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Abstract: Volatile compounds are responsible for the wine “bouquet”, which is perceived 

by sniffing the headspace of a glass, and of the aroma component (palate-aroma) of the 

overall flavor, which is perceived on drinking. Grape aroma compounds are transferred to 

the wine and undergo minimal alteration during fermentation (e.g., monoterpenes and 

methoxypyrazines); others are precursors of aroma compounds which form in winemaking and 

during wine aging (e.g., glycosidically-bound volatile compounds and C13-norisoprenoids). 

Headspace solid phase microextraction (HS-SPME) is a fast and simple technique which 

was developed for analysis of volatile compounds. This review describes some SPME 

methods coupled with gas chromatography/mass spectrometry (GC/MS) used to study the 

grape and wine volatiles. 
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1. Introduction 

Wine aroma is formed by more than 800 volatile compounds and is characteristic of each  

product [1,2]. Often these compounds are present in very low concentration and are characterized by 

very low sensory thresholds (between ng/L and μg/L). Usually, the wine aroma profiling needs a sample 

preparation for isolation and concentration of the volatiles before performing gas chromatographic 

analysis. Several sample preparation methods for the analysis of grapes and wine were proposed: 

distillation [3,4], liquid–liquid extraction (LLE) [5,6], solid phase extraction (SPE) [7,8], dynamic 

headspace extraction [9], and headspace–solid phase microextraction (HS-SPME) [10–13]. 

SPME was developed in the 1990s by Pawliszyn and co-workers [14] and every year a thousand 

papers describing different aspects of this approach, and applications in different fields (chemical 

analysis, bioanalysis, food science, environmental science, and recently, pharmaceutical and medical 

sciences), are published [15]. This sample extraction technique was demonstrated to be rapid, simple, 

and reproducible, with no solvent use, and is suitable for the extraction and concentration of a high 

number of volatile and semi-volatile compounds from aqueous solutions [16,17]. Moreover, SPME 

needs a small sample volume and the coupling with gas chromatography and mass spectrometry 

(GC/MS) provides high sensitivity. For these reasons it has been used to study the volatile profile of 

many fruit varieties, vegetables, and beverages, including grapes and wine [18–20]. 

This paper reviews the main SPME-GC/MS applications developed to study the volatile and aroma 

compounds of grapes and wine. 

Grape and Wine Volatile Compounds 

Since early 80’s a great number of studies of grape and wine volatiles have been performed and the 

main compounds identified are listed in Table 1. Principal in grape are monoterpenes, C13-norisoprenoids, 

benzene compounds, C6 aldehydes, and alcohols [21–23]. These compounds are present in berry skin 

and pulp in both free (volatile) and glycosidically-bound (non-volatile) form. Free volatile compounds 

directly contribute to grape and wine aroma while glycosides are flavorless compounds which can act 

as aroma precursors for enzymatic and acid hydrolysis occurring in winemaking and during wine 

storage [24]. 

In general, monoterpenes have floral and citrus notes; C13-norisoprenoids such as β-damascenone 

and β-ionone are characterized by “fruity-flowery”, “honey-like”, “sweet” and “violet” notes, 

respectively [25]. 

Main grape and wine volatile benzenoids are aldehydes and alcohols, such as benzaldehyde, 

phenylacetaldehyde (hyacinth and rose-like odor [26]), vanillin, benzyl alcohol, and 2-phenylethanol [24], 

probably formed from L-phenylalanine via the shikimic pathway [27]. The structures of the main grape 

aroma compounds are shown in Figures 1–3. 
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Table 1. Principal aroma compounds identified in grapes and wine [20,23,24,28,29]. 

Terpenoids Benzenoids Sulfur compounds  

linalool zingerone methyl mercaptan  

nerol zingerol ethyl mercaptan  

geraniol acetophenone dimethyl sulfide 

citronellol vanillin  diethyl sulfide   

α-terpineol methyl salicylate dimethyl disulfide  

cis/trans ocimenol  eugenol diethyl disulfide  

cis/trans linalooloxide (furanic form) cis/trans isoeugenol methyl thioacetate  

cis/trans linalooloxide (pyranic form) 2-phenylethanol ethyl thioacetate 

hydroxycitronellol  benzyl alcohol 2-mercaptoethanol  

8-hydroxydihydrolinalool  acetovanillone 2-(methylthio)-1-ethanol  

7-hydroxygeraniol benzaldehyde 3-(methylthio)-1-propanol  

7-hydroxynerol  4-hydroxybenzaldehyde 4-(methylthio)-1-butanol  

cis/trans 8-hydroxylinalool 2,4-dimethylbenzaldehyde 2-furanmethanethiol 

diendiol I  phenylacetaldehyde benzothiazole 

endiol syringaldehyde thiazole 

diendiol II  coniferaldehyde 5-(2-hydroxyethyl)-4-methylthiazole  

neroloxide sinapaldehyde 4-methyl-4-mercaptopentan-2-one 

2-exo-hydroxy-1,8-cineol propriosyringone 3-mercaptohexanol acetate 

1,8-cineol propriovanillone cis/trans 2-methylthiophan-3-ol 

cis/trans 1,8-terpine syringol 2-methyltetrahydrothiophen-3-one 

p-menthenediol I coniferyl alcohol cis/trans 2-methyltetrahydrothiophen-3-ol 

(E)-geranic acid vanillic alcohol 3-mercaptohexan-1-ol 

(E)-2,6-dimethyl -6-hydroxyocta-2,7-dienoic acid sinapic alcohol 3-mercaptohexyl acetate  

(E)- and (Z)-sobrerol  o-cymene 4-mercapto-4-methylpentan-2-ol 

cis/trans rose oxide p-cymene 3-mercapto-3-methylbutan-1-ol 

lilac alcohols  guaiacol  

triol  4-ethylguaiacol  

hotrienol  4-vinylguaiacol  

myrcenol  4-ethylphenol  

limonene 4-vinylphenol  

β-phellandrene methyl anthranilate   

β-ocimene 2'-aminoacetophenone   

wine lactone  

Aliphatic alcohols Acids Sesquiterpenes 

1-butanol isobutyric acid rotundone 

2-nonanol isovaleric acid farnesol 

3-methyl-1-butanol   acetic acid germacrene D 

2-methyl-1-butanol   butyric acid γ-cadinene 

isobutanol hexanoic acid α-ylangene 

1-pentanol octanoic acid α-farnesene 

1-hexanol decanoic acid β-farnesene 

1-octanol hexadecanoic acid nerolidol 

(E)-3-hexen-1-ol octadecanoic acid  

(Z)-3-hexen-1-ol   

4-methyl-3-penten-1-ol   

(E)-2-hexen-1-ol   

1-octen-3-ol   

2-ethyl-1-hexanol   

furfuryl alcohol   

6-methyl-5-hepten-2-ol   
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Table 1. Cont. 

Carbonyl compounds Esters Norisoprenoids 

acetaldehyde ethyl 2-methylpropanoate  TDN (1,1,6-trimethyl-1,2-dihydronaphthalene)  

isobutyraldehyde ethyl 2-methylbutanoate β-damascone 

2-methylbutanal ethyl 3-methylbutanoate β-damascenone   

isovaleraldehyde ethyl 2-hydroxypropanoate vomifoliol 

1-octen-3-one ethyl 3-hydroxybutanoate dihydrovomifoliol  

(E)-2-heptenal ethyl 4-hydroxybutanoate 3-hydroxy-β-damascone 

methional diethyl succinate 3-oxo-α-ionol  

(E)-2-octenal diethyl malate 3-hydroxy-7,8-dihydro-β-ionol 

hexanal ethyl butanoate α-ionol 

(E)-2-hexenal ethyl hexanoate β-ionol 

(Z)-3-hexenal ethyl octanoate α-ionone 

(Z)-2-nonenal ethyl decanoate β-ionone 

furfural ethyl benzoate actinidols  

5-methylfurfural isoamyl octanoate vitispiranes 

1H-pyrrole-2-carboxyaldehyde ethyl furoate Riesling acetal  

geranial ethyl dihydrocinnamate hydroxy-megastigmen-2-one 

neral ethyl cinnamate hydroxy-megastigmen-3-one 

acetoin  methyl vanillate 4-oxo-isophorone 

diacetyl ethyl vanillate β-isophorone 

glyoxal ethyl acetate 4-oxo-2,3-dehydro-β-ionol 

methylglyoxal isobutyl acetate β-cyclocitral 

glycolaldehyde isoamyl acetate  

hydroxypropandial ethyl 2-phenylacetate  

2,4-nonadienal hexyl acetate  

2,6-nonadienal  

Lactones Nitrogen compounds  

γ-butyrolactone 3-isobutyl-2-methoxypyrazine  

γ-hexalactone 3-sec-butyl-2-methoxypyrazine  

γ-nonalactone 3-isopropyl-2-methoxypyrazine  

γ-decalactone 3-ethyl-2-methoxypyrazine  

cis/trans oak lactone   

sotolon  

Twenty-four aldehydes (mostly alkyls) were identified in wine; they can form during winemaking 

or be present in the grapes [28]. For example, glyoxal, methylglyoxal, hydroxypropandial and 

glycolaldehyde form by microorganisms such as Saccharomyces cerevisiae or Leuconostoc oenos, or 

can form in grapes as a consequence of Botrytis cinerea grape attack [30,31]. In general, C6 aldehydes 

(hexanal, (E)-2-hexenal, and (Z)-3-hexenal) and (Z)-2-nonenal are responsible for the green, 

herbaceous, and sometimes bitter aroma of wines [21]. They are mainly due to the enzymatic cleavage 

of oxidized linoleic and linolenic acid during grape crushing before fermentation [29]. 
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Figure 1. Principal monoterpenes identified in grapes. In brackets, the odor descriptor is 

reported [24]. 

 

Figure 2. Principal C13-norisoprenoids identified in grapes. In brackets, the odor descriptor 

is reported [24]. 
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Figure 3. Structures of “foxy-smelling” compounds and alkyl methoxypyrazines in grapes. 

In brackets, the odor descriptor is reported [25]. 

 

Main wine volatiles are ethyl esters, acetates, and higher alcohols. Esters are produced by the yeasts 

during fermentation. Principal are ethyl esters characterized by fruity and floral notes, such as ethyl 

hexanoate, ethyl octanoate, ethyl decanoate, ethyl dodecanoate, isoamyl acetate, hexyl acetate, and  

2-phenylethyl acetate [32,33]. Contents of hexanoic, octanoic, and decanoic acid in wine depend on 

the yeast strain, fermentation conditions and grape must composition [27]. Higher alcohols are formed 

by the yeast sugar metabolism (anabolic pathway) as well as via the catabolic or Ehrlich pathway of 

amino acids [27,34,35]. Rapp and Versini reported that a higher alcohols concentration below  

300 mg/L is desirable for the aroma complexity of wine whereas a concentration exceeding 400 mg/L 

can have a detrimental effect [36]. 

Volatile phenols, such as 4-vinylphenol (aroma descriptors: spicy, pharmaceutical), 4-vinylguaiacol 

(smoke, phenolic), 4-ethylphenol (horse stable, medicinal), and 4-ethyl guaiacol (spice, phenolic), are 

produced during alcoholic fermentation by some microorganisms (Brettanomyces yeasts and bacteria) 

by decarboxylation of hydroxycinnamic acids present in must [32,33,37]. 

2. SPME-GC/MS Methods 

2.1. Analysis of PFBOA-Derivatives 

In general, carbonyl compounds contribute to the wine aroma even though they are present in low 

levels. GC/MS analysis of the O-pentafluorobenzyl (PFB) derivatives formed by reaction with  

O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBOA) by recording in singular-ion-monitoring 

(SIM) the mass spectrum base peak signal at m/z 181 (characteristic of PFB-oximes) is a selective and 

sensitive method. On the other hand, derivatization increases the complexity of analyte peaks in the 

chromatogram due to formation of two oximes for each carbonyl group (isomers E and Z, except for 

formaldehyde) [38]. By this method several studies of carbonyl compounds in hydro-alcoholic 

matrices, such as wine, model wine solutions, and spirits, were performed [30,31,39–47]. 

Malolactic fermentation (MLF) is an important oenological process performed after the alcoholic 

fermentation for improving the organoleptic characteristics and the microbiological stability of  

wine [46]. The process is carried out by lactic acid bacteria: it can occur naturally or be induced by the 

N

N

R

OCH3

NH2

O

O

methyl anthranilate 
("foxy" or "grapelike" aroma)

NH2

O

2'-aminoacetophenone 
(acacia blossom, naphtalene note)

R=CH2CH(CH3)2       2-methoxy-3-isobutylpyrazine (green pepper)

R=CH(CH3)2                    2-methoxy-3-isopropylpyrazine (green pepper, earthy, raw potato, musty)

R=CH2CH3                        2-methoxy-3-ethylpyrazine (green pepper, earthy)

R=CH(CH3)CH2CH3  2-methoxy-3-sec-butylpyrazine (green pepper)



Molecules 2014, 19 21297 

 

 

inoculum of commercial bacteria strains. Conversion of L(−)-malic into L(+)-lactic acid decreases wine 

acidity [30]; usually, the inoculation of selected bacteria strains enables control over the process [48]. 

With MLF, together with the other fermentative compounds (esters, sulfur and nitrogen compounds, 

volatile phenols, and volatile fatty acids), also the carbonyl profile changes, increasing the aromatic 

complexity of wine [42,49]. 

HS-SPME and GC/MS analysis of PFBOA derivatives was performed to study the carbonyl 

compounds in Merlot wines after MLF [46]. In general, PFBOA derivatives are characterized by 

higher volatility, thermal stability, and affinity for the SPME fiber with respect to the corresponding 

carbonyl compounds [20]. SPME was performed by using a polydimethylsiloxane/divinylbenzene 

(PDMS/DVB) fiber; GC/MS analysis was performed by electron impact ionization (EI) and chemical 

ionization in both positive (PICI) and negative (NCI) mode [50]. NCI coupled to SPME provided 

lower detection limits for isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, (E)-2-hexenal,  

1-octen-3-one, (E)-2-heptenal, methional, (E)-2-octenal, phenylacetaldehyde, and (E)-2-nonenal [50]. 

PICI was used for determination of the principal carbonyl compounds in wine, such as acetaldehyde, 

diacetyl, and acetoin [46]. By using methane as reagent gas, abundant formation of acetaldehyde 

derivative [M+H]+ ion at m/z 240, diacetyl mono-derivative [M+H]+ ion at m/z 282, and  

o-chlorobenzaldehyde derivative [M+H]+ ion at m/z 336 (the internal standard), was observed. For 

acetoin abundant formation of [M+H-18]+ ion at m/z 266 was observed. These signals were used for 

the quantification of compounds. Experimental PICI conditions used are reported in Table 2 [46]. 

Table 2. Experimental conditions used for PFBOA derivatization and SPME-GC/MS 

analysis (ion trap and positive chemical ionization) of the main wine carbonyl compounds. 

Adapted from Flamini et al., 2005 [46]. 

Sample volume 100 μL 

Vial volume 4 mL 

Derivatization conditions 
200 μL IS o-chlorobenzaldehyde, 3.4 mg/L in ethanol/water solution; 1 mL of PFBOA 2 g/L 

aqueous solution, volume adjusted to 2 mL with water 

SPME fiber 65-μm poly(ethylene glycol)/divinylbenzene (PEG/DVB) 

Addition to the sample 50 mg NaCl 

Sample heating  50 °C for 20 min under stirring 

Extraction temperature and time  50 °C for 5 min  

Desorption temperature and time 240 °C for 1 min 

Fiber cleaning 250 °C for 5 min 

GC column HP-INNowax (30 m × 0.25 mm i.d; 0.25-μm film thickness) 

Carrier gas Helium, column headpressure 16 psi 

Injector T = 240 °C, sample volume 0.5 μL, splitless injection 

Oven program 60 °C for 5 min, 3 °C/min to 210 °C, held 5 min 

MS-IT conditions 
PICI mode using methane as reagent gas (flow 1 mL/min), ion source at 200 °C, damping gas 

0.3 mL/min, simultaneous SCAN (range m/z 40–660, 1.67 scan/s) and MS/MS 

CID experiments Collision gas He, excitation voltage 225 mV 

Quantitative 
Recorded signals at m/z 240 for acetaldehyde, m/z 282 for diacetyl, m/z 266 for acetoin, m/z 

336 for o-chlorobenzaldehyde (I.S.) 
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2.2. Aroma Compounds and Wine Aging 

Aging in wooden barrels is a process used to stabilize the color and to improve limpidity and the 

sensorial characteristics of wines. During aging many compounds are transferred from the wood to the 

wine: polyphenols, lactones, coumarins, polysaccharides, hydrocarbons and fatty acids, terpenes,  

C13-norisoprenoids, steroids, carotenoids, and furan compounds. Wood volatiles such as cis- and  

trans-β-methyl-γ-octalactones (oak lactones), syringaldehyde, vanillin, coniferaldehyde, sinapaldehyde 

and their alcohols, propiosyringone and propiovanillone, hydroxy-megastigmen-2-one and  

hydroxy-megastigmen-3-one [51], furfural, 5-methyl furfural, guaiacol, eugenol, 4-ethylphenol and  

4-ethyl guaiacol [52,53], furfuryl alcohol, β-ionone, γ-noanalactone, and acetovanillone [54] confer the 

typical organoleptic characteristics of aged wines. 

In making barrels for wine aging, oak (Quercus sessilis, Q. petraea, Q. robur, Q. peduncolata,  

Q. alba) is the wood more often used but other species, such as acacia (Robinia pseudoacacia), 

chestnut (Castanea sativa), cherry (Prunus avium), and mulberry (Morus alba and Morus nigra) are 

also being considered [55]. 

SPME-GC/MS was used to study the evolution of wine aroma during aging in 225-L barrels 

(barriques) made with these wood types. Experimental conditions used are reported in Table 3; main 

compounds identified are reported in Table 4 [55]. 

Table 3. SPME-GC/MS conditions used to study the evolution of volatile compounds of 

Raboso Piave wine during aging in five different types of wood barrels [55]. 

SPME fiber 65-μm carbowax/divinylbenzene (CAR/DVB) 
Sample volume 10 mL 
Vial volume 20 mL 
Addition to the sample 3 g NaCl 
Sample heating  70 °C for 10 min 
Extraction temperature and time  70 °C for 30 min  
Desorption temperature and time 230 °C fo 5 min 
Fiber cleaning 10 min 
GC column HP-INNowax (30 m × 0.25 mm i.d; 0.25 μm film thickness) 
Injection  Splitless 
Oven program 40 °C for 5 min, 3 °C/min to 230 °C, held 10 min 
MS conditions ionization energy 70 eV, acquisition SIM mode 

Wines aged in acacia, chestnut and oak wood showed higher contents of vanillin and eugenol and 

the acacia-aged sample showed an increase of 4-ethylguaiacol. Mulberry-aged wine had a significant 

decrease of 4-ethylguaiacol and increase of 4-ethylphenol; the wine aged in cherry barrel already 

showed high levels of 4-ethylguaiacol after three months of aging. 
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Table 4. Principal compounds studied in Raboso Piave wines aged nine months in  

225 L barrels of acacia, cherry, chestnut, mulberry, and oak (nd: not detected; tr: trace 

(<0.01 ppm) [55]). 

Barrel 
Months of 

Aging 

Compounds mg/L 

Furfural 5-Methylfurfural 4-Ethylguaiacol Eugenol 4-Ethylphenol Vanillin 

Acacia 

3 0.02 ± 0.01 0.03 ± 0.01 2.24 ± 0.21 0.009 ± 0.001 0.67 ± 0.07 0.09 ± 0.03 

6 0.04 ± 0.01 0.03 ± 0.01 2.94 ± 0.14 0.015 ± 0.001 0.92 ± 0.08 0.16 ± 0.01 

9 0.03 ± 0.01 0.03 ± 0.01 3.25 ± 0.67 0.021 ± 0.005 1.29 ± 0.41 0.31 ± 0.07 

Cherry 

3 nd nd 3.01 ± 1.13 0.008 ± 0.004 1.00 ± 0.44 0.08 ± 0.04 

6 tr nd 3.13 ± 0.26 0.009 ± 0.001 1.04 ± 0.06 0.10 ± 0.01 

9 nd nd 2.79 ± 0.51 0.007 ± 0.001 0.86 ± 0.18 0.12 ± 0.03 

Chestnut 

3 0.04 ± 0.02 0.03 ± 0.01 2.53 ± 0.43 0.024 ± 0.004 0.84 ± 0.20 0.45 ± 0.06 

6 0.04 ± 0.01 0.02 ± 0.02 2.30 ± 0.12 0.035 ± 0.003 0.74 ± 0.08 0.60 ± 0.02 

9 0.07 ± 0.01 0.04 ± 0.01 1.84 ± 0.18 0.026 ± 0.002 0.64 ± 0.04 0.43 ± 0.03 

Mulberry 

3 tr nd 2.69 ± 0.75 0.004 ± 0.001 1.06 ± 0.26 0.09 ± 0.03 

6 tr nd 2.72 ± 0.44 0.006 ± 0.001 1.27 ± 0.26 0.08 ± 0.02 

9 tr tr 1.84 ± 0.20 0.006 ± 0.001 1.19 ± 0.07 0.08 ± 0.01 

Oak 

3 0.18 ± 0.08 0.14 ± 0.04 2.51 ± 0.14 0.009 ± 0.001 0.90 ± 0.07 0.27 ± 0.04 

6 0.56 ± 0.16 0.19 ± 0.05 2.08 ± 0.02 0.012 ± 0.003 0.75 ± 0.05 0.34 ± 0.08 

9 0.60 ± 0.06 0.32 ± 0.04 2.90 ± 0.75 0.018 ± 0.005 1.06 ± 0.36 0.36 ± 0.09 

2.3. “Foxy Smelling Compounds” and 3-Alkyl-2-Methoxypyrazines in Grape Juice 

2'-Aminoacetophenone (o-AAP) is the main compound identified as the cause of the aging  

note—the so-called “hybrid note”, “foxy-smelling” or “American character”—typical of V. labruscana 

grapes, even though it was also found in some V. vinifera wines such as Müller-Thurgau, Riesling, and 

Silvaner [56]. This note is variously described as “acacia blossom,” “naphthalene note,” “furniture 

polish,” “fusel alcohol,” and “damp cloth,” and causes a considerable number of wine rejections. The 

formation of o-AAP in grape is promoted by several factors, such as reduced nitrogen fertilization in 

combination with hot and dry summers, and the risk increases in wines made with grapes harvested 

early. The phytohormone indole-3-acetic acid (IAA) is the principal precursor of o-AAP through  

non-enzymatic processes [57,58]. Also, methyl anthranilate (MA) contributes to the typical foxy taint 

of wines made with American and wild vine grapes, although it was also found in some V. vinifera 

white wines in concentrations of up to 0.3 μg/L [59]. 

For analysis of o-AAP in wine a direct-immersion SPME method by using a DVB/CAR/PDMS 

fiber and GC/MS, was proposed [60]; instead, analysis of MA in grape juice was performed by using a 

PDMS fiber [61]. 

3-Alkyl-2-methoxypyrazines are present in the grape skin, pulp, and bunch stems. These 

compounds contribute to the aroma of wines by conferring vegetative, herbaceous, bell pepper, or 

earthy notes. They are characterized by very low sensory thresholds: for 3-isobutyl-2-methoxypyrazine 

(IBMP), 3-sec-butyl-2-methoxypyrazine (SBMP),and 3-isopropyl-2-methoxypyrazine (IPMP) are 

between 1 and 2 ng/L in water. The level of IBMP in wine may be 10 times the sensory threshold, 

whereas SBMP and IPMP are normally comparable to their sensory thresholds [62–68]. 
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In general, the climate influences the biosynthesis of methoxypyrazines, and higher contents were 

found in grapes from cooler regions. For example, it was observed that 3-isobutyl-2-methoxypyrazine 

decreases dramatically during ripening. Methoxypyrazines may be also influenced by the light 

exposure: in general berries exposed to more sunlight have lower contents [67]. 

SPME-GC/MS of 3-alkyl-2-methoxypyrazines in grape juice and wine was performed by using 

DVB/CAR/PDMS, PDMS/DVB and CAR/PDMS fibers [69–72]. Also, a SPME-GC/MS and multiple 

mass spectrometry (MS/MS) method for simultaneous determination of o-AAP, MA, and the main 

four 3-alkyl-2-methoxypyrazines [ethylmethoxypyrazine (ETMP), IPMP, SBMP, and IBMP] in grape 

juice was proposed [73]. Quantitation of methoxypyrazines was performed on the signal area of 

MS/MS ions at m/z 119 (for ETMP), m/z 109 (IPMP), m/z 81 (IBMP), m/z 81 (SBMP) using  

2-ethoxy-3-isopropylpyrazine as internal standard. For quantification of o-AAP and MA, as internal 

standard 2,4-dichloroaniline was used. 

The optimized HS-SPME experimental conditions are described in Table 5 and GC/MS conditions 

in Table 6 [73]. 

Table 5. HS-SPME conditions used for simultaneous analysis of “foxy smelling 

compounds” (o-AAP and MA) and 3-alkyl-2-methoxypyrazines (ETMP, IPMP, IBMP, and 

SBMP) in grape juice [73]. 

SPME fiber 50/30 μm divinylbenzene/CarboxenTM/polydimethylsiloxane (DVB/CAR/PDMS) 

Sample volume 10 mL 

Vial volume 20 mL 

Addition to the sample 3 g  NaCl 

Extraction temperature and time 50 °C for 30 min 

Desorption temperature and time 250 °C fo 5 min 

Fiber cleaning 10 min 

Table 6. GC/MS conditions used for simultaneous analysis of o-AAP, MA and 3-alkyl-2-

methoxypyrazines in grape juice [73]. MW: molecular weight.  

GC column HP-5ms: (5%-phenyl) methylpolysiloxane (30 m × 0.25mm i.d; 0.25-μm film thickness) 

Carrier gas Helium at constant flow 1.2 mL/min 

Injector 250 °C 

Oven program 40 °C for 5 min, 5 °C/min to 230 °C, held 3 min 

MSD conditions Ionization energy 70 eV, transfer line temperature 280 °C, ion source 250 °C, ion trap in MS/MS mode 

IT-MS/MS 

Precursor ion MS/MS signal 

Analyte MW GC retention time (min) m/z 

3-ethyl-2-methoxypyrazine 138.17 15.10 138 119 

3-isopropyl-2-methoxypyrazine 152.20 16.46 137 109 

3-isobutyl-2-methoxypyrazine 166.22 18.90 124 81 

3-sec-butyl-2-methoxypyrazine 166.22 19.14 138 81 

2-ethoxy-3-isopropylpyrazine (IS) 166.22 18.45 166 123 

methyl anthranilate 151.16 23.71 151 TIC 

2'-aminoacetophenone 135.16 22.59 135 TIC 

2,4-dichloroaniline (IS) 162.02 23.35 161 TIC 
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2.4. Volatile Phenols in Wine 

4-Ethylphenol (4-EP) and 4-ethylguaiacol (4-EG) are associated with wine defects that can form 

during winemaking or, more commonly, wine aging. These compounds are characterized by sensorial 

characteristics described as “stable”, “animal” and “phenolic” and their presence is particularly 

detrimental for the product [74–76]. They are produced by winery contaminants, such as 

Brettanomyces and Dekkera yeasts, through processes of decarboxylation and reduction of ferulic and 

p-coumaric acids present in the grape [75]. Sensory thresholds of 4-EP and 4-EG in wine are 440 μg/L 

and 33 μg/L, respectively [77]. 

For their determination several sensitive SPME-GC/MS methods were proposed [20,78,79]. 

Martorell et al., proposed the use of two PDMS 100 μm fibers: for 4-EP the method had a limit of 

detection (LOD) and of quantification (LOQ) of 2 μg/L and 5 μg/L, respectively, for 4-EG 1 μg/L and  

5 μg/L, respectively [80]. An optimized method for analysis of ethylphenols and vinylphenols in white 

and red wines was developed by the use of StableFlex Carbowax/DVB (CW/DVB 70 μm) and 

polyacrilate (PA 85 μm) fibers [79]. 

4-EG and 4-EP in wine were also analyzed by a multiple-headspace SPME method. By performing 

three consecutive extractions of the sample with a CW/DVB fiber, the possible matrix effects were 

minimized by providing a LOD of 0.06 μg/L for both 4-EG and 4-EP [81]. 

2.5. Higher Alcohols and Esters in Wine 

By using a PDMS 100-μm fiber, effective methods for analysis of higher alcohols and aliphatic 

esters in wine were performed [82,83]. This coating fiber showed high affinity for non-polar 

compounds such as ethyl esters and acetates [84–86], while CW/DVB fiber is suitable for more polar 

compounds, such as 1-hexanol, hexen-1-ol, 1-octanol, and monoterpenols [84]. 

Antalick et al., developed a SPME and GC/MS-SIM method which provided simultaneous 

determination of 32 esters in wine in concentration between ng/L and mg/L [87]. Seven different fibers 

were tested: DVB/CAR/PDMS 50/30 μm, CAR/PDMS 85 μm, PDMS 100 μm, PDMS/DVB 65 μm, 

PA 85 μm, CW/DVB 70 μm, and polyethyleneglycol (PEG) 60 μm. PDMS was the most efficient in 

extracting the less polar and less volatile compounds; for more volatile esters the best coating was 

CAR/PDMS, and aromatic esters were better recovered by CW/DVB. In general, the PDMS fiber 

showed high efficiency for all compounds and provided LOQs between 0.4 ng/L and 4.0 μg/L. 

Recent applications showed that the tri-phase fiber DVB/CAR/PDMS provides extraction of the 

highest number of wine volatiles, including ethyl esters (56% of the compounds identified), alcohols, 

and acids [2,88]. 

2.6. Wine Volatile Sulfur Compounds 

Various sulfur compounds are present in wine, such as thiols, sulphides, thioesters, and heterocyclic 

compounds. Thiol and thio-type compounds are in general associated with flavor defects of wine and 

they are classified as “light” (boiling point < 90 °C) and “heavy” (b.p. > 90 °C) compounds [25,29,89–91]. 

Sulfur compounds can be formed through several enzymatic and non-enzymatic processes, such as 

yeast fermentation and chemical, photochemical, and thermal reactions occurring in winemaking and 
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during wine storage [89,90]. Most prevailing are ethylmercaptan (EtSH; onion as aroma descriptor), 

dimethyl sulfide (DMS; grassy/truffle-like note), 2-furanmethanethiol (FFT; roasted coffee), diethyl 

sulfide (DES; cooked vegetables, onion, garlic), dimethyl disulfide (DMDS; cooked gabbage, intense 

onion), diethyl disulfide (DEDS; garlic, burnt rubber), methyl thioacetate (MTA), ethyl thioacetate 

(ETA), 2-mercaptoethanol (ME; burnt rubber), 2-(methylthio)-1-ethanol (MTE; cauliflower),  

3-(methylthio)-1-propanol (MTP; sweet, potato), 4-(methylthio)-1-butanol (MTB; earthy-like scent), 

benzothiazole (BT; rubber), and 5-(2-hydroxyethyl)-4-methylthiazole (HMT) [29,91]. Also,  

2-methyl-3-furanthiol (MF; cooked meat), a very odoriferous compound with an odor threshold  

of 0.4–1.0 ppt, was found [92]. 

A SPME method for analysis of 13 volatile sulfur compounds in wine (i.e., DMS, EtSH, DES, 

MTA, ETA, ME, DMDS, DEDS, BT, HMT, MTB, MTP, and MTE) with b.p. ranging from 35 °C to 

231 °C by using a CAR/PDMS/DVB 50:30 μm 2 cm length fiber, was developed [90]. By addition of 

MgSO4 (1.0 M) to increase ionic strength of solution and performing the extraction at 35 °C, the 

method showed a high sensitivity for all the analytes. 

3-mercaptohexan-1-ol (3-MH; passion fruit, grapefruit), 3-mercaptohexyl acetate (3-MHA; Riesling 

type note, passion fruit, box tree), and 4-methyl-4-mercaptopentan-2-one (4–MP; blackcurrant or box 

tree note) are tropical fruit scenting volatiles present in wines at ng/L level [29]. A SPME-GC/MS 

method for analysis of these compounds by using a CAR/PDMS/DVB fiber was proposed [93].  

HS-SPME conditions were optimized by performing the extraction of wine adjusted to pH 7 at 40 °C 

for 40 min [93]. 

A method for analysis of thiols in wine by synthesis of the pentafluorobenzyl derivatives was also 

proposed. Derivatization was performed directly on the PDMS/DVB fiber (65 μm), LODs achieved 

were 0.05 ng/L, 0.03 ng/L, 0.11 ng/L, 0.5 ng/L, and 0.8 ng/L for FFT, 3-MHA, MF, 4-MP, and 3-MH, 

respectively [94]. 

3. Conclusions 

Grape aroma is composed of a hundred compounds and wine’s volatile profile also includes a 

number of fermentative compounds. SPME coupled to GC/MS showed to be effective for studying 

several classes of these analytes without solvent use. It often resulted in a high-sensitive technique for 

quantitative analysis of compounds for which the standard is available with high reproducibility. 

Moreover, the use of a multiphase fiber coupled to MS and multivariate data analysis allows sampling 

automation and statistical treatment of fragment abundances for the identification of compounds [95,96]. 

On the other hand, different to most of the sample preparation methods performed by liquid-liquid 

extraction and SPE, the selectivity of SPME fiber often changes dramatically for the different analytes. 

As a consequence, it is rarely possible to perform the semi-quantitative profiling of the sample on the 

internal standard signal, which is particularly useful in the characterization of grape varieties and the 

monitoring of the winemaking processes. 

Logically, by increasing the standards commercially available new SPME-GC/MS applications are 

developed, and methods for the profiling of specific classes of grape aroma compounds, such as 

terpenols and norisoprenoids, could be particularly useful. 
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