,91].

Natural killer (NK) cells, a subset of myeloid cells, plays a significant role in infection, hematopoietic
stem cell transplantation, autoimmunity, and tumor immune surveillance by virtue of their ability to
spontaneously kill “stressed” target cells without prior sensitization or MHC restriction. ROS/RNS
could reduce the cytotoxicity of NK cells and reverse the suppression of immunity [92]. The activity
of NK cells and their antitumor effect has been reported to be regulated by the tumor suppressor
GSK-3β through inhibition of the ROS/eIF2B pathway suggesting ROS as a potential target for cancer
therapy [93].

With respect to dendritic cells (DCs), contradictory effects of hypoxic TME with excessive ROS
have been reported [94]. Despite the effect of hypoxia and ROS in the upregulation of a plethora of
pro-inflammatory cytokines, both hypoxia and ROS stimulate migration of immature but prevent
migration of mature—DCs resulting in an immunosuppressive TME. These lead to limited influx and
maturation of immature DCs to the TME while the egress of activated DCs to lymphoid system is
prevented, limiting the function of DCs in presenting tumor antigens to activate T lymphocytes, [94].

In addition to the aforementioned effects of excessive ROS, hypoxia and lactic acidosis that result
from excessive tumor cell glycolysis and glucose-depletion, the depletion of other nutrients in the
TME had a profound effect on immune cells infiltration and phenotype. For example, glutamine
depletion in the TME may increase regulatory T cells (Treg), resulting in a more immunosuppressive
environment [95]. CD8+ T cells and NK cells, demonstrated decreased function in conditions of
glutamine, serine, or glycine depletion [92,96,97].

The consequence of tumor cell metabolism on immune cells also diminishes the effectiveness of
immunotherapies, many of which rely on fully functional immune cells to execute their antitumorigenic
effects. The efficacy of the new immune checkpoint inhibitors and chimeric antigen receptor T cells (CAR
-T) for cancer treatment is highly dependent on T cell proliferative ability and effector functions [87,98].
Immune-checkpoint inhibition by blockade of programmed death-1 (PD-1) signaling decreased both
mitochondrial H2O2 and total cellular ROS levels [99]. The latter study revealed that PD-1–driven
increase in ROS was not only dependent on FAO, as evidenced by reversal by etomoxir, but also on
inhibited T cell survival, an effect that was mitigated by antioxidants [99]. Moreover, the upregulation
of prostaglandins, derived from prostaglandin E2 synthase and cyclooxygenase (COX)-1/2-mediated
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catabolism of arachidonic acid, can also suppress T-cell function, an effect that was mitigated by COX
inhibitors potentiating immune checkpoint therapy and improving CD8+ T-cell responses [100].

The upregulation of amino acid-degrading enzymes in the TME suppresses T-cell function
including indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), which degrade
tryptophan, and arginase-1 and nitric oxide synthase (NOS), which degrade l-arginine [101,102]. IDO
inhibitors have been demonstrated to enhance CAR T-cell efficacy, an effect that led to the evaluation
of IDO inhibitors in clinical trials [89,103,104]. Arginase activity has also been demonstrated to inhibit
the proliferation and cytotoxicity of CAR T-cells, whereas the degradation of l-arginine by the NOS
pathway generates RNS which inhibit T cell tumor infiltration and activation [89,103].

8. Transcription Factors and Redox Homeostasis

8.1. Hypoxia-Inducible Factor-1 (HIF-1)

Hypoxia-inducible factor-1 is a component of heterodimeric transcription factor HIF-1 that
belongs to HIFs family (HIF-1, HIF-2 and HIF-3). It plays a pivotal role in the adaptive regulation of
cellular function in hypoxic conditions [105]. HIF-1 is a heterodimer, composed of an O2-regulated
HIF-1α subunit and a constitutively-expressed HIF-1β subunit [106,107]. HIF-1α contains three
hydroxylation sites: two prolyl residues in the O2-dependent degradation domain (ODDD), and one
aspartyl residue in the C-terminal transcription activation domain (C-TAD) [108]. HIF-1α proline
residues 402 and 564 (Pro-402 and/or Pro-564) are hydroxylated in well-oxygenated cells via prolyl
hydroxylase enzymes (PHDs). The substrates of this reaction are α-ketoglutarate and O2, and the
byproducts are succinate and CO2 [108]. The von Hippel-Lindau (VHL) tumor suppressor protein, an
E3-ubiquitin ligase, binds prolyl-hydroxylated HIF-1α, targeting it for proteasomal degradation [108].
In hypoxic conditions, O2 (substrate) deprivation and/or ROS generation by mitochondria, which
may oxidize ferrous ions present in the catalytic domain of the hydroxylases, inhibit the asparaginyl
and prolyl hydroxylation reactions [109–111]. This leads to limited substrate availability for prolyl-
hydroxylase (PHD) enzyme, leaving HIF-1α in a nonhydroxylated, and hence stabilized form that
cannot be degraded by E3 ligases. Consequently, stabilized HIF-1α undergoes nuclear translocation,
hetero-dimerizes with the HIF-1β subunit, and binds to hypoxia responsive elements (HRE) in the
promoters of target genes [108]. Interestingly, ROS-induced stabilization of HIF-1α was blocked by
Vitamin C and antioxidants as N-acetyl cysteine (NAC) [112–115]. Consistently, in hypoxic conditions,
cancer cells exhibit persistent oxidative stress with increased intracellular ROS due to mitochondrial
complex III deregulation [116]. Mitochondrial ROS and NADPH oxidases play a predominant role in
HIF-1 stabilization in hypoxic as well as nonhypoxic situations [110,116–118]. For example, hypoxia
induced a redox-dependent stabilization of HIF-1α that was dependent on NADPH oxidase-driven
ROS, Ca2+ and the mammalian target of rapamycin (mTOR) signaling [113]. Thus, the feedforward
loop of the regulation of the expression and activity HIF1α and ROS initiates a redox adaptation
response, thereby increasing the tolerance of cancer cells to oxidative stress, with upregulation of
survival pathways (Figure 3) [113,119–121].

HIF-1α is activated in cancer cells by the loss of function of tumor suppressors (e.g., VHL or
PTEN) and/or oncogene gain of function (constitutive growth factor /receptor activation [122–124].
Rapidly proliferating tumor cells experience chronic hypoxia and reduced O2 availability that, in turn,
induce HIF-1α, which regulates the transcription of a plethora of gene encoding proteins involved in
every aspect of cancer biology including carcinogenesis, cell transformation; cell proliferation, genome
instability/DNA mutation, inflammation, glucose and energy metabolism, angiogenesis, autocrine
growth factor signaling, invasion, metastasis, immune evasion, stemness, and resistance to chemo-
and radiation therapy [105,122,125–133].

HIF-1α serves as major bioenergetics sensor in cancer cells in solid and hematologic
malignancies [114,115,131]. HIF-1α enhances aerobic glycolysis through the upregulation of glucose
transporters, glucose uptake and hexokinases with enhancement of glycolysis (Figure 3) [122,125]. This
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enhanced glucose uptake by hypoxic, metabolically active tumor areas is the basis of FDG-PET imaging
of tumors [122,125]. HIF-1α is a potent inducer of VEGF expression and its expression correlates
significantly with VEGF expression and microvessel density (MVD). Both HIF-1α and VEGF positively
correlated with tumor stage and negatively correlated with patients survival [132,133]. HIF-1α confers
resistance on cancer cells due to glycolytic inhibitor 2-deoxyglucose, as well as biguanides such as
metformin [112,129,134,135].

8.2. Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1 Alpha (PGC-1α)

PGC-1α serves as a central hub for metabolic pathways that modulate mitochondrial biogenesis
and oxidative metabolism. It was first found to cooperate with peroxisome proliferator-activated
receptor-γ (PPARγ) transcription factor in adipose-rich tissue and was subsequently found to be
hypermutated in several tumors [136–138]. Environmental and biological stimuli dictate alterations in
the activity of PGC-1α [136–138]. The PGC-1 family members interact with and potentiate the activity
of a plethora of transcription factors, including PPARs, nuclear respiratory factor-1/2 (NRF1/2), yin
yang 1 (YY1), and estrogen-related receptors (ERRs), which control the expression of a large number of
mitochondrial proteins β-ATP synthase, cytochrome c, cytochrome c oxidase subunits, transcription
factor A mitochondrial (TFAM) [139], and transcription factor B1 M and B2 M (TFB1M, TFB2M) [139].

PGC-1α regulates the expression of the fatty acid transporters CD36, which allows fatty acids
into the cell, and carnitine palmitoyltransferase I (CPT1), which grants fatty acids entrance into
the mitochondria, where they are oxidized (Figure 4). Levels of ROS were found to be elevated
following any increase in fatty acid oxidation via the ETC. PGC-1α instigates pyruvate dehydrogenase
kinase 4 (PDK4), which prevents glucose oxidation by blocking PDH and thus enhancing glycogen
synthesis [139]. PGC-1α plays a role in the production of specific ROS-destroying enzymes [139–142].
PGC-1α is known to be influenced by several signaling pathways which modify the energy status of
cancer cells such as AMPK, mTORC1, HIF-1α, and glucose transporters [139].
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Two different cellular subtypes have been reported in melanoma based on their PGC1α
expression [143]. PGC-1α-high melanoma cells, exhibited an elevated rate of mitochondrial oxidative
metabolism, along with ROS detoxification. This metabolic behavior made them OXPHOS-dependent
and resilient to oxidative stress [143,144]. PGC-1α-high cells reflected a heightened proliferative index
and cell survival however, their invasive properties were suppressed through PGC-1α- inhibitor of
DNA binding 2 protein (ID2) and transcription factor 4 (TCF4) [144]. On the other hand, PGC-1α-low
melanoma cells possess fewer mitochondria and are mainly glycolytic, making them susceptible to
ROS-mediated apoptosis [143–145]. These cells exhibited a lower rate of proliferation while fortifying
their ability to metastasize [143,144]. On another note, the induction of PGC-1α was found to play a
role in chemoresistance by amplifying mitochondrial oxidative metabolism [146].
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In breast cancer, PGC-1α was shown to stimulate nuclear receptors and transcription factors,
including PPARα, estrogen-related receptor alpha (ERRα), NRF1, and NRF2, which in turn led
to increased ATP production. While PGC-1α primarily influences mitochondrial respiration,
other metabolic pathways, including glycolysis, glutaminolysis, fatty acid oxidation, and ROS
detoxification [147], are also included in the litany of effectors. A study performed by LeBleu et al. [142],
reported that breast cancer cells expressing high levels of PGC-1α exhibited an increase in mitochondrial
metabolism, greatly magnifying their propensity to metastasize. In addition, PGC-1α increased the
resistance of breast cancer cells to the biguanide, metformin [148]. Genetic and/or pharmacologic
inhibition of PGC-1α suppresses ATP production, actin cytoskeleton remodeling, intravasation,
extravasation, and cellular survival [142,148,149] and resensitizes breast cancer cells to standard of
care therapies [150].

In pancreatic adenocarcinoma, c-MYC controls the activity of PGC-1α, by binding to its promoter
and, hence, inhibiting its transcription. The c-MYC/PGC-1α ratio influences the metabolic phenotype
of pancreatic adenocarcinoma cells [141]. c-MYC and PGC-1α are intertwined in an intricate balance
that direct metabolic plasticity in pancreatic CSCs [141]. Differentiated pancreatic tumor cells highly
express c-MYC and, hence, exhibit low levels of PGC-1α; however, in cancer stem cells (CSCs), c-MYC
is not highly expressed and PGC-1α levels are amplified [141]. PGC-1α triggers the proliferation of
androgen-dependent prostate cancer cells, through targeting AR-downstream target genes involved
in cellular metabolism, mitochondrial biogenesis, as well as glucose and fatty acid oxidation [151].
PGC-1α is upregulated in prostate cancer cells through an androgen-AMPK feed-forward loop
increasing mitochondrial metabolism [151]. PGC-1α-high prostate cancer cell xenografts in mice
exhibited slower growth, progression and metastases [151]. Further studies indicated that this tumor
suppressive characteristic of PGC-1α is facilitated by ERRα, yielding a transcriptionally catabolic
outcome increasing β-oxidation and TCA cycle activity, diminishing the Warburg effect, and weakening
tumor aggressiveness. Furthermore, the expression of PGC-1α negatively correlated with tumor grade,
underscoring the prognostic value of PGC-1α in prostate cancer [140].

8.3. Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)

Nrf2 is a transcription factor and the master regulator of cytoprotective reactions against oxidative
stress [152], as it controls the transcription of a plethora of genes involved in the detoxification
of ROS [153] (Figure 5). NRF2 is a basic leucine zipper (bZIP) transcription factor that regulates
genes which contain antioxidant response elements (ARE) in their promoters [153]. Nrf2 is normally
sequestered in the cytoplasm and is targeted for polyubiquitination and proteasomal degradation
through its interaction with Kelch-like ECH-associated protein 1 (Keap1), a substrate/ binding partner
of Cullin-3-(CUL3-) ring-box 1- (RBX1-) E3-ligase complex [152,153]. In the presence of ROS, key
cystine residues on Keap1 are oxidized, leading to a conformational change which disrupts Keap1-Nrf2
interaction, allowing nuclear translocation of Nrf2 to occur, where it promotes transcription of target
genes involved in response to injury and inflammation with the production of ROS [153]. NRF2 is also
negatively regulated by two other E3 ubiquitin ligase complexes: the Beta-Transducin Repeat Containing
E3 Ubiquitin Protein Ligase (β-TrCP)- S-Phase Kinase Associated Protein-1 (SKP1)-CUL1-RBX1 complex
and HMG-CoA reductase degradation 1 homolog (HRD1, also known as Synoviolin 1) [153].

Cancer cells differ from normal cells by their enormous growth and proliferative capacity, which is
often observed with Nrf2 overactivation. The reduced state of GSH is indispensable for cell proliferation
due to its detoxification and antioxidant defense function. The excessive activation of Nrf2 greatly
facilitates transcriptions of several genes involved in the formation of NADPH, the main cofactor in
GSH synthesis [152]. Nrf2 overactivation is observed more often in cancer cells than in nontumorgenic
cells, it results in the markedly elevated expression of G6PD, transketolase (TKT), phosphogluconate
dehydrogenase (PGD), and other metabolic enzymes that lead to the metabolism of glucose and
glutamine through the PPP and enhance the production of purine and amino acids, all of which lead to
metabolic rewiring [152]. As several tumors depend on the NRF2-mediated cytoprotective response to
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counteract stress-induced conditions, targeting NRF2 pharmacologically can serve as a plausible and
effective method to promote cancer cell death [152,153].
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NRF2 can be activated by multiple upstream factors. Hyperactivation of the PI3K/AKT
pathway activates NRF2 nuclear accumulation in renal adenocarcinoma cells [65,153]. Consistently,
KEAP1 or NRF2 mutations in lung cancer and multiple myeloma cell lines result in the sustained
activation of the PI3K/AKT pathway, coupled with increased NRF2 transcript levels and nuclear
localization. These responses allow enhanced metabolic reprogramming, cell proliferation, and
apoptosis evasion [65,153] to occur. In addition, estrogen E2 enhances the expression of NRF2-dependent
antioxidant genes in normal, malignant BRCA1-deficient cells as well as MCF-7 breast cancer
cells, via the PI3K/ glycogen synthase kinase 3 beta (GSK3β) pathway [152]. Moreover, adenosine
monophosphate kinase (AMPK), a highly established energy sensor phosphorylates NRF2 at the Ser550
position [154]. Furthermore, tumor suppressors BRCA1 and p21 activate Nrf2 through the inhibition
of the Keap1/Nrf2 complex [152,153]. Additionally, Nrf2 protects against inflammation-induced
carcinogenesis. Nrf2-deficient mice exhibited increased carcinogen-induced stomach [155], liver [156],
and bladder [157] cancers compared to their wild-type littermates. Several Nrf2 activators including
resveratrol, and synthetic chemicals such as oltipraz and oleanane triterpenoids, influence NRF2
activity by modifying intermolecular disulfide bonds between two KEAP1 molecules at Cys273 and
Cys288, which serve to enhance NRF2 nuclear accumulation and hence, increase the transcription of
Nrf2/ARE-regulated genes [152,153].

9. Targeting ROS through Metabolic Modulators for the Treatment of Cancer

9.1. Orlistat

Orlistat is a tetrahydrolipstatin (Figure 6) which is an FDA approved gastric and pancreatic lipase
inhibitor that works in the intestine by hindering fat absorption by up to 30%, It is used mainly as a
weight loss medication in obese patients [158]. Several studies investigated the effect of Orlistat as an
antitumorigenic drug in various cancers such as T-cell Leukemia [158], melanoma [159], colorectal
cancer [160,161], prostate cancer [162], hepatoma [163], breast cancer, and pancreatic cancer [164].
Orlistat suppresses tumor growth by inhibiting Fatty Acid Synthase (FASN), an anabolic multifunctional
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enzyme responsible for endogenous fatty acid synthesis from precursors acetyl-CoA and malonyl-CoA
to make the 16 carbon polyunsaturated fatty acid palmitate [165,166]. It is a homodimer comprised
of seven catalytic sites per polypeptide chain that act in a successive manner to produce palmitate.
Fatty acids are essential for both tumorous and nontumorous cells as they play an essential role
in energy storage and in signal transduction [159]. Thus, FASN is crucial for tumor cell survival,
making it a desirable target for cancer therapeutics [158,165]. Orlistat has been found to irreversibly
block the FASN thioesterase domain, the seventh functional domain, thus impeding its effect [163].
The thioesterase domain catalyzes the termination step by hydrolyzing the thioester bond between
palmitate and the 4’-phosphopantetheine moiety of the acyl-carrier (ACP) domain [165,167]. Through
its effects on FASN, Orlistat has been shown to decrease proliferation while stimulating apoptosis
in various cancers [163,164]. Other studies have demonstrated that Orlistat inhibits cell growth and
arrests the cell cycle at the G0/G1 phase [163]. In melanoma models, Orlistat not only decreased the
cellular proliferation, and size of cancer xenografts in mice, and size and number of cervical and
mediastinal lymph nodes, respectively, but also exerted an effect on the fatty acid composition of
mitochondrial membranes, which were altered and served to upregulate apoptosis [159]. A study of
the effect of Orlistat and NanoOrl, a nanoparticle formulation of Orlistat, on LNCaP and PC3 prostate,
and on MDA-MB-231 breast cancer cell lines, showed that both formulations inhibited the thioesterase
domain of FASN, and, therefore, lipid synthesis. Moreover, when combined with taxane drugs such
as docetaxel, paclitaxel, and cabazitaxel, both Orlistat and NanoOrl showed robust synergy, and
taxane resistance was overcome [166]. In another study, Chuang et al. found that Orlistat decreased
NFκB, an upstream protein of FASN, and its downstream effector expressions in androgen-dependent
and androgen independent cells (LNCaP and PC3 respectively). This effect, when combined with
radiotherapy showed the greastest tumor suppression in both cell lines [162]. You et al. discovered that
Orlistat inhibited cell growth of hepatoma Hep3B cells through FASN inhibition as well as through the
induction of cell arrest at G0/G1. Furthermore, the study showed that the combination of both Orlistat
and Paclitaxel had a strong synergistic effect on growth inhibition and cell apoptosis in Hep3B cells [163].
Additionally, when Orlistat was combined with Lonidamine and 6-Diazo-5-oxo-L-norleucine (DON) for
treatment of SW480 colon cancer cells, they exhibited a synergistic cytotoxic effect with downregulation
of their protein targets Hexokinase-2 (HK2), Glutaminase-1 (GLS-1), and Fatty Acid Synthase (FASN),
respectively [160]. Finally, a study by Saleh et al. indicated that Orlistat exerted a cytotoxic effect
and induced apoptosis in human breast cancer (MCF-7) and human pancreatic cancer (PANC-1) cell
lines [164].
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9.2. Biguandes (Metformin and Phenformin) 

Phenformin (Figure 7), is a member of the class of biguanides in which one of the terminal 
nitrogen atoms is substituted by a 2-phenylethyl group. It has been used in the past for treatment of 
type 2 diabetes mellitus [168]. However, it was later removed from the market due to its propensity 
to induce fatal lactic acidosis at high doses [168]. Remarkably, when combined with 2-DG, or 
dichloroacetate the lactic acidosis incidence was reduced [169]. While there are several proposed 
mechanisms of action, the main mechanism of action of biguanides is inhibiting complex I of the 
mitochondrial respiratory chain which causes an increase in the AMP/ATP ratio, hence activating 
AMPK [149,170,171]. In turn, AMPK is an invaluable energy sensor for cells that is activated in 
conditions of low ATP. In turn, AMPK downstream effectors suppress ATP anabolic processes and 
induce catabolic processes in an effort to increase ATP levels, leading to a decrease in protein and 
lipid synthesis, thereby, hindering tumor growth [172–174]. Phenformin can also reduce tumor cell 
progression through AMPK independent mechanisms [175,176]. The therapeutic effects of 
phenformin have been reported in melanoma [177] and breast cancer preclinical models, where it 
was shown to inhibit receptor tyrosine kinases as IGF1/IGF1R and ErbB2 with inhibition of mammary 
carcinogenesis, and cellular proliferation through cell cycle arrest at phase G0/G1 [178]. Moreover, 
phenformin significantly decreased the oxygen consumption in a dose and time dependent manner 
as detected by mitochondrial stress assays [179]. Another study indicated that malignant 
lymphocytes show an intrinsic resistance to biguanides such as phenformin and metformin that could 

Figure 6. Structure of Orlistat.

9.2. Biguandes (Metformin and Phenformin)

Phenformin (Figure 7), is a member of the class of biguanides in which one of the terminal nitrogen
atoms is substituted by a 2-phenylethyl group. It has been used in the past for treatment of type 2
diabetes mellitus [168]. However, it was later removed from the market due to its propensity to induce
fatal lactic acidosis at high doses [168]. Remarkably, when combined with 2-DG, or dichloroacetate
the lactic acidosis incidence was reduced [169]. While there are several proposed mechanisms of
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action, the main mechanism of action of biguanides is inhibiting complex I of the mitochondrial
respiratory chain which causes an increase in the AMP/ATP ratio, hence activating AMPK [149,170,171].
In turn, AMPK is an invaluable energy sensor for cells that is activated in conditions of low ATP. In
turn, AMPK downstream effectors suppress ATP anabolic processes and induce catabolic processes
in an effort to increase ATP levels, leading to a decrease in protein and lipid synthesis, thereby,
hindering tumor growth [172–174]. Phenformin can also reduce tumor cell progression through AMPK
independent mechanisms [175,176]. The therapeutic effects of phenformin have been reported in
melanoma [177] and breast cancer preclinical models, where it was shown to inhibit receptor tyrosine
kinases as IGF1/IGF1R and ErbB2 with inhibition of mammary carcinogenesis, and cellular proliferation
through cell cycle arrest at phase G0/G1 [178]. Moreover, phenformin significantly decreased the
oxygen consumption in a dose and time dependent manner as detected by mitochondrial stress
assays [179]. Another study indicated that malignant lymphocytes show an intrinsic resistance to
biguanides such as phenformin and metformin that could be overcome by the disruption of the
mitochondrial-derived ROS/HIF1-α axis, leading to the resensitization of malignant lymphocytes
against phenformin [180]. With respect to bladder cancer, it was found that treatment with phenformin
resulted in growth inhibition [181]. Bladder and ovarian cancer cell lines exposed to increasing
concentrations of metformin and phenformin isomers of showed dramatic growth inhibition with
more potent inhibitory effects of phenformin on proliferation and colony formation assays as well as
a synergistic effect with the EGFR inhibitor gefitinib [182]. The proposed mechanism of inhibition
of tumorigenic growth involved AMPK activation leading to the inhibition of the mTOR pathway
with further downregulation of its downstream effectors, 4EP1 and p70S6K [183]. Lea et al. [181]
demonstrated that phenformin inhibited the growth and glucose uptake of bladder and colon cancer cell
lines through the inhibition of AKT and ERK1/2. Moreover, phenformin exhibited a synergistic effect
when combined with pirarubicin [184]. In conclusion, the biguanide family, specifically phenformin,
possesses several antitumorigenic properties, making them strong therapeutic candidates.
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9.3. AICAR

5-Aminoimidazole-4-carboxamide ribonucleoside or acadesine (AICAR) (Figure 8), an AMP
analog, is a purine biosynthesis precursor and a recognized agonist of AMPK that was found to
cause a myriad of widespread metabolic alterations in various tumors [185,186]. Mechanistically,
AICAR enters the cell through adenosine transporters and becomes phosphorylated by adenosine
kinase into 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) [186]. AICAR has been shown
to have antitumorgenic properties in several types of cancer with tumor-selective antiproliferative
and proapoptotic effects sparing normal cells [186–188]. These effects were mediated through direct
inhibition of AKT-mTOR pathway in breast and cervical cancer cell lines [188,189]. Furthermore,
AICAR inhibited prostate cancer proliferation and migration, induced apoptosis, and sensitized
cells to chemo- and radiation therapy through AMPK/mTOR-dependent signaling pathway in both
androgen-dependent and castration-resistant (CRPC) cell lines, with a more pronounced effect on
CRPC cells [187,188]. In acute and chronic myeloid leukemia (AML and CML, respectively), AICAR
inhibited cellular proliferation, with induction of cell cycle arrest in G1-phase, and apoptosis through
activation of the DNA damage–associated enzyme checkpoint kinase 1 (Chk1) induced by pyrimidine
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depletion [186], the activation of AMPK, and the inhibition of mTOR pathway in BCR-ABL and
Philadelphia-positive acute lymphoblastic leukemia [190,191]. These results suggest that a possible
combination of AICAR and an inhibitor of mTOR, such as rapamycin, or other PI3K/AKT/mTOR
pathway inhibitors might be beneficial in the treatment of childhood leukemias [192]. In bladder cancer,
AICAR enhanced growth inhibition and cellular apoptosis induced by 10-hydroxycamptothecin in T24
and 5637 bladder cancer cell lines [193].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  15 of 29 
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9.4. 2-Deoxyglucose (2DG)

2-Deoxyglucose (2DG, Figure 9), a nonmetabolizable glucose analog that is readily taken up by
glucose transporters, it also serves as a competitive inhibitor of glucose for hexokinase activity as it
is phosphorylated by 2-DG-6-phosphate inhibiting the rate limiting enzyme in glycolysis [194,195].
Basically, 2-DG has been shown to influence several cellular properties including bioenergetics,
proliferation, oxidative stress, autophagy, and apoptosis when used in conjunction with the standard
of care chemotherapeutic agents in solid and hematologic malignancies [196–200]. In vitro, 2-DG
upregulated the expression of GLUT1 increasing its own uptake by breast cancer cells leading to
the inhibition of cellular viability and clonogenic survival, while promoting apoptotic cell [201].
Also, 2-DG inhibited angiogenesis at concentrations that mainly affected endothelial cells but did
not influence tumor cell viability [202]. In additions, 2-DG reduced cell viability and proliferation
in mesothelioma cell lines and exerted a synergistic agent with cisplatin and pemetrexed; however,
this combination had little effect on the size of the spheroids in 3D culture [199]. Moreover, 2-DG
resensitized myriad of chemo- and radiotherapy-resistant cancer cells [203–206]. The effect of 2-DG
involoves not only the inhibition of glycolysis as was previously believed, but also interferes with
N-linked glycosylation [202,207–209]. Clinical trials showed the efficacy of oral 2DG as a single agent,
and in combination with SOC chemo- and radiation therapy. A phase 1 clinical trial (NCT00096707)
found that in patients with advanced solid tumors, 2DG alone or in combination with docetaxel
revealed clinically tolerable effects [210]. In another phase I/II clinical trial, 2DG was combined
with large fraction (5 Gy) radiotherapy in patients with human glioma; remarkable tolerance to the
combination in all patients with no brain parenchyma damage occuring [211]. However, the use of
2DG in clinical trials was not successful due to insufficient dosage as 2DG should be used in amounts
equal to or even exceeding glucose levels. Such doses were associated with hypoglycemia muscle
weakness, and cardiotoxicity [210].

9.5. CPI-613

CPI-613 also known as Devimistat is a lipoate analog (Figure 10) which inhibits pyruvate
dehydrogenase (PDH) and α-ketoglutarate dehydrogenase complexes (KGDH), two essential enzymes
in the tricarboxcylic acid (TCA) cycle [212]. TCA is the main route for OXPHOS in cancer cells; it
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orchestrates the metabolic and redox balance requirements [213]. CPI-613 is known to activate PDKs
1 to 4, leading to the inactivation of phosphorylation of PDH [214]. CPI-613 therefore triggers the
activation of the E1α subunit of PDH, which inhibits cellular bioenergetics and instigates several
mitochondrial pathways leading to tumor cell death. Moreover, CPI-613 generates an extensive,
tumor-specific outflow of mitochondrial ROS, and hence inhibits mitochondrial metabolism [214,215].
CPI-613 re-sensitized acute myeloid leukemia (AML) cells to cytotoxic agents through inhibition of the
TCA cycle, which is activated after exposure of AML cells to such agents [212]. While CPI-613 has
several implications as a novel single agent, a phase I trial of CPI-613 in combination with cytarabine
and mitoxantrone resulted in a complete remission in 50% of patients with recurrent AML. Moreover,
in the combined Phase I/II study, elderly patients with recurrent AML who received CPI-613 had
a significantly higher remission and median survival rates [212]. These inhibitory effects were also
observed in H460 human nonsmall cell lung cancer cells and Saos-2 human sarcoma cells as well as
in pancreatic tumors in in vivo xenograft models [215]. Additionally, it was shown that treatment
with CPI-613 decreased the ability of ovarian cancer stem cells to form spheroids and hindered the
enrichment of CD133+ and CD117+ stem cell population following olaparib and carboplatin/paclitaxel
treatment without significantly affecting the survival of the nonstem cell population [216]. To further
support the inhibitory effect of CPI-613, in a recent study [217], a unique copolymer was used to
simultaneously deliver CPI-613 and LY2109761 (a TGF-β receptor I/II inhibitor) to stromal and cancerous
cells. The authors reported significant inhibition of tumor growth by selectively incapacitating tumor
and stromal cells [218].
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9.6. Etomoxir

Etomoxir, or 2[6(4-chlorophenoxy) hexyl] oxirane-2-carboxylate (Figure 11.), is classified as an
irreversible inhibitor of carnitine palmitoyltransferase 1a (CPT1a), a transporter which is vital for
the oxidation of mitochondrial long chain fatty acids [219]. Etomoxir also hinders complex I of the
ETC [47]. With the administration of etomoxir, fatty acid influx into the mitochondria and β-oxidation
decrease, with an increase in fatty acids in the cytosol as well as glucose oxidation [220]. The treatment
of tumor-bearing mice with etomoxir significantly delayed tumor growth with less macrophage
infiltration compared with untreated mice [221]. Moreover, the inhibition of fatty acid oxidation by
etomoxir resulted in lipid accumulation, diminished ATP, and NADPH levels, and repressed bladder
cancer cell growth both in vitro and in vivo [46]. This effect on bladder cancer cells was mediated
through the PPARγ pathway and by altering fatty acid metabolism associated gene expression profiles
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leading to cell cycle arrest and inhibition of EMT that were reversed by PPARγ antagonist, GW9662 [46].
Interestingly, the dual targeting of resistant and highly aggressive cancer cells by 2DG and etomoxir
inhibited cell proliferation and sensitized these cells to chemotherapy-induced apoptosis [43,222].
Etomoxir inhibited cell viability in glioblastoma SF188 cells with significant reduction of ATP, and
NADPH levels [223]. Moreover, etomoxir induced oxidative stress and activated the proapoptotic
LKB-1/AMPK pathway both of which can be attributed to the chemo-sensitizing capacity of the
agent. Furthermore, etomoxir enhanced radiation efficacy against spheroids derived from lung and
prostate cancers, eliminated hypoxic regions and significantly decreased proliferation (Ki-67 and cyclin
D1), as well as stemness (CD44) and β-oxidation (CPT1A) markers compared to either etomoxir or
radiotherapy alone [224].
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The translational potential of redox homeostasis has long revolved around manipulation of the
redox balance. Because ROS can act as a double-edged sword with intricate balance to be found
between generation and elimination, it is more likely to be advantageous to target the metabolic
pathways that lead to the excessive ROS generation and/or the perturbed redox signaling pathways
(Figure 12).
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