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Background: Recent evidence suggests that integration of multi-modal data improves

performance in machine learning prediction of depression treatment outcomes. Here,

we compared the predictive performance of three machine learning classifiers using

differing combinations of sociodemographic characteristics, baseline clinical self-reports,

cognitive tests, and structural magnetic resonance imaging (MRI) features to predict

treatment outcomes in late-life depression (LLD).

Methods: Data were combined from two clinical trials conducted with depressed adults

aged 60 and older, including response to escitalopram (N = 32, NCT01902004) and

Tai Chi (N = 35, NCT02460666). Remission was defined as a score of 6 or less on

the 24-item Hamilton Rating Scale for Depression (HAMD) at the end of 24 weeks of

treatment. Features subsets were constructed from baseline sociodemographic and

clinical features, gray matter volumes (GMVs), or both. Three classification algorithms

were compared: (1) Support Vector Machine-Radial Bias Function (SVMRBF), (2)

Random Forest (RF), and (3) Logistic Regression (LR). A repeated 5-fold cross-validation

approach with a wrapper-based feature selection method was used for model fitting.

Model performance metrics included Area under the ROC Curve (AUC) and Matthews

correlation coefficient (MCC). Cross-validated performance significance was tested by

permutation analysis. Classifiers were compared by Cochran’s Q and post-hoc pairwise

comparisons using McNemar’s Chi-Square test with Bonferroni correction.

Results: For the RF and SVMRBF algorithms, the combined feature set outperformed

the clinical and GMV feature sets with a final cross-validated AUC of 0.83 ±

0.11 and 0.80 ± 0.11, respectively. Both classifiers passed permutation analysis.

The LR algorithm performed best using GMV features alone (AUC 0.79 ± 0.14)

but failed to pass permutation analysis using any feature set. Performance of

the three classifiers differed significantly for all three features sets. Important

predictive features of treatment response included anterior and posterior cingulate

volumes, depression characteristics, and self-reported health-related quality scores.
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Conclusion: This preliminary exploration into the use of ML and multi-modal data to

identify predictors of general treatment response in LLD indicates that integration of

clinical and structural MRI features significantly increases predictive capability. Identified

features are among those previously implicated in geriatric depression, encouraging

future work in this arena.

Keywords: machine learning, pharmacology, predictionmodel, computational modeling, late-life depression (LLD)

INTRODUCTION

Late-life depression (LLD) is a common disorder among
community elderly associated with poor quality of life, increased
risk for cognitive decline, and increased mortality, including
suicide (1–3). Medical comorbidities and polypharmacy increase
the complexity of treatment selection due to drug-drug
interactions and heightened risk of adverse events (4). Decreased
efficacy of antidepressants is observed with increasing age, likely
attributable to increased somatic illness burden, ischemic or
neurodegenerative brain changes, and/or suboptimal dosing by
prescribers (5).

LLD treatment selection is currently guided by patient
preference and trial and error. The search for treatment-response
biomarkers has generated a wealth of genomic and neuroimaging
data, however no candidate markers have transcended into
routine clinical practice. Structural magnetic resonance imaging
(MRI) features are appealing due the non-invasiveness of
acquisition and relatively low cost. In LLD compared to healthy
controls, gray matter volume (GMV) reductions are frequently
observed in the fronto–striatal–limbic regions (6–9). Differences
in GMVoften associate to differences in antidepressant treatment
response (10–13).

Early and aggressive intervention in LLD is critical to
mitigating its devastating consequences. Machine learning
algorithms have significantly advanced diagnostic and prognostic
modeling of structural MRI data in numerous psychiatric
disorders (14). Predictions from unimodal data, however, have
produced often mixed results when applied to new data with
high accuracy sometimes limited to the most severe forms
of illness (15). Models that integrate multiple data modalities
(e.g., clinical, imaging, biological), have shown superiority in
diagnostic classification tasks (16–20). Such models, however,
require a higher degree of expertise than unimodal models, both
in design and in interpretation of results, especially when using
“small” data (<100 observations (19). In the current study, we
hypothesized that a multi-modal feature set would better predict
depressive remission in patients with LLD compared feature sets
containing only clinical or GMV variables.

METHODS

Data Sources
Data were derived from two completed clinical trials
of treatment of LLD (NCT01902004; NCT02460666,
Supplementary Table S1) (21, 22). NCT01902004 spanned
from January 2013 to January 2019, while NCT02460666

spanned January 2016 to November 2020. Informed consent
was obtained from all participants prior to engaging in any
research procedures and all procedures were approved by the
Institutional Review Board at UCLA. Both studies employed a
similar study protocol. Exclusion criteria were: (1) history of
any psychiatric disorder (except for stable comorbid anxiety or
stable comorbid insomnia); (2) acute suicidal ideation or suicide
attempt within the past year; (3) severe or acute unstable medical
illness or neurological disorder; or (4) dementia. Both studies
required a diagnosis of major depressive disorder as defined by
Diagnostic and Statistical Manual (DSM)-IV-TR or DSM-5. For
the current analysis, inclusion criteria were set at: (1) age ≥ 60
years; (2) normal cognitive functioning as defined by a Mine
Mental Status Exam (MMSE) score of 24 or greater; and (3) at
least mild-moderate depression at treatment initiation.

Treatments and Clinical Assessments
For NCT01902004, participants were required to be free
of antidepressant medication prior to enrollment, then
randomized to receive either escitalopram/placebo or
escitalopram/memantine (12, 22). For NCT02460666,
participants continued their current but ineffective
antidepressant or psychotherapy treatment and were
randomized to receive either Tai chi or health education (23).
Treatment duration was 24 weeks for both trials. Participants
completed a battery of self-reported and cognitive measures
(see Supplementary Table S2) pre- and post-treatment. The
primary measure of depression remission in both studies was a
HAMD score of 6 or less by end of treatment. The distribution
of sociodemographic and illness characteristics did not differ
significantly between the two studies (Supplementary Table S1).
Most patients in NCT02460666 were maintained on a selective
serotonin reuptake inhibitor (SSRI, 20/35, 57.1%), while the
remainder received a serotonin norepinephrine reuptake
inhibitor (SNRI, 7/35, 20%), norepinephrine and dopamine
reuptake inhibitor (NDRI, 2/35, 5.7%), or other treatment (8/35,
22.9%). A total of 28/67 (42%) participants in the combined
sample achieved remission of depression by the end of treatment
(NCT01902004: 56%; NCT02460666: 29%).

Image Acquisition
A high-resolution T1-weighted structural brain scan was
collected at baseline for each participant using the MPRAGE
sequence (3D multi-echo magnetization-prepared rapid
gradient-echo sequence). Scans were acquired using Siemens
3T Trio or Prisma systems (Siemens, Erlangen, Germany) with
a 32-channel head coil (HEA, HEP) at the Ahmanson and
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Lovelace Brain Mapping Center at UCLA. Prisma settings: 0.8
mm3 isotropic voxel size, TR= 2,500ms, TE= 1.81:1.79:7.18ms;
FoV = 256mm; 256 × 256 matrix; TI 1,000ms; flip angle =

8◦. Trio settings: 1 mm3 isotropic voxel size, TR = 2,150ms,
TE = 1.74ms, 3.6, 5.46, and 7.32ms; FoV = 256mm; 256 ×

256 matrix; TI 1,260ms; flip angle = 7◦. Acquisition time was
8.22min for Prisma and 5.18min for Trio scans.

Image Preprocessing
Freesurfer (version 6.0) (http://surfer.nmr.mgh.harvard.edu) was
used for reconstruction of gray matter volumetric measurements
at both sites (24). The data cleaning pipeline included the
correction of magnetic field in homogeneities, removal of non-
brain tissues, segmentation of gray matter from white matter
and cerebrospinal fluid, and parcellation of cortical regions using
the Desikan–Killany atlas. The reconstructed scans were then
carefully inspected for tissue misclassifications and manually
corrected as needed. A simple least-square linear regression
between raw volumes and the estimated total intracranial volume
(eTIV) generated adjusted volumes, a method shown to greatly
reduce sex-based volume differences (25).

Feature Sets
In total, there were seven socio-demographic features, nine
medical and mental health illness features, 18 baseline self-
reported measures, six cognitive test, and 68 GMV features
available in the training and external validation datasets (see
Supplementary Table S2). Three feature sets were created:
(1) socio-demographic, medical and mental health illness
features, and baseline self-reported measures and cognitive tests
(designated the “clinical” feature set), (2) GMV features, and (3)
combination of all available features.

Classification Analysis
All analyses were performed in Python (v. 3.8) using the scikit-
learn (v. 0.23.2) andmlxtend packages at default settings (26, 27).
Three popular classifiers were selected for comparison with the
three feature sets: (1) Support Vector Machine Classifier—Radial
Bias Function Kernel (SVMRBF), (2) Random Forest (RF), and
(3) L2-regularized Logistic Regression (LR). These algorithms
have demonstrated high performance on small datasets in the
literature (17, 28). A repeated 5-fold (i.e., 5-folds, 5-repeats)
cross-validation approach was used to train and evaluate the
classifiers. During splitting, folds were stratified to preserve the
proportion of subjects in each target class (e.g., remitter, non-
remitter). Data pre-processing steps occurred on the training and
test folds independently to avoid against data leakage. Features
were filtered to remove those with an absolute intercorrelation
of 0.9 (with the features with lesser correlation with predicted
target retained) or low variance. Given the excess of features to
observations, a wrapper feature selection method was employed.
The Boruta algorithm determines relevant features by comparing
their predictive performance in a random forest classifier to
copies permutated with noise (shadow) (29). Features are ranked
and those falling below the maximum importance score of the
shadow features or a designated threshold are removed. For
the current study, the top 20 features as ranked by the Boruta

algorithmwere retained for each feature set. Categorical variables
were one-hot encoded with 24 missing values imputed by the
median value of all other observations. Continuous features
were scaled according to the individual feature’s quantile range
(enables robustness to outliers) and non-normally distributed
features were transformed by quantile transformation.

Model performances were estimated by the Area under the
ROC Curve (AUC) and Matthews correlation coefficient (MCC)
(30). MCC is a more reliable metric than accuracy in binary
classification problems as the MCC score is high only if the
prediction yields good results in all of the four confusion matrix
categories (true positives, false negatives, true negatives, and false
positives), proportional to the size of positive elements and the
size of negative elements in the dataset (30). Scores were averaged
across all folds to determine training and testing performance.
The classifiers were refit on the entire training data to calculate
final AUC scores and visualized by receiver operator curve.

Classifier Comparison, Significance
Testing, and Feature Information
The significance of the cross-validated performance scores was
assessed by permutation analysis. Briefly, predicted targets were
permutated 1,000 times to generate a randomized dataset. The
percentage of permutations for which the AUC obtained on the
randomized data is greater than that obtained using the true
data yields the p-value. A low p-value signifies low likelihood
that the model predictions are obtained by chance. Cochran’s Q-
test was performed to determine if the three classifiers differed
significantly from each other in performance, followed by post-
hoc McNemar’s Chi-Square test with Bonferroni correction. For
all tests, p < 0.01 determined significance. The impact of features
to model output was explored by calculating Shapley values
via the SHAP package (v. 0.39.0) and visualized by beeswarm
plot (31).

RESULTS

The receiver operator curves and final cross-validated AUC
scores for each classifier and feature set combination are shown
in Figure 1 and Supplementary Table S3. On the clinical feature
set, the classifiers performed as follows: LR (Train: AUC 0.84 ±

0.04; Test: AUC 0.65± 0.16, MCC 0.19± 0.30; Overall: AUC 0.64
± 0.16); RF (Train: AUC 0.99 ± 0.01; Test: AUC 0.79 ± 0.14,
MCC 0.41 ± 0.22; Overall: 0.79 ± 0.14) and SVMRBF (Train:
AUC 0.99 ± 0.01; Test: 0.64 ± 0.16, MCC 0.13 ± 0.22; Overall:
0.58 ± 0.18). On the GMV feature set, the classifiers performed
as follows: LR (Train: AUC 0.81 ± 0.03; Test: AUC 0.68 ± 0.12,
MCC 0.32 ± 0.22; Overall: 0.68 ± 0.12); RF (Train: AUC 0.99
± 0.01; Test: AUC 0.79 ± 0.10, MCC 0.38 ± 0.24; Overall: 0.79
± 0.10); and SVMRBF (Train: AUC 0.98 ± 0.01; Test: 0.81 ±

0.10, MCC 0.45 ± 0.20; Overall: 0.81 ± 0.10). On the combined
feature set, the classifiers performed as follows: LR (Train: AUC
0.92 ± 0.03; Test: AUC 0.66 ± 0.15, MCC 0.27 ± 0.33; Overall:
0.66± 0.15); RF (Train: AUC 0.99± 0.00; Test: AUC 0.84± 0.11,
MCC 0.47 ± 0.29; Overall: 0.83 ± 0.11); and SVMRBF (Train:
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FIGURE 1 | Comparison of classifiers by algorithm and feature set. Evaluated feature sets included (A) sociodemographic and clinical features only, (B) gray matter

volumes only, or (C) a combination of all available features. Features were ranked by feature importance and the top 20 from each feature set used for classifier

training. The final mean cross-validated area under the cover (AUC) scores are shown for the Logistic Regression (LR, blue), Random Forest (RF, gold), and Support

Vector Machine-Radial Bias Function (SVMRBF, olive) classifiers.

AUC 0.99 ± 0.00; Test: 0.81 ± 0.11, MCC 0.52 ± 0.22; Overall:
0.80± 0.11).

At a p < 0.01 for significance, permutation analysis (Figure 2)
indicates that the LR classifier did not achieve performance above
chance for any feature set (Clinical: p = 0.042; GMV: p = 0.019;
Combined: p = 0.028), the RF classifier achieved significance
for all feature subsets (Clinical: p = 0.002; GMV: p = 0.001;
Combined: p= 0.001), and the SVMRBF classifier was significant
for the GMV and combined feature sets (Clinical: p = 0.050;
GMV: p = 0.001; Combined: p = 0.001). Comparison across
classifiers using Cochran’s test found significance differences for
the clinical (Q: 18.9, p < 0.01), GMV (Q: 13.1, p < 0.01), and
combined feature sets (Q: 16.1, p < 0.01). For the clinical feature

set, post-hoc McNemar’s Chi-Squared testing found that LR vs.
SVMRBF and RF vs. SVMRBF did not differ significantly (Chi2:
3.4, p = 0.07; Chi2: 6.1, p = 0.01, respectively), but LR vs. RF
differed (Chi2: 13.5, p < 0.01). For the GMV feature set, LR vs.
RF differed significantly (Chi2: 7.6, p< 0.01), but not LR vs. SVM
RBF (Chi2: 5.8, p = 0.02) or RF vs. SVMRBF (Chi2: 0.12, p =

0.72). Finally, for the combined feature set, LR vs. SVMRBF and
LR vs. RF differed significantly (Chi2: 7.7, p < 0.01; Chi2: 7.7, p
< 0.01), but not RF vs. SVM (Chi2: 0.25; p= 0.62).

SHAP (SHapley Additive exPlanation) values were calculated
for the RF classifier with the combined feature set (Figure 3).
SHAP values reflect the magnitude of a feature’s influence on
model predictions, not a decrease in model performance as with
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FIGURE 2 | Permutation analysis of cross-validation scores by classifier and feature set. (A) Logistic Regression (LR), (B) Random Forest (RF), and (C) Support Vector

Machine-Radial Bias Function (SVMRBF) performance on 1,000 permuted datasets vs. true data was used to calculate the percentage of AUC scores occurring by

chance (p-value). A p < 0.01 determined significance. The dashed red line denotes the mean of AUC scores on the true data compared to the probability distribution

of AUC scores calculated on the permuted data.

permutation-based feature performance measures. The most
influential feature on prediction of depressive remission was the
left-hand caudal anterior cingulate volume, which changes the
predicted absolute depression remission probability, on average,
by 7%. Other high-ranking features included current age, age
of depression onset, baseline HAMD score, current episode
duration, and cardiovascular risk factor score, all of which altered
remission probability by 2–4%. SHAP values do not permit
inference of causality, only correlation with the predicted target.

DISCUSSION

LLD, like other mood disorders, involves a complicated,
multi-directional interplay between biology, psychological,
environmental, and social mediators. Considerable heterogeneity
exists in clinical phenotypes among patients with LLD, reflective
of differing psychobiological pathways to illness. Here, we
have demonstrated prediction of treatment response in LLD
is improved using a combination of feature types. Our results

mirror that of Patel et al. (17), where the authors integrated
clinical, cognitive, and MRI data toward improved prediction
of diagnosis and treatment response to a 12-week open trial of
several different antidepressants in LLD.

The features identified as influencing classifier prediction
in the current study corroborate several prior findings in the
literature. Age of depression onset and cardiovascular health
are among the most notable. LLD encompasses both individuals
with early-onset depression (EOD), who develop depressive
symptoms before the age of 25 and experience recurrent
episodes across lifetime, and individuals with first presentation
after age 50–65, or late-onset depression (LOD). The LOD
phenotype displays less heritability and a stronger association
with underlying cerebrovascular disease with a clinical profile
of fronto-subcortical dysfunction, apathy, higher likelihood
of progression to dementia, and increased antidepressant
resistance (32–34).

Self-reported health-related quality of life (HRQOL)measures
(SF36—energy, SF36—emotional well-being) as well as baseline

Frontiers in Psychiatry | www.frontiersin.org 5 October 2021 | Volume 12 | Article 738494

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Grzenda et al. Prediction of Treatment Outcome in Late-Life Depression

FIGURE 3 | Feature importance summary of random forest classifier using the combined feature set. (A) SHAP (SHapley Additive exPlanation) values are ordered by

value of a feature to the predictions made by the classifier. The position on the x-axis on shows whether the effect of that value is associated with a higher or lower

prediction for a given observation. Red color indicates the feature is high for that observation or low (blue). (B) Summary of mean SHAP values or overall magnitude of

a feature’s impact on prediction of depressive remission.

depression severity and chronicity also emerged as informative to
prediction, consistent with prior investigations (35–38). Chronic
physical disability associates to poor prognosis (39–41). Among
the GMVs identified, dysfunction and differences in the anterior
cingulate in LLD is well-established (42–44). Entorhinal volume
also associates to multiple aspects of LLD, including somatic
symptoms and cognitive impairment/conversion to dementia
(45–47). Volume of the entorhinal cortex is inversely associated
with the number of years since the first episode of depression and
associates with treatment-resistant depression in females (6, 45).

The type of response predicted in the current study is
general rather than treatment-specific. While the character of
the two clinical trial cohorts did not differ substantially in
demographics or illness features, the treatment modalities and
conditions varied with one group initiating a new SSRI while
the other continued their existing antidepressant or therapy
and received a new add-on health intervention. Differential
treatment response prediction is the goal of the precision
medicine approach. However, just as there are converging and
diverging pathways to depression, converging and diverging
pathways in treatment response (and resistance) are anticipated.
Certain data types may offer differing levels of discriminatory
predictive power. For example, in a recent study in a
sample of 81,630 adults, treatment-specific predictive models
from electronic health record data did not perform better
than general treatment response models (48). A classifier

capable of predicting treatment response to a focused range
of options (e.g., SSRIs) could arguably hold higher clinical
utility in practice than one that predicts response to a single
agent (49, 50).

The current work has several strengths, including the
rigor of the analysis. Machine learning algorithms possess
known variability in their tolerance for number of features,
multi-collinearity, and noise. The RF classifier, for example,
performed well-across all feature sets and demonstrated the
least degradation in performance (generalization error) on
the testing data. The primary limitations of the study are
the small sample size and lack of a dataset with similar
features for external validation. Cross-validation is only an
estimate of performance on unseen data. The generalizability
of a model cannot be fully determined without validation
in an external dataset (51). Additionally, “small” data is
prone to overfitting, even with robust feature selection and
cross-validation. For the current work, a static number
of features were employed in each feature set to permit
comparison across classifiers. In moving from exploratory
analysis to development of an optimized model, features
could be even more aggressively reduced, hyperparameters
tuned (e.g., limiting the maximum depth of the branching
of the RF classifier, the number of support vectors for
SVMRBF), and models combined (ensemble modeling) to
further reduce overfitting.
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CONCLUSION

The current preliminary study into the use of ML to identify
predictors of treatment response in late-life depression indicates
that integration of clinical and structural MRI significantly
increases predictive capability. Timely treatment selection in LLD
is critical to preservation of quality of life and cognitive capacity.
The current results suggest machine learning coupled with multi-
modal data are a promising avenue for the development of a
non-invasive, precision approach to illness management.
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