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Abstract: Herein, we report the abundance and prevalence of HMO-metabolizing genes, specifically
those of Bifidobacterium infantis, in fecal samples from human infants. Forty dyads were enrolled,
and each mother collected a fecal sample from her infant at six months of age. Genomic DNA was
extracted, and quantitative real-time PCR was used to determine gene abundance. The mode of
delivery was not associated with gene abundance. Several gene regions, Sia (a sialidase), B. inf
(16S), and GH750 (a glycoside hydrolase), were more abundant in the feces of human milk-fed
infants (p < 0.05). Others, Sia and HC bin (16S), tended to be less abundant when a larger percentage
of an infant’s diet consisted of solids (p < 0.10). When accounting for solid food intake, human
milk exposure was positively associated with Sia and B. inf (p < 0.05) and tended to be related to
the abundance of the GH750 and HC bin (p < 0.10) gene regions. With further development and
validation in additional populations of infants, these assays could be used to group samples by
dietary exposure even where no record of dietary intake exists. Thus, these assays would provide a
method by which infant human milk intake can be assessed quickly in any well-equipped molecular
biology laboratory.

Keywords: human milk oligosaccharides; Actinobacteria; Bifidobacterium infantis; breastfeeding;
human milk; infants; microbiota

1. Introduction

Mother’s milk contains the optimal nutrients for the growth and development of
neonates. However, some infants are fed formula rather than human milk. Infant formula
is an alternative option produced as a substitute for human milk. Generally, formulas are
made from cow’s milk or soy milk [1]. These formulas are engineered to be similar to human
milk in terms of macronutrient and micronutrient content and efforts to make formulas as
similar to human milk as possible are underway [2]. However, many components found
in human milk such as human milk oligosaccharides (HMOs) are still missing from most
modern infant formulas [3–6]. For the most part, HMOs are not digested by infants but act
as substrates for specific microbes, thereby shaping the overall composition of the infant’s
gastrointestinal microbiome. Additionally, HMOs benefit infants consuming human milk
due to their ability to block specific pathogens from attaching to the surface sugars of
epithelial cells [7]. This can prevent disease in the gastrointestinal tract and even protect
infants from respiratory and urinary tract infections [8].

Along with the functions of HMOs listed previously, HMOs support the growth
of gastrointestinal microorganisms, primarily those from the genus Bifidobacterium. The
gastrointestinal tracts of infants born at term and fed human milk are colonized mostly
by B. longum, B. longum subspecies infantis (B. infantis), and B. breve with small amounts
of B. bifidum and B. pseudocatenulatum [9–11]. However, infants born at term that are
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formula-fed have a more diverse Bifidobacterium population. These diverse populations
include B. longum, B. breve, and Bifidobacteria species more commonly seen in adults, such
as B. adolescentis [9].

Of all infant gut microbes, B. infantis is one of the most comprehensively studied
due to its ability to use HMOs as its sole carbon source [12]. As mentioned, B. infantis is
commonly detected in breastfed infants. As such, B. infantis contains a large gene cluster
and loci that are devoted specifically to the digestion of HMOs [12]. Most Bifidobacterium
metabolize lacto-N-tetraose (LNT), a tetrasaccharide that is a core structure found in HMOs
with a higher molecular weight; B. infantis also uses lacto-N-neotetraose (LNnT) [13]. LNT
is typically present in a very high concentration in human milk during lactation [14].
B. infantis is able to consume LNT completely; however, B. longum, B. breve, and B. bifidum
degrade LNT to a lesser extent. Most adult-associated strains of Bifidobacterium such as
B. adolescentis and B. animalis do not degrade LNT or any other HMO compounds [12].

The main objective of this study was to determine if the HMO-metabolizing gene
abundances in the gastrointestinal microbiota of six-month-old human infants are asso-
ciated with early-life exposures such as type of feeding and mode of delivery. First, we
hypothesized that infants who test positive for B. infantis HMO-metabolizing genes would
have consumed a larger percentage of human milk in their diet. Secondly, if the vagina is a
source of B. infantis, infants delivered vaginally would be more likely to have high levels
of B. infantis HMO-metabolizing genes. These hypotheses were tested by screening fecal
samples collected from infants for HMO-metabolizing genes by extracting genomic DNA
and using quantitative real-time PCR to measure the prevalence and abundance of specific
genes in the genomic DNA.

2. Materials and Methods
2.1. Study Design and Setting

This study followed a cross-sectional design but was nested within a prospective
longitudinal pregnancy and birth cohort. This study serves as a secondary analysis and
was conducted using a subset of participants described by Sugino et al. in 2020 [15]. The
participants in this study resided in areas within and surrounding Lansing and Traverse
City, Michigan, USA.

2.2. Participants
2.2.1. Study Population and Sample Collection

Subjects: The women enrolled in this study were part of the ARCH GUT (n = 24) or
BABY GUT (n = 16) cohorts. ARCH GUT is a part of the ARCH (Archive for Research in
Child Health) study. The ARCH cohort recruited its participants from one clinic in Lansing
and one clinic in Traverse City. The BABY GUT study recruited participants from several
clinics in the greater Lansing area. Study procedures for ARCH (IRB #C07-1201), ARCH
GUT (IRB #14-170M), and BABY GUT (IRB #15-1240) were approved by the Michigan State
University’s IRB.

Sample collection: Collection kits were assembled at the research facility and sent to
the participants by mail. The collection kits included instructions for taking a fecal sample,
a ParaPak tube for sample collection (Meridian Bioscience, 900312, Cincinnati, OH, USA),
or diapers for the infant sample. The mothers collected fecal samples from the infant’s
diaper at home. The infants were near six months of age at the time of sample collection.
Forty samples were included in the final analysis. The samples were sent to the laboratory
by mail or retrieved from the home, and fecal aliquots were stored at−80 ◦C upon reaching
the laboratory.

2.2.2. Diet Analysis

In a survey, the participants estimated the fraction of their infant’s diet over the past
week that was human breast milk as 100%, 80%, 50–80%, 50%, 20–50%, 20%, or 0% [16]. Due
to the low number of individuals, the infants were categorized as having any (n = 28) or no
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(n = 12) exposure to human milk. The mothers also recorded information regarding whether
the infant ate solid foods and if so, what foods were consumed. Using this information, the
infants were categorized into one of the three categories describing their solid food intake:
no solids, few solids, many solids. The “few solids” category was defined as having some
cereal and/or one fruit/vegetable in the diet while the “many solids” group was defined
as a larger variety (more than two) of solid foods.

2.2.3. Sample Storage and DNA Extraction

Genomic DNA from the fecal samples was extracted using a DNeasy PowerSoil Pro
Kit from Qiagen (Carlsbad, CA, USA) as described by Sugino et al. [17]. After the extraction,
the genomic DNA samples were stored at −80 ◦C until testing.

2.3. Quantitative Real-Time PCR

Each gDNA sample (n = 40) was screened for the presence of total 16S rRNA/DNA,
the Bifidobacterium genus, B. infantis, and B. breve. All 40 samples were screened using
11 different primer sets. All the genes and their respective primer sets as well as functions
are further described in Table 1. The development of these primer sets was described
by Tso et al. [18]. DNA was isolated from commercial probiotics containing the bacterial
strains of interest to optimize assay conditions for each set of primers. Once determined,
those primer conditions were used for the remaining experiments. Each well, when run,
contained 15 µL in total (Supplementary Materials Table S1). The volume of forward and
reverse primers, amount of SYBR green, gDNA, and DNA-free water was dependent on
the concentration necessary for each specific primer set. Supplementary Materials Table S1
outlines the reaction volumes per well and the optimal primer concentration (300 µM,
1 µM, 5 µM, 12.5 µM).

PCR thermocycler conditions for each primer set, Sia-266F676R, B. inf, g-Bif, GH-
492F1002R, Inf2348, HC bin F, Uni, GH750F1258R, HH-60F534R, Blon0915, and Bbreve are
described in Supplementary Materials Table S2. The annealing temperature is specific for
each primer set and is listed in Table 1.

Following kinetic fluorescent quantification using a QuantStudio 7 Flex qPCR in-
strument (Applied Biosystems; Foster City, CA, USA) in the Michigan State University’s
Genomics Core, QuantStudio7 (Applied Biosystems) was used to identify and export CT
values. The lower the CT value, the more abundant the gene. The ranges of negative to
very positive were calculated via the CT value, with the following cutoffs: negative, >32;
slightly positive, ≥28 and <32; more positive, ≥20 and <28; very positive, <20 (Figure 1).

2.4. Statistical Analyses

Basic descriptive statistics and proc GLM to compare gene abundance by human
milk, solid food intake, and mode of delivery were conducted using SAS (Cary, NC, USA;
version 9.4); p < 0.05 was considered significant; p < 0.10 was considered a trend. Rarified
count data of individual taxa with greater than 1% average relative abundance were
compared using a negative binomial model in the MASS package (Venables and Ripley,
2002). The Mann–Whitney test was used to compare the number of HMO genes for each
infant categorized as having any or no human milk intake.
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Table 1. Primer Sets.

Primer Set Forward and Reverse Primers (5′–3′) Gene Targeted Organism Targeted Annealing Temperature (◦C) Primer Concentration Reference

Sia F: GACGAGGAGGAATACAGCAG
R: CACGAACAGCGAATCATGGATT Sialidase (Blon_2348) B. longum infantis 58 1 µM Klepac-Ceraj (unpublished)

B. inf F: CCATCTCTGGGATCGTCGG
R: TATCGGGGAGCAAGCGTGA 16S rRNA B. longum infantis, B. longum

longum, B. indicum 57 300 nM Tannock et al. (2013) [19]

g-Bif F: CTCCTGGAAACGGGTGG
R: GGTGTTCTTCCCGATATCTACA 16S rRNA Bifidobacterium genus 55 1 µM Tannock et al. (2013) [19]

GH-492 F: CGATGATGTGCTGGATTCGTTC
R: CTCGACCATTCCAAGATGCTA

Glycoside hydrolase
(Blon_2358) B. longum infantis 60 300 nM Klepac-Ceraj (unpublished)

Inf 2348 F: ATACAGCAGAACCTTGGCCT
R: GTTCTCGTCCATGTGATCGC Sialidase B. longum infantis 60 5 µM Lawley et al. (2017) [20]

HC bin F: AGGATACGTTCGGCGTC
R: CGCAAGATTCCTCTAGCA 16S rRNA B. longum infantis 60 5 µM Hong and Chen (2007) [21]

Uni F349: ACTCCTACGGGAGGCAGCAGT
R528:ATTACCGCGGCTGCTGGC 16S rRNA Targets all bacteria 60 1 µM Tannock et al. (1999) [22]

GH750 F: GCGCCATCCTGGTGATGTTATT
R: CTACGTGATCTGGGAGAGTTTC

Glycoside hydrolase
(Blon_2355) B. longum infantis 59 5 µM Klepac-Ceraj (unpublished)

HH F: CCACAATGTCATCGACCATCTG
R: CCGAAGTATTCGGATGCCTATG

Haloacid dehalogenase-like
hydrolase

domain-containing protein
(Blon_2356)

B. longum infantis 59 5 µM Klepac-Ceraj (unpublished)

Blon F: CGTATTGGCTTTGTACGCATTT
R: ATCGTGCCGGTGAGATTTAC

Major facilitator
superfamily B. longum infantis 50 1 µM Frese et al. (2017) [23]

Bbreve F: CCGGATGTCCATCACAC
R: ACAAAGTGCCTTGCTCCCT 16S rRNA Bifidobacterium breve 55 5 µM Matsuki et al. (1998) [24]



Microorganisms 2021, 9, 1352 5 of 13

Microorganisms 2021, 9, 1352 5 of 13 
 

 

 
Figure 1. Heat map of the HMO-metabolizing genes detected in each of the infant stool samples. The colors show the 
range from negative (red) to very positive (dark green), with the top portion of the map being infants fed some amount of 
human milk, and the infants in the bottom portion not consuming any human milk at the time of sample collection. 

2.4. Statistical Analyses 
Basic descriptive statistics and proc GLM to compare gene abundance by human 

milk, solid food intake, and mode of delivery were conducted using SAS (Cary, NC, USA; 
version 9.4); p < 0.05 was considered significant; p < 0.10 was considered a trend. Rarified 
count data of individual taxa with greater than 1% average relative abundance were com-
pared using a negative binomial model in the MASS package (Venables and Ripley, 2002). 
The Mann–Whitney test was used to compare the number of HMO genes for each infant 
categorized as having any or no human milk intake. 

3. Results 
3.1. Participant Characteristics 

Forty women (n = 40) participated in this study and submitted infant stool samples 
(Table 2). The mean age of the women was 31.79 ± 4.54 years, and the mean age of the 
infants was 202.53 ± 22.56 days. Of the infants, 62.5% (n = 25) were delivered vaginally, 
and 70% (n = 28) were male. For human milk exposure, 70% (n = 28) of the infants were 
exposed to some human milk and 30% (n = 12) had not been exposed to any human milk 
in the week immediately prior to stool sample collection. Infant solid food intake was also 
reported by the women participating in the study. Eighty-five percent (n = 34) of the in-
fants were reported to have consumed some type of solid food. The mothers also reported 

Figure 1. Heat map of the HMO-metabolizing genes detected in each of the infant stool samples. The colors show the range
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3. Results
3.1. Participant Characteristics

Forty women (n = 40) participated in this study and submitted infant stool samples
(Table 2). The mean age of the women was 31.79 ± 4.54 years, and the mean age of the
infants was 202.53 ± 22.56 days. Of the infants, 62.5% (n = 25) were delivered vaginally,
and 70% (n = 28) were male. For human milk exposure, 70% (n = 28) of the infants were
exposed to some human milk and 30% (n = 12) had not been exposed to any human milk
in the week immediately prior to stool sample collection. Infant solid food intake was also
reported by the women participating in the study. Eighty-five percent (n = 34) of the infants
were reported to have consumed some type of solid food. The mothers also reported the
solid foods that the infants ate. The most commonly reported were vegetables (60%), fruit
(57.5%), rice (27.5%), oats (20%), and meat (5%) (Table 2).

3.2. Gene Prevalence and Abundance

When analyzing gene prevalence and abundance in infants who consumed any
amount of human milk versus no human milk, Sia was more prevalent and abundant in
those infants who consumed human milk (Figure 1). This relationship was also true for
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B. inf (Figure 1). Of those consuming human milk, 85.7% (n = 24) were positive for Sia,
while 96.4% (n = 27) were positive for B. inf. Overall, 80% (n = 32) of the infants were posi-
tive for Sia, but in the samples from infants fed no human milk, Sia was either undetectable
or slightly positive. Of the infants whose samples contained detectable levels of B. inf
(95% (n = 38)), 25% of those from the infants fed no human milk were very positive for
B. inf whereas 54% of those from the infants fed human milk were very positive. Inf 2348
was detected in all the infant samples (n = 40) while HC bin was detected in all but one
sample (n = 39). HH (haloacid dehalogenase-like hydrolase domain-containing protein)
was detected in 92.5% (n = 37) of the infants, Blon (major facilitator superfamily)—in 95%
(n = 38) of the infants. GH492 (glycoside hydrolase), GH750 (glycoside hydrolase), and
Bbreve (16S) were detected in fewer infants—67.5% (n = 27), 62.5% (n = 25), and 57.5%
(n = 23) respectively. When we considered detection of the following five genes, Sia, GH492,
Inf 2348, GH750, and HH, at a level that was “more positive” or “very positive,” we found
that the stool of the human milk-fed infants harbored a more diverse set of HMO genes
than that of the non-human milk-fed infants (p = 0.0148). The stool samples from the
human milk-fed infants contained a median of 2.5 of the five HMO genes whereas the
samples from the non-human milk-fed infants contained a median of one HMO gene.

Table 2. Participant characteristics.

Total n = 40

Maternal age, years 31.79 (min, 22; max, 39)

Vaginal birth, % (n) 62.5 (25)

Infant age, days 202.53 (min, 161; max, 292)

Male, % (n) 70 (28)

Human milk exposure, % (n)

100% 17.5 (7)

20–80% 27.5 (11)

>0 but <20% 25 (10)

0% 30 (12)

Human milk, new

Any HM, % 70 (28)

No HM, % 30 (12)

Solid food intake, % (n), yes

No solids 15 (6)

Some solids 27.5 (11)

Significant solids 57.5 (23)

Solid food intake, food-specific, % (n), yes

Rice 27.5 (11)

Fruit 57.5 (23)

Vegetables 60 (24)

Meat 5 (2)

Oats 20 (8)

3.3. Gastrointestinal Bacterial Communities

Supplementary Materials Figures S1–S4 display bar charts of the gastrointestinal bac-
terial communities at the genus and phylum levels separated by the extent of solid food
and human milk consumption. Infants consuming any amount of human milk tended to
have a larger abundance of Actinobacteria (phylum) (p = 0.088; Supplementary Materials
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Figure S3) and Bifidobacterium (genus) (p = 0.087; Supplementary Materials Figure S4) in
their gastrointestinal microbiome. When comparing taxa according to the extent to which
infants ate solids (no solids, little solids, or some solids), Firmicutes were enriched in
the solid food eaters (p = 0.011; Supplementary Materials Figure S1). However, there
were no significant differences in Bifidobacterium (genus) or Actinobacteria (phylum) abun-
dances in accord with the extent of solid food consumption (Supplementary Materials
Figures S1 and S2).

3.4. Univariate Models

We first analyzed the relationship between the HMO-metabolizing genes and the
mode of delivery, human milk exposure, or solid food consumption in univariate models.
No genes were significantly associated with the mode of delivery. However, the bacterial
DNA isolated from the stool of the breastfed infants had a greater abundance of the
Sia (p = 0.0235), B. inf (p = 0.0047), and GH750 (p = 0.0372) genes compared to the non-
breastfed infants (Figure 2). The abundance of the genes HC bin (p = 0.0597) and HH
(p = 0.0523) also tended to be positively associated with breast milk consumption (Figure 2).
When measuring the relationship between the abundance of each gene and the extent to
which the infants ate solid foods, no gene abundances were associated with the extent of
solids consumed.
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3.5. Multivariate Model

Because the combination of breast milk and solid food consumption represents the
full extent of the infant diet, these variables were then considered in a multivariate model
(Figure 3). When accounting for solid food intake, human milk exposure continued to
be associated with Sia (p = 0.0247) and B. inf (p = 0.0165) gene abundance. Human milk
exposure also tended to be associated with GH750 and HC bin gene abundance when
accounting for solid food intake (Figure 3). The interaction between the consumption of
human milk and the extent to which the infant ate solids was not significant, and therefore
the interaction was not included in our final models.
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4. Discussion

In this study, we determined the abundance and prevalence of HMO-metabolizing
genes in the gastrointestinal microbiota of infants at six months of age. The genes found
in Bifidobacterium infantis were of special interest in this study due to the ability of these
bacteria to digest HMOs. Exposure to human milk was positively associated with the
abundance of the genes Sia and B. inf and tended to be positively associated with GH750
and HC bin gene abundance as well. Collectively, these data demonstrate that the genes
Sia or B. inf are strong markers of HMO intake and therefore of human milk intake. Sia
may be the more discriminatory marker. However, further development and validation of
the assays is necessary.

Herein, the mode of delivery and the abundance of the HMO-metabolizing genes were
not significantly related. However, other research studies that assessed this relationship
reported different results. For instance, the abundance of Bifidobacterium (as determined
by 16S rRNA gene sequencing) was significantly lower in the infants delivered by Ce-
sarean section compared to the vaginally delivered infants at ages of 10 days [25], three
weeks [26,27], and one month [28]. While these results differ from what was observed in
our study, this is likely due to the age of the infants at the time of sampling. Our study
analyzed Bifidobacterium genes in samples taken from infants at six months of age, a much
later age period compared to other studies. Our results are similar to reports from infants
three months and older, which also show no significant difference in Bifidobacterium abun-
dance by the mode of delivery [29,30]. Differences were observed in the relative abundance
of Bacteroides at birth related to the mode of delivery; however, as the infants aged, the
differences decreased, supporting the idea that any microbial difference from the mode of
delivery has no long-term impact at six months of age [31–34]. Therefore, it is likely that
we did not detect a difference related to the mode of delivery because our infants were six
months old. Therefore, in order to determine whether the mode of delivery is associated
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with specific HMO-metabolizing genes, the samples collected from infants younger than
six months of age need to be studied.

Our choice to study infants at six months of age was for a variety of reasons. As
mentioned in the paragraph above, at the six-month timepoint, changes in the microbiome
of infants due to the mode of delivery are unlikely to be detected; therefore, this variable
could be removed from our multivariate analyses [29–31]. Additionally, due to a large
variation in the amount of human milk infants consume at this age, we expected to detect
variations in the abundance of HMO genes due to the amount of human milk consumed
by the infants. However, due to the sample size and sensitivity of the assay, we did not
have the power to detect these differences. A study with a larger sample size may be able
to assess potential differences in HMO gene abundance by the proportion of human milk
consumed in the diet. As long as the microbiome remains capable of being manipulated by
prebiotics, probiotics, and diet at six months of age, interventions at this point in an infant’s
life can lead to long-term modifications that do not require consistent administration of
the treatment [31]. Finally, the number of infants fed human milk as well as the amount
of human milk each infant is fed drops off as infants age. Due to the variability in the
delivery method, feeding habits, and milk consumption, we chose six months of age as the
timepoint for this study.

These results demonstrate that stool genomic DNA isolated from breastfed infants had
a greater abundance of the Sia, B. inf, and GH750 genes (Figure 1) and a greater diversity
of HMO genes Sia, GH492, Inf 2348, GH750, and HH. Other studies have shown that
within the infant gastrointestinal microbiome, there are multiple species and strains of
Bifidobacterium that exist together [35]. It has been reported that the consumption of HMOs
is associated with a microbiota rich in Bifidobacterium, and that HMO consumption by
bifidobacteria also affects the infant gastrointestinal microbiome [36]. In a study looking
at HMO profile variation in healthy women postpartum where 89.1% of women were
identified as secretors, women with a functional FUT2 gene, and 10.9% were non-secretors,
it was found that the most abundant HMO in the milk of secretor women was 2′FL, and
the total HMO concentration at 88–119 days postpartum was significantly higher than at
2–8 days postpartum [37]. Our study could be extended further by knowing the secretor
status as well as the HMO profile of the participating mothers. This would allow us to
elucidate the impact of HMOs on infant outcomes related to the variety of HMOs produced
by the mother.

In our study, genes Sia or B. inf were markers of human milk consumption by infants
or, more specifically, of HMO intake. However, there are many types of HMOs with
varying composition in the human milk of women throughout the duration of lactation [37].
Analyses of the HMO variation in human milk up to three and four months postpartum
demonstrate that HMO concentrations (g/L) decrease over time postpartum [37–39]. There
is a relative decrease in high-molecular HMOs over time and an increase in low-molecular
HMOs over time, therefore decreasing the overall HMO concentration in g/L over time
postpartum [37–39]. Not only does the abundance and composition of HMOs differ across
lactation stages for women, but there is also variation in the same woman over time [40].
Therefore, the composition of the milk the mother is producing and feeding to her child as
well as the amount of time postpartum can impact the presence of HMO-metabolizing genes
in the stool of the infant. As a result, this means any genes that encode HMO-metabolizing
proteins specific for the HMOs that are not common in all human milk would be poor
markers of human milk intake. On the other hand, the genes encoding HMO-metabolizing
proteins specific for HMOs that are common in all human milk would be good markers of
human milk intake. Thus, Sia encodes a sialidase that must attack a structure common to
all human milk. However, the B. inf gene is not specific for an HMO-metabolizing enzyme.
Rather, that gene encodes a specific sequence in the rRNA/DNA gene for a specific strain
of B. infantis.

When one’s diet is not recorded, aspects of it can be determined using biomarkers,
a common yet potentially expensive method. There is no single biomarker to determine
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an infant’s diet. In fact, many methods can be used to determine an infant’s diet [41].
Specifically, NMR-based metabolomics and other untargeted metabolomic methods have
been used to investigate metabolites in biospecimens from infants fed either human milk,
cow’s milk formulas, or soy-based formulas [42,43]. Thus, we would expect that the fecal
metabolomes would be significantly different based on the diet; however, given that these
infants were six months old at the time of sampling, it was not predicted that the mode
of delivery would have a significant impact [43]. In our case, quantitative real-time PCR
was used to assess the presence of the genes related to the infant diet composition. If the
circumstances prevented us from collecting nutritional information from the mothers of
the infants studied, it would still be possible to determine their breastfeeding habits and
human milk consumption by analyzing the abundance of the genes Sia and B. inf. However,
further development of these assays in a larger and more diverse population is required
to confirm that the results reported herein are generalizable. The quantitative real-time
PCR method used in this study is cheaper, faster, and simpler compared to metabolomics,
shotgun metagenomic sequencing, or fluorescence in situ hybridization (FISH). Our method
differs from other omics techniques in that it does not require knowledge of bioinformatics
pipelines for the analysis of complex datasets, yet it provides a method of estimating
the relative abundances of specific taxa [44]. If the correct primers are used, such as
those used to detect Sia and B. inf in this study, this PCR-based method allows for the
differentiation between human milk- and non-human milk-fed infants in a way that can be
adequately and economically achieved. Other advantages to using PCR are that the test is
fast, sensitive, specific (due to primer specificity), and provides detection and quantification
of the DNA. Furthermore, cross-contamination is unlikely because the samples are not
manipulated after they are amplified. These advantages make PCR a reliable alternative to
the standard culture methods [45]. However, there are some limitations when studying
bacterial genes using PCR. There is the possibility that any one bacterium could have
multiple copies of each of the genes detected, and each bacterium could have a different
number of each of these genes. Furthermore, the presence of genes does not provide
information about their expression or production. PCR cannot distinguish between live
and dead bacteria, preventing us from determining if the DNA that is detected is from the
bacteria making a metabolic contribution in the gastrointestinal tract. Additionally, while
PCR-based tests are fast, the results should be analyzed and correlated with phenotypic
and biochemical tests [42]. These issues make it difficult to conduct a quantitative analysis
of the actual metabolizing capacity for the HMOs, demonstrating possible pitfalls to using
quantitative real-time PCR. While our study uses quantitative real time-PCR, other methods
for the detection of Bifidobacterium in the intestine of infants include fluorescence in situ
hybridization (FISH) as it is able to detect minute amounts of Bifidobacterium; however
it requires specific equipment and expensive fluorescent labels and is therefore not as
cost-effective as the method described herein [46,47].

4.1. Limitations

In addition to the potential issues associated with quantitative real-time PCR, other
limitations of this study include a small sample size (n = 40) of women in a single geographic
location, thereby limiting the generalizability of the results. As long as only 40 mothers
and their infants were enrolled in this study, it was difficult to determine a threshold of
abundance of these genes in relation to the extent of human milk the infants consumed.

4.2. Future Directions

Future studies will expand the number of infants as well as include infants of a variety
of ages, such as one month and three months of age, to determine if HMO-metabolizing
gene expression is sensitive to quantities of human milk as well as if factors such as the
mode of delivery contribute to HMO-metabolizing gene expression and abundance. Other
future directions could include determining the mother’s secretor status and HMO profile
which would allow us to relate the impact of HMOs on infant outcomes to the variety of
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HMOs produced by the mother. Finally, future studies could determine if the mode of
feeding results in fecal metabolite profiles that are unique to breastfed infants and whether
those metabolites correlate with Sia gene abundance.

5. Conclusions

In conclusion, our study provides evidence that detection in infant stool of the gene
targeted by the Sia primer set is indicative of human milk intake. Therefore, it is possible
that banked stool samples could be used to determine infant diet composition in studies
where diet data was not collected. More specifically, the PCR test could determine whether
the infant consumed human milk at the time of stool sampling.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9071352/s1, Table S1: Reaction volumes per well, Table S2: Conditions
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suming some solids, Figure S2: Genera bar charts according to solid food intake, where 0 represents
an infant consuming no solids, 1 represents an infant consuming little solids, and 2 represents an
infant consuming some solids, Figure S3: Infants receiving any human milk tended to have a higher
abundance of Actinobacteria than those receiving no human milk at all (p = 0.088), Figure S4: Infants
receiving any human milk tended to have a higher abundance of Bifidobacterium than those receiving
no human milk at all (p = 0.087).
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