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Astrocytes regulate potassium and glutamate homeostasis via inwardly rectifying

potassium (Kir) 4.1 channels in synapses, maintaining normal neural excitability.

Numerous studies have shown that dysfunction of astrocytic Kir4.1 channels is involved

in epileptogenesis in humans and animal models of epilepsy. Specifically, Kir4.1

channel inhibition by KCNJ10 gene mutation or expressional down-regulation increases

the extracellular levels of potassium ions and glutamate in synapses and causes

hyperexcitation of neurons. Moreover, recent investigations demonstrated that inhibition

of Kir4.1 channels facilitates the expression of brain-derived neurotrophic factor (BDNF),

an important modulator of epileptogenesis, in astrocytes. In this review, we summarize

the current understanding on the role of astrocytic Kir4.1 channels in epileptogenesis,

with a focus on functional and expressional changes in Kir4.1 channels and their

regulation of BDNF secretion. We also discuss the potential of Kir4.1 channels as a

therapeutic target for the prevention of epilepsy.
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INTRODUCTION

Epilepsy is a common neurological disease that is characterized by recurrent seizures caused
by neuronal hyperexcitation. The current antiepileptic agents predominantly act on neuronal
ion channels (e.g., blockers of voltage-gated sodium channels and calcium channels), glutamate
receptors [e.g., antagonists of a-amino-3-hydroxy-5-methyl-isoxazolopropionic acid (AMPA)
receptors], or GABAergic inhibitory systems (e.g., modulators of the GABAA receptor/chloride
channel complex and inhibitors of GABA transaminase), which aim to suppress excessive neural
excitation (1, 2). Therapy with these antiepileptic drugs is effective in about 70% of epilepsy patients,
whereas seizure control is not achieved for the remaining 30% of patients (3, 4). Thus, there is a high
unmet need for novel therapeutic targets or agents to treat refractory epilepsy.

Numerous findings show that astrocytes, the major cell component of glial cells in the
central nervous system (CNS), actively regulate the excitability and plasticity of neurons
by forming tripartite synapses in conjunction with presynaptic and postsynaptic neural
components (5–10). Specifically, astrocytes regulate ion homeostasis and extracellular space
volume, metabolize neurotransmitters (e.g., glutamate, GABA, and glycine), and secrete
various neuroactive molecules including gliotransmitters [e.g., glutamate, D-serine, adenosine
5′-triphosphate (ATP)], neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF)
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and glia-derived neurotrophic factor (GDNF)], and cytokines
[e.g., tumor necrosis factor-α (TNF-α) and interleukin-1β
(IL-1β)] (11–13). Among these functions of astrocytes, a spatial
buffering system for potassium ions (K+) plays an important
role in the maintenance of neuronal excitability, which transports
excessive extracellular K+ secreted from excited neurons to
sites with lower K+ concentrations (e.g., microcapillaries) (14–
18). This potassium clearance mechanism is primarily mediated
by astrocytic inwardly rectifying potassium (Kir) channels
containing Kir4.1 subunits (Kir4.1 channels) (16–21).

In this review, we introduce the current understanding
regarding the pathophysiological role of astrocytic Kir4.1
channels in the development of epilepsy (epileptogenesis).
Further, we discuss the potential of Kir4.1 channels as a
therapeutic target for the prevention of epilepsy.

SPATIAL POTASSIUM BUFFERING AND
ASTROCYTIC KIR4.1 CHANNELS

Extracellular K+ levels are critical for determining the resting
membrane potential of neurons and are normally maintained
at ca. 3–5mM (22). Physiological neural activity leads to
an elevation of <1mM in extracellular K+ concentration
(23). Increases of 10–12mM K+ in ceiling levels are induced
during excessive neural activity due to electrical stimulation
(24). Astrocytes rapidly transport K+ from synapses, where
K+ is secreted from neurons during the repolarization phase,
to regions with lower K+ levels (e.g., microcapillaries) by
coupling into a syncytium through gap junctions (Figure 1)
(14–21, 25). This astrocytic K+ clearance mechanism, known
as “spatial potassium buffering,” is vital for maintaining K+

homeostasis and preventing neural hyperexcitability during
normal brain function. In addition, spatial potassium buffering
is known to be linked to glutamate uptake via glutamate
transporters [e.g., excitatory amino acid transporters 1 (EAAT1)
and EAAT2] and water transport via aquaporin-4 (AQP4) by
astrocytes (26–31). Moreover, both connexin30 and connexin43
in astrocytic gap junctions were shown to play a critical role in
normal K+ redistribution, using double knockout techniques in
mice (32, 33).

The influx of K+ into astrocytes is mainly mediated by Kir
channels containing Kir4.1 and Kir5.1 subunits, which are highly
expressed in astrocytes and retinal Müller cells (16–21, 34–
39). Kir4.1 subunits have two transmembrane (TM) domains
with an extracellular ion selectivity filter, including the GYG
signature sequence, which construct Kir channels by forming
tetramers (Figure 2) (25, 39). Two types of Kir4.1-containing
Kir channels (Kir4.1 channels), the homo-tetramer of Kir4.1 and
the hetero-tetramer of Kir4.1 and Kir5.1, conduct large inward
K+ currents at potentials negative to K+ equilibrium potential
(EK) and moderate outward K+ currents at those positive to EK
(Figure 2) (25, 39, 40).

Pharmacological studies have shown that among CNS agents,
several antidepressants reversibly inhibited K+ currents via
Kir4.1 channels in a subunit-dependent manner. Tricyclic
antidepressants (TCAs) such as nortriptyline, amitriptyline,

desipramine, and imipramine, blocked Kir4.1 channels in a
voltage-dependent manner, while selective serotonin reuptake
inhibitors (SSRIs) including fluoxetine and sertraline inhibited
Kir4.1 channels in a voltage-independentmanner (Figure 2) (41–
44). The inhibitory effects of antidepressants for Kir4.1 channels
were achieved at concentrations considered to be within a range
of brain concentrations for clinical treatment of depression.
Antidepressant treatment is reported to increase the risk of
seizure incidence (45, 46), which may be due to antidepressant
drug actions on Kir4.1 channels.

Alanine-scanning mutagenesis studies on the antidepressant-
Kir4.1 channel interaction demonstrated that these
antidepressant agents specifically blocked the Kir4.1 channel
pore (47). Two amino acids, T128 and E158, on pore and TM-2
helices respectively, can bind to antidepressants. Recently,
anti-malarial agents such as quinacrine and chloroquine, and
the anti-protozoal agent, pentamidine, have also been shown to
inhibit Kir4.1 channels by binding to T128 and E158, similar to
antidepressant agents (48–50). Although few reports are available
on drug-Kir4.1 interaction, information about structure-based
action on Kir4.1 channels is important for designing novel
treatment compounds for epilepsy and reducing the potential of
seizure side effects.

KIR4.1 CHANNELS IN EPILEPSY PATIENTS

Mutations in the human KCNJ10 gene encoding Kir4.1 were
reported to cause the epileptic disorders known as “EAST”
(Epilepsy, Ataxia, Sensorineural deafness and Tubulopathy) and
“SeSAME” (Seizures, Sensorineural deafness, Ataxia, Mental
retardation, and Electrolyte imbalance) syndrome (OMIM
612780) (51–53). Patients with EAST/SeSAME syndrome initially
manifest generalized tonic-clonic seizures (GTCSs) within a
few months after birth and are treated with anticonvulsant
agents such as valproate and phenobarbital. The KCNJ10
mutations responsible for EAST/SeSAME syndrome have been
shown to be T57I, R65P, R65C (cytoplasmic end of TM-1),
F75L, F75C, G77R (TM-1), V91Gfs∗197, F119Gfs∗25, C140R
(extracellular loop between TM-1 and TM-2), T164I, A167V
(TM-2), R175Q, R199X, R240H, V259∗, G275Vfs∗7, and R297C
(C-terminal domain) (51–64). These homozygous or compound
heterozygous mutations disrupted Kir4.1 channel function to
varying degrees from completely to moderately. Moreover, novel
loss-of-function mutations (I60T, I60M, G163D, R171Q, A201T,
I209T, and T290A) in KCNJ10 were identified in patients with
atypical EAST/SeSAME syndrome lacking one or more core
clinical manifestations (65–69). In contrast, heterozygous gain-
of-function mutations (R18Q, V84M, and R348H) in KCNJ10
caused autism spectrum disorders with spastic seizures and
intellectual disability (70–72).

Electrophysiological investigations demonstrated that Kir
currents were significantly reduced in hippocampal specimens
from refractory temporal lobe epilepsy (TLE) patients, using
patch-clamp techniques (73–75). The impairment of glial K+

uptake sensitive to Ba2+, a blocker of Kir channels, was also in
sclerotic hippocampal slices from patients with epilepsy (76, 77).
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FIGURE 1 | Spatial K+ buffering of astrocytes in tripartite synapses. Astrocytes uptake extracellular K+ secreted from neurons and release K+ in regions with lower

K+ levels by coupling into a syncytium through gap junctions. The K+ buffering mechanism is corelated with glutamate uptake and water transport by astrocytes.

EAAT, excitatory amino acid transporters; AQP4, aquaporin 4. Modified from Ohno et al. (25).

FIGURE 2 | Molecular structure and properties of Kir4.1 channels. (A) Kir4.1 subunits have two transmembrane (TM) helices with one extracellular loop, including the

GYG signature sequence of the K+ selectivity filter. (B) Kir4.1 subunits construct two types of channels, the homo-tetramer of Kir4.1 and the hetero-tetramer of Kir4.1

and Kir5.1. (C) Kir4.1 channels (homo-tetramer of Kir4.1) conduct large inward and relatively small outward K+ currents. Selective serotonin reuptake inhibitors,

fluoxetine, inhibit Kir4.1 channel currents. Modified from Ohno et al. (25).
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Furthermore, astrocytic Kir4.1 expression has been shown to
decrease in the sclerotic hippocampus of TLE patients (78–
80). Additionally, flavoprotein fluorescence imaging, visualizing
neuronal activities without exogenous dyes in living tissues
taken from epilepsy patients, showed that epileptiform activities
propagated from the subiculum of the hippocampus with
sclerosis, where the Kir4.1 expression of astrocytes was
markedly down-regulated (81). In refractory partial epilepsy
pathologically diagnosed as “focal cortical dysplasia type 1,”
Kir4.1 expression was decreased in the epileptogenic regions
where direct current (DC) shifts were detected using wide-
band electroencephalography (EEG) recordings (82). These DC
shifts preceding conventional ictal pattern and high frequency
oscillations (HFOs), known as “active DC shifts,” were suggested
to reflect the extracellular K+ accumulation caused by the
dysfunction of astrocytic potassium buffering, which can be
EEG biomarkers for the epileptic zone (82). Therefore, Kir4.1
channel dysfunction affected by gene mutations or expressional
down-regulation is likely to be involved in the pathogenesis of
human epileptic disorders.

KIR4.1 CHANNELS IN ANIMAL EPILEPSY
MODELS

Kir4.1 homozygous deletion in mice reduced body weight
gain and caused progressive weakness by postnatal day (P)
8–10, although heterozygous mice showed no pathological
behavior (83, 84). Subsequently, Kir4.1 knockout mice exhibited
jerky movements and severe deficits in controlling voluntary
movements, posture, and balance, and consequently died by P24.
In addition, studies using conditional knockout techniques have
reported that mice with conditional knockout of astrocytic Kir4.1
developed pronounced body tremor, ataxia, and stress-induced
GTCSs, which were suggested to be involved in astrocytic
membrane depolarization and impaired uptake of extracellular
K+ following neural activity (Table 1) (30, 85, 86). Moreover,
Kir4.1 conditional knockout also reduced glutamate uptake by
astrocytes (30). This impairment of glutamate clearance resulted
from the dysfunction of EAATs due to membrane depolarization
in astrocytes (29–31, 87, 88).

Numerous studies using animal models of epilepsy showed
that astrocytic Kir4.1 expressional changes were involved
in seizure induction and susceptibility. Specifically, Kir4.1
expression was significantly reduced in Noda epileptic rats
(NER), a hereditary epilepsy model (Table 1) (89). NER
exhibited frequent spontaneous GTCSs associated with two
genetic loci, chromosome (Chr) 1q32-33 and Chr5q22,
including cholecystokinin B receptor (Cckbr), suppressor of
tumorigenicity 5 (St5), and PHD finger protein 24 (Phf24)
(90–95). In NER, Kir4.1 expression was region-specifically
reduced in the amygdala, where the expression of Fos protein,
a biological marker of neural excitation, significantly elevated
(89). Moreover, Leucine-Rich Glioma-Inactivated 1 (Lgi1)
mutant rats, a model of human autosomal dominant lateral
temporal lobe epilepsy (ADLTE), showed reduced astrocytic
Kir4.1 expression in specific regions, including both the lateral

and medial temporal lobes, after the acquisition of audiogenic
seizure susceptibility (Table 1) (96). In these regions, neural
hyperexcitation during seizures was confirmed using Fos
immunohistochemical techniques (97). Auditory stimuli for
seizure induction consisted of sound stimulation twice, priming
stimulation at P16 and test stimulation at 8 weeks. Priming
stimulation induces epileptogenesis caused by Lgi1 mutation
without spontaneous seizure phenotypes (96, 98). Interestingly,
the Kir4.1 expression in astrocytes was reduced during the time-
course of epileptogenesis before application of test stimulation
at the age of 8 weeks in Lgi1 mutant rats (96). These findings
indicate that the dysfunction of Kir4.1 channels is involved
not only in evoking seizure generation, but also in chronic
development of epilepsy (epileptogenesis).

Furthermore, the Kcnj10 single nucleotide polymorphism
(SNP) with T262S variation that disrupts Kir4.1 channel activity
has been identified as the mutation responsible for seizure
susceptibility of DBA/2 mice (Table 1) (99, 100). A rodent
epilepsy model induced by fluid percussion injury or albumin
injection also exhibited down-regulation of Kir4.1 expression
in regions related to seizure foci (Table 1) (101, 102). Kir4.1
expression was transiently reduced after status epilepticus (SE)
in temporal lobe epilepsy (TLE) models induced by electrical
stimulation, although the expression of Kir4.1 returned to the
normal level 1 week after SE (Table 1) (103). In contrast to
epilepsy models with convulsive seizures, no changes in Kir4.1
expression were detected in Groggy rats, an absence epilepsy
model (Table 1) (104). In addition, hyperglycemia has been
reported to reduce Kir4.1 expression and disrupt the clearance
of both K+ and glutamate using astrocyte primary cultures
(105). Type 2 diabetic mice (db/db) also showed down-regulation
of Kir4.1 expression and dysfunction in K+ intake that were
associated with hippocampal neural hyperexcitability (Table 1)
(106). These studies may explain the epileptic predisposition of
type 2 diabetes patients (107, 108).

ASTROCYTIC KIR4.1-BDNF SYSTEM IN
EPILEPTOGENESIS

BDNF is a member of the neurotrophin family essential
for the normal development and function of the CNS.
Specifically, BDNF regulates cell survival, neurogenesis, neuronal
sprouting, synaptic plasticity, and reactive gliosis by binding
to tropomyosin-related kinase (Trk) receptors, especially TrkB
receptors (109–112). The neurotrophic properties of BDNF
potentially produce therapeutic effects for neurodegenerative
diseases (e.g., Alzheimer’s disease, Parkinson’s disease, and
Huntington’s disease) and neuropsychiatric diseases (e.g.,
depression and bipolar disorder) (113–119). However, elevated
expression of BDNF is known to be involved in the pathogenesis
of epilepsy in various animal models and human brains (111,
120, 121). In addition, inhibition of BDNF/TrkB signaling has
been shown to suppress the development of epilepsy in animal
models (122–126).

While the expressional levels of BDNFwere higher in neurons,
astrocytic BDNF expression and BDNF/TrkB signaling have also

Frontiers in Neurology | www.frontiersin.org 4 December 2020 | Volume 11 | Article 626658

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kinboshi et al. Astrocytic Kir4.1 Channels in Epileptogenesis

TABLE 1 | Pathophysiological changes in Kir4.1 channels in animal epilepsy models.

Animal model Functional and expressional changes in Kir4.1 Pathological behaviors and seizure types

Conditional knockout mice of astrocytic Kir4.1 Dysfunction of Kir4.1 channel

Impaired uptake of extracellular K+ and glutamate

Body tremor, ataxia, stress-induced GTCSs, premature

death

Noda epileptic rats (NER) Down-regulation of Kir4.1 expression in the

amygdala

Spontaneous GTCSs

Lgi1 mutant rats (ADLTE model) Down-regulation of Kir4.1 expression in the temporal

lobe after development of audiogenic epilepsy

Audio-induced GTCSs

Seizure susceptible DBA/2 mice Kcnj10 SNP with T262S variation

Dysfunction of Kir4.1 channel

Impaired uptake of glutamate

Increased seizure susceptibility

Trauma-induced epilepsy rats Down-regulation of Kir4.1 expression in the cerebral

cortex

Spontaneous partial seizures of cerebral cortex origin

Albumin-induced epilepsy rats Down-regulation of Kir4.1 expression in the

hippocampus exposed to albumin

Increased seizure susceptibility due to hippocampal

hyperexcitability

Electrical stimulation-induced TLE rats Transient reduction of Kir4.1 expression in the

temporal cortex 24 hours after SE

No assessment

Groggy rats (absence epilepsy model) No change in Kir4.1 expression Absence-like seizures, ataxia

db/db mice (type 2 diabetic model) Down-regulation of Kir4.1 expression in the

hippocampus

Hippocampal hyperexcitability

been shown to contribute to brain functions under physiological
and pathophysiological conditions (127–130). A recent study

demonstrated that BDNF overexpression in astrocytes caused

neuronal hyperexcitability and cell death, and deteriorated the

phenotypes in lithium pilocarpine-induced TLE models, which
were suggested to be mediated by astrocytic TrkB receptors,

rather than neural TrkB receptors (131).
Astrocytic Kir4.1 channels have been shown to modulate

BDNF expression using astrocyte primary cultures (25, 44,
132). Several antidepressant agents (e.g., imipramine and

amitriptyline), which reportedly inhibited Kir4.1 channels in a
subunit-specific manner (41, 43, 47), facilitated the expression

of BDNF in astrocytes (133–135). Furthermore, the relative

potencies of antidepressant agents for BDNF induction were
consistent with those for the blockade of Kir4.1 channels,

but not for the inhibition of 5-HT reuptake (43, 44). In
addition, Kir4.1 knockdown by small interfering RNA (siRNA)

transfection significantly elevated BDNF expression in astrocytes,
which was suppressed by a MEK1/2 inhibitor, but not by

a p38 MAPK inhibitor or a JNK inhibitor (44). These
results suggest that the reduced function of Kir4.1 channels

facilitates BDNF expression in astrocytes by activating the
Ras/Raf/MEK/ERK pathway (Figure 3) (25, 44, 132). This

hypothesis was supported by previous studies showing that the

Ras/Raf/MEK/ERK signaling pathway regulates the transcription
of BDNF and other survival/plasticity genes through interaction

with cyclic AMP response element binding protein (CREB)
(136, 137). It is therefore likely that Kir4.1 channels play a

key role in modulating epileptogenesis by controlling not only

the extracellular K+ and glutamate levels in synapses, but also
the BDNF expression in astrocytes. The astrocytic Kir4.1-BDNF
system is expected to serve as a novel target for the treatment of
epilepsy, especially epileptogenesis.

KIR4.1 CHANNELS AS A NOVEL
THERAPEUTIC TARGET FOR PREVENTION
OF EPILEPSY

Based on the potential role of astrocytic Kir4.1 channels in
epileptogenesis, normalizing the down-regulation of astrocytic
Kir4.1 channel expression during epileptogenesis can be a
therapeutic strategy to prevent epilepsy. We recently showed
that repeated treatments with antiepileptic drugs (valproate,
phenytoin, and phenobarbital), which are effective for convulsive
seizures, commonly elevated the astrocytic Kir4.1 expression in
the limbic region (138). These antiepileptic drugs have previously
showed inhibitory effects on kindling development in animal
models (139–141), in which the elevated expression of Kir4.1
channels may contribute to the prophylactic effect of these drugs.
Moreover, we have shown that valproate prevented audiogenic
epileptogenesis in Lgi1 mutant rats by elevating the down-
regulated Kir4.1 expression during epileptogenesis in a dose-
dependent manner (96). Although further studies are required
to reveal the mechanisms underlying the Kir4.1 pathogenic
changes in epileptogenesis, these findings support the notion
that astrocytic Kir4.1 channels can be therapeutic targets for
prevention of epilepsy. Specifically, novel compounds positively
modulating astrocytic Kir4.1 channels are expected to have
potential for treatment of epilepsy and epileptogenesis. Although
no information on the structure-activity relationship for Kir4.1
channel stimulators is available, gain-of-function mutations of
the KCNJ10 gene (e.g., R18Q in N-terminus and V84M in TM1
region) reported in patients with autism spectrum disorders may
give hints for new drug discovery (70, 72). In addition, retigabine
(ezogabine), an antiepileptic drug for focal onset seizures, may
also give information since it primarily acts on neural KCNQ2-5
(Kv7.2-7.5) ion channels as a positive allosteric modulator (142).
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FIGURE 3 | Schematic drawing illustrating the effects of Kir4.1 dysfunction on neural hyperexcitation and astrocytic BDNF expression. Dysfunction (genetic mutation,

down-regulated expression, and pharmacological blockade) of Kir4.1 channels increases extracellular K+ and glutamate at synapses and causes neural

hyperexcitability. The dysfunction of Kir4.1 channels activates the Ras/Raf/MEK/ERK signaling pathway and facilitates BDNF expression in astrocytes. Based on these

changes, astrocytic Kir4.1 channels play important roles in modulating seizure induction and epileptogenesis. Modified from Ohno et al. (25).

CONCLUSION

Astrocytic Kir4.1 channels play a critical role in the regulation
of brain homeostasis and neural excitability. Evidence is
accumulating that dysfunction of astrocytic Kir4.1 channels
is involved in epileptogenesis in both epilepsy patients and
animal epilepsy models. Moreover, the reduced activity of Kir4.1
channels elevates the levels of extracellular K+ and glutamate
at tripartite synapses and facilitates astrocytic BDNF expression,
which can promote the development of epilepsy. Although data
are limited, the approach to restore Kir4.1 down-regulation
during epileptogenesis was actually effective to prevent the
development of epilepsy in an animal model of epilepsy. Thus,

the Kir4.1-BDNF system in astrocytes is expected to serve as a
novel therapeutic target for epilepsy. especially epileptogenesis.
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