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ABSTRACT
Invasive meningococcal disease is rare and potentially devastating but often vaccine-preventable.
Evaluation of meningococcal vaccine effectiveness is impractical owing to relatively low disease incidence;
protection is therefore estimated using serum bactericidal antibody (SBA) assays. Original experiments on
natural immunity established a titer of ≥4 as the correlate of protection for SBA assays using human
complement (hSBA), but human complement is relatively difficult to obtain and standardize. Use of baby
rabbit complement (rSBA assays), per standard guidelines for serogroups A and C, generally results in
comparatively higher titers. Postlicensure effectiveness data for serogroup C conjugate vaccines support
acceptance of rSBA titers ≥8 as the correlate of protection for this serogroup, but no thresholds have been
formally established for serogroups A, W, and Y. Studies evaluating MenACWY-TT (Nimenrix®; Pfizer Inc,
Sandwich, UK) immunogenicity have used both hSBA and rSBA assays, and ultimately suggest that rSBAmay
be more appropriate for these measurements.
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Introduction

Meningococcal disease is caused by the Gram-negative bacterium
Neisseria meningitidis, an obligate human pathogen.1 The bacter-
ium may colonize the nasopharynx in an asymptomatic state
known as carriage.1 Occasionally meningococci will invade the
bloodstream to cause invasive meningococcal disease (IMD);
IMD can manifest as septicemia and/or meningitis, which occur
when the bacteria primarily proliferate in the blood or cerebrosp-
inal fluid, respectively.1 Incidence of IMD is generally low but
varies by region; for instance, in 2016, incidence in the European
Union was 0.64 per 100,000 population2 whereas in the United
States it was 0.12 per 100,000.3 Despite low incidence, IMD can
progress in amatter of hours and can be fatal in approximately 7%
to 23% of cases;4–7 a substantial percentage of survivors suffer
permanent sequelae such as limb loss, neurologic deficits, or
hearing impairment.8 IMD disproportionately affects certain age
groups: infants and young children, adolescents and young adults,
and older adults (≥65 years of age).4,5

Although 12 meningococcal serogroups have been identi-
fied, the majority of disease is caused by serogroups A, B, C, W,
and Y.9 Vaccines are available to prevent disease caused by
each of these serogroups. There are 3 currently licensed con-
jugate vaccines targeting meningococcal serogroups A, C, W,
and Y (MenACWY vaccines); each vaccine includes capsular
polysaccharides from each of the 4 serogroups individually
conjugated to a carrier protein. These quadrivalent conjugate
vaccines include MenACWY-D (Menactra®; Sanofi Pasteur,
Swiftwater, PA, USA), which uses diphtheria toxoid (D) as
the carrier protein;10 MenACWY-CRM197 (Menveo®;

GlaxoSmithKline, Rixensart, Belgium), which uses a non-toxic
mutant of diphtheria protein, CRM197

;11 and MenACWY-TT
(Nimenrix®; Pfizer Inc, Sandwich, UK), which uses tetanus
toxoid (TT).12 Several monovalent meningococcal conjugate
vaccines targeting a single serogroup are also available, includ-
ing MenC-TT (Neis-Vac-C™; Pfizer Ltd, Kent, UK)13 and
MenC-CRM197 (Menjugate®; GlaxoSmithKline Vaccines Srl,
Siena, Italy),14 which both contain serogroup C polysaccharides
and use TT and CRM197, respectively, as carrier proteins.
MenA-TT (MenAfriVac; Serum Institute of India, Pune,
India) is a monovalent serogroup A meningococcal vaccine
that uses TT as a carrier protein.15 In addition, Hib-MenC-
TT (Menitorix®; GlaxoSmithKline) is a combination conjugate
vaccine containing both MenC, conjugated to TT, and
Haemophilus influenzae type b.16 Although serogroup
B meningococcal vaccines based on capsular polysaccharides
are poorly immunogenic,17,18 MenB vaccines targeting con-
served subcapsular antigens have become available in recent
years; these include MenB-FHbp (Trumenba®, bivalent
rLP2086; Pfizer Inc, Philadelphia, PA)19 and 4CMenB
(Bexsero®, MenB-4C; GlaxoSmithKline Vaccines Srl).20

As discussed in more detail below, the serum bactericidal
antibody (SBA) assay has become a surrogate method for
evaluating meningococcal vaccine efficacy. This article
reviews the use of SBA assays in development of different
meningococcal vaccines, with particular focus on differences
between assays using human (hSBA) or baby rabbit (rSBA)
complement. Studies evaluating immune responses to
MenACWY-TT are presented in detail to highlight such dif-
ferences and provide an update to an earlier review of
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MenACWY-TT studies.21 Postlicensure effectiveness findings
are also presented in the context of immunogenicity studies.

The SBA assay

Because meningococcal disease is currently relatively rare,
studies evaluating efficacy of meningococcal vaccines would
require impractically large sample sizes.22 For this reason, it
became necessary to develop a surrogate measure with which
efficacy could be more easily determined.

In 1969, Goldschneider and colleagues published a seminal
paper describing the use of SBA assays and the correlation of
results with susceptibility to meningococcal disease.23 To per-
form the SBA assay, sera from subjects were serially diluted
and incubated with a suspension containing a given menin-
gococcal strain; in most experiments, exogenous human com-
plement lacking bactericidal activity to the tested strains was
then added (Figure 124). Bactericidal activity was determined
based on the efficiency of bacterial killing compared with
controls, with SBA titers defined as the highest dilution of
sera at which ≥50% killing occurred. The authors tested sera
from newly enlisted military recruits for SBA activity against
circulating serogroup C meningococcal strains that later
infected 54 recruits; 5.6% of cases and 82.2% of controls (10
randomly selected men in the same training platoon for each
given case) had baseline sera with SBA titers ≥4. These find-
ings suggested that SBA titers ≥4 might be indicative of
protection from serogroup C IMD. Much higher percentages
of controls compared with serogroup C cases also had SBA
titers ≥4 against serogroup A and B strains,23 indicating that
SBA activity was mediated by subcapsular antigens in addition
to capsular polysaccharides.25 Goldschneider and colleagues

also demonstrated that the presence of SBA titers ≥4 against
representative strains from serogroups A, B, and C was inver-
sely proportional to IMD incidence across age groups
(through age 26 years), providing additional indirect evidence
for the correlation of SBA titers ≥4 and protection from
IMD.23

Because evaluating meningococcal vaccine efficacy in clin-
ical trials is impractical owing to the low incidence rate of
IMD, the SBA assay became especially useful as a surrogate
measure of vaccine efficacy. Several years after the publication
of the experiments by Goldschneider and colleagues, the
World Health Organization (WHO) stipulated the use of
SBA assays using baby rabbit complement to demonstrate
efficacy for potential licensure of meningococcal polysacchar-
ide vaccines targeting serogroups A and C.24 Guidelines spe-
cified that vaccines should induce a ≥4-fold rise in SBA titers
in ≥90% of tested subjects.

Sources of complement used for the SBA assay

The original experiments establishing the correlation between
SBA and protection from IMD used human complement (ie,
sera containing complement proteins) for performing the SBA
assay.23 However, finding suitable human donors can be chal-
lenging. Ideally, serum from agammaglobulinemic individuals
should be used because it lacks antibodies capable of contribut-
ing to bactericidal activity in the assay, but this is a relatively rare
condition and most of these individuals receive treatment con-
taining replacement immunoglobulins.26,27 Human comple-
ment must therefore be sourced from the relatively few
individuals who lack intrinsic bactericidal activity against
meningococcus but still exhibit normal complement hemolytic
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Figure 1. Schematic illustrating serum bactericidal antibody assay using either human or baby rabbit complement. For serogroups A and C, the World Health
Organization guidelines stipulate that complement sourced from baby rabbits should be used.24 For the subject shown, the SBA titer would be 8. SBA = serum
bactericidal antibody. Figure has been adapted with permission from Gandhi A, Balmer P, York LJ. Characteristics of a new meningococcal serogroup B vaccine,
bivalent rLP2086 (MenB-FHbp; Trumenba®). Postgrad Med. 2016;128(6):548–556.
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activity (CH50).
26,28 Furthermore, each human donor must be

screened for each meningococcal strain to be tested before each
donation to ensure that natural immunity has not been
acquired.28 The difficult task of standardization of human com-
plement across laboratories presents an additional challenge to
the use of hSBA assays.29

For serogroup A and C vaccines, complement sourced
from baby rabbits was used as an alternative to human com-
plement because it was more easily available in large batches
and subject to standardization; results with human and baby
rabbit complement also seemed to correlate with one another
in initial studies.24,29 rSBA assays thus became the standard
surrogate for evaluating meningococcal vaccine efficacy and
subsequent licensure. A 1997 study by the US Centers for
Disease Control and Prevention (CDC) demonstrated the
reproducibility of a standardized rSBA assay method, in
which the critical parameters of target strains, incubation
times, and complement sources were specified, for serogroups
A and C in multiple laboratories across different countries.30

Of note, interlaboratory variability still exceeded intralabora-
tory variability, indicating that additional parameters contrib-
uted to assay results.30

Over time, it became apparent that results from rSBA and
hSBA assay analyses did not necessarily correlate with one
another. For serogroup C, one study using sera from toddlers
and young children vaccinated with MenC-CRM197 identified
rSBA titers ≥128 as reliable predictors of hSBA titers ≥4 (using
complement from adult donors; ≥80% sensitivity), but most
subjects with hSBA titers ≥4 had rSBA titers ≤128.27 Another
study for serogroup C demonstrated that rSBA cutoffs of <8 and
≥128 reliably predicted proportions of subjects with hSBA titers
<4 and ≥4, respectively, but rSBA titers between 8 and 64 were
poorly predictive.31 A more recent study similarly found higher
titers measured by rSBA compared with hSBA assays; results
additionally demonstrated that although rSBA and hSBA titers
were reasonably correlated for serogroup C, they were not cor-
related for serogroups A and Y.32 It is not clear whether the
general discrepancy between rSBA and hSBA results reflect over-
estimation of rSBA assays, underestimation of hSBA assays, or
both;32,33 however, the correlation of rSBA titers ≥8 with vaccine
effectiveness for serogroup C in postlicensure studies34 (dis-
cussed in the “Correlation of Observed Protection With
Serology” section below) suggests that the ≥4 cutoff for hSBA
may be overly conservative.25 The differences between rSBA and
hSBA titers are thought to be due, at least partially, to meningo-
coccal factor H binding protein, which binds specifically to
human factor H to ultimately enable evasion of complement-
mediated killing.35,36 Relatedly, it has been shown that human
antibody subclasses may differentially interact with human and
rabbit complement.37

It is important to note that specific rSBA and hSBA assays
usually differ from one another beyond the source of comple-
ment. For example, meningococcal test strains may differ
across laboratories.21,33 These factors are also important to
consider when comparing different assays and are discussed
in greater detail in the “Assays and Strains Used in Different
Laboratories” section below.

Of note, a modified version of the hSBA assay was devel-
oped in recent years; this high-throughput, automatable

method involves using a colored indicator of cell metabolic
activity in a liquid medium that can be correlated with hSBA
titers.38 Assay results have been demonstrated to correlate
with those from conventional hSBA assays,38 and some recent
analyses have used this modified assay.39,40

Serogroup B vaccines

A 1983 publication demonstrated that subjects with high
rSBA titers against serogroup B meningococcal strains had
much lower or even nonexistent bactericidal activity to the
same strains in hSBA assays.41 This discrepancy is likely
related to anti-MenB polysaccharide antibodies being primar-
ily of the immunoglobulin M subclass, which features rela-
tively low avidity that can further be affected by complement
source among other variables.41

An international meeting in 2006 emphasized that human
complement was the only acceptable source for SBA assays
evaluating MenB vaccines.42 Serogroup B vaccine licensure has
generally relied on the percentages of subjects with hSBA titers of
≥4 or ≥4-fold rises in hSBA titers from pre- to postvaccination;43

the more recent licensure of subcapsular-based MenB vaccines
has therefore been based on hSBA data.19,20,44,45

Effectiveness data from outer membrane vesicle vaccines
have been shown to correlate with hSBA serology.46,47 For
a more recently licensed subcapsular-based vaccine, 4CMenB,
effectiveness was estimated at 82.9% (95% CI: 24.1, 95.2)
among UK infants;48,49 this high percentage validated the
use of hSBA assays for predicting vaccine-induced protection.

Complement sources used in studies of serogroup A,
C, W, and Y vaccines

In the United Kingdom, MenC conjugate vaccines were
licensed on the basis of robust immune responses demon-
strated in the rSBA assay; efficacy studies were not required
because of demonstrated correlations between efficacy and
serologic correlates of protection for meningococcal polysac-
charide vaccines in toddlers.31,50 A MenC conjugate vaccine
program was subsequently broadly implemented in 1999 on
the basis of these immunogenicity data; titers ≥8 were pro-
posed to indicate protection31,50 and were demonstrated to
inversely correlate with disease.51 Coupled with postlicensure
data (discussed in greater detail later), these findings led rSBA
titers ≥8 to become the generally accepted correlate of protec-
tion for MenC conjugate vaccines.43

The clinical development program of MenA-TT followed
the UK MenC program and used the rSBA assay.52 Licensure
was obtained in India in late 2009 and for countries in the
African meningitis belt in 2010 after prequalification by
WHO.52 Similarly, recently published results from a phase 1
study of an investigational MenACWXY vaccine intended to
target increased rates of serogroup X disease in Africa used
rSBA assays for immunogenicity evaluations.53

MenACWY conjugate vaccines have often been licensed on
the basis of either hSBA or rSBA assay data, or both.
MenACWY-D, the first MenACWY conjugate vaccine
licensed by the US Food and Drug Administration, was
licensed in 2005 primarily on the basis of rSBA assay data.54
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On the other hand, in 2010, MenACWY-CRM197 was
approved in the United States at least partially on the basis
of hSBA assay data.55 In Europe, MenACWY-CRM197 was
licensed in 2009 on the basis of hSBA assay data, although
some rSBA assay data were also included in the assessment
report.56 Conversely, European licensure of MenACWY-TT
in 2012 relied primarily on rSBA assay results, with some
hSBA assay data included in the assessment report.57

Complement sources used in MenACWY-TT studies

Studies evaluating immune responses to MenACWY-TT have
used rSBA or hSBA assays or both (Tables S1–S5).58–79 In
a number of studies spanning multiple age groups, hSBA
titers for serogroup A rapidly or steeply declined after
vaccination,60,65,67–69,76,78 whereas those studies that evaluated
both hSBA and rSBA did not generally observe similar
decreases in rSBA titers (Figures 2 and 3).65,68,69,76,78 For
unknown reasons, several of these studies also observed some-
what more rapid declines in hSBA for other serogroups

compared with rSBA titers.68,76,78 These findings, coupled
with previously described data identifying rSBA titers between
8 and 64 as poorly predictive of hSBA titers ≥4 for serogroup
C31 (despite subsequent correlation of MenC rSBA titers ≥8
with effectiveness34), suggest that hSBA assay results may
underestimate immune responses for MenACWY-TT.25

Additionally, several MenACWY-TT studies indicated
lower initial immune responses in hSBA assays to serogroups
W and Y compared with rSBA assays;62,68,76,78 this was espe-
cially evident in toddlers given a single initial dose (Figures 2
and 3).62,76,78 However, when evaluated at later time points,
hSBA titers increased over time despite a lack of additional
dosing.68,76,78 In contrast, rSBA titers were generally high after
initial vaccination and gradually declined when later time
points were evaluated.58,61–66,68–79 Such observations from
earlier studies have been noted in a previous review by
Findlow and Borrow,21 and similar findings from the newer
studies provide further evidence of these persistent trends.

These observations collectively suggest that rSBA assays are
a more appropriate method than hSBA assays for measuring
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Figure 2. Percentages of infants/toddlers with rSBA titers ≥8 or hSBA titers ≥4 for serogroups A, C, W, and Y at various time points after vaccination with either 3
primary doses of MenACWY-TT (at 2, 4, and 6 months of age) followed by a booster dose at 15–18 months of age (3 + 1 schedule) or 1 primary dose of MenACWY-TT
at 6 months of age followed by a booster dose at 15–18 months of age (1 + 1 schedule). Data are plotted as percentages along with 95% CIs. hSBA = serum
bactericidal antibody assay using human complement; MenACWY-TT = meningococcal serogroups A, C, W, and Y conjugate vaccine using tetanus toxoid as a carrier
protein; rSBA = serum bactericidal antibody assay using rabbit complement. Data are from Dbaibo G, Tinoco Favila JC, Traskine M, Jastorff A, Van der
Wielen M. Immunogenicity and safety of MenACWY-TT, a meningococcal conjugate vaccine, co-administered with routine childhood vaccine in healthy infants:
a phase III, randomized study. Vaccine. 2018;36(28):4102–4111.
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immune responses and antibody persistence to MenACWY-
TT, particularly for serogroup A. In general, hSBA assay
results presented in MenACWY-TT studies do not show
a clear trend across serogroups.60,62,65,67–69,74,76,78

Correlation of observed protection with serology

Postlicensure studies of vaccine effectiveness have served as
critical sources for validation and refinement of the use of
SBA assays. For MenC vaccines implemented in the United
Kingdom beginning in 1999, a study performed before vac-
cine introduction indicated that the proportions of indivi-
duals with rSBA titers ≥8 were inversely correlated with
disease incidence across age groups.51 Subsequently, effec-
tiveness data in multiple age groups (ranging from
90.1–100%) suggested that the percentage of subjects with
rSBA titers of ≥128 dramatically underestimated effective-
ness; titers of ≥4 or ≥8 were more reflective of observed
effectiveness.34 A later study found that overall vaccine effec-
tiveness estimates were comparatively slightly lower for rou-
tine vaccination (83%) but similar for catch-up programs;

effectiveness was generally higher within 1 year of vaccina-
tion compared with later time points.80

In 2011, WHO noted that although use of hSBA titers ≥4 or
rSBA titers ≥8 have been used for vaccine licensure for ser-
ogroups A, W, and Y, these thresholds have not been formally
correlated with protection for these serogroups.81 In 2010, the
CDC described a vaccine effectiveness study for MenACWY-D
that found a decrease in effectiveness from 91% at 1 year post-
vaccination to 58% at 2 to 5 years postvaccination.82 These
findings corresponded with serologic results available at the
time from 5 different studies, which relied on both hSBA and
rSBA assays and used a variety of cutoffs (4 or 8 for hSBA and
128 for rSBA assays). These analyses led the CDC to recommend
a booster MenACWY vaccine dose at age 16 years in order to
maximize protection during the peak risk period of 16–21 years.
A more recent study similarly found that effectiveness of
MenACWY-D for serogroups C and Y declined over time
since vaccination (from 79% within 1 year of vaccination to
61% between 3–8 years of vaccination);83 these data parallel
serologic results indicating decreasing proportions of subjects
with hSBA titers ≥8 over time.84 Additionally, for MenA-TT,
serologic data collected 1 month postvaccination from 2 studies,
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Figure 3. Percentages of toddlers with rSBA titers ≥8 or hSBA titers ≥4 for serogroups A, C, W, and Y at various time points before or after vaccination with 1 dose of
MenACWY-TT at 12 to 23 months of age. Data are plotted as percentages along with 95% CIs. hSBA = serum bactericidal antibody assay using human complement;
MenACWY-TT = meningococcal serogroups A, C, W, and Y conjugate vaccine using tetanus toxoid as a carrier protein; pre = prevaccination; rSBA = serum bactericidal
antibody assay using rabbit complement. Data are from Vesikari T, Forsten A, Boutriau D, Bianco V, Van der Wielen M, Miller JM. Randomized trial to assess the
immunogenicity, safety and antibody persistence up to three years after a single dose of a tetravalent meningococcal serogroups A, C, W-135 and Y tetanus toxoid
conjugate vaccine in toddlers. Hum Vaccin Immunother. 2012;8(12):1892–1903.
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1 in toddlers 12 to 23 months of age and 1 in subjects 2 to
29 years of age, in various regions in Africa in 2006 indicated that
96% of toddlers and 78% of older subjects had ≥4-fold increases
in rSBA titers.85 Impact data indicated that MenA incidence
decreased by 94% in vaccinated areas compared with unvacci-
nated areas in 2012,86 and a study analyzing data from 2011 to
2015 found a >99% reduction in confirmed MenA cases in
African countries following MenA-TT vaccination
campaigns.87 These findings support the use of rSBA data for
MenA-TT vaccine licensure.

For MenACWY-TT in particular, recent effectiveness data
against serogroup W following the 2014 introduction of the
vaccine into the Chilean national immunization program for
toddlers indicated that effectiveness was 100% and 92.3% in
2015 and 2016, respectively.88 MenACWY-TT is also being
used in a nationwide program in England that began in 2015
and mainly targets adolescents.89,90 In the first year of the
program, there was a 69% reduction in MenW cases among
2015 school leavers, the first cohort to be vaccinated at general
medical practices, despite only 36.6% vaccine coverage.89 The
epidemiologic year 2017/2018 was the first year since 2011/
2012 that MenW cases declined overall; decreases observed in
age groups other than those targeted for vaccination suggest
that herd protection has played a role in this reduction.91

Assays and strains used in different laboratories

Approaches to SBA assays, including strain selection, have var-
ied among different laboratories. The standardized method for
MenA andMenC rSBA assays published in 1997 specified use of
specific strains for these assays.30 Of note, a single representative
strain for each serogroup can be used in the case of a vaccine
targeting a serogroup-specific capsular polysaccharide;92 the
strain recommended for serogroup C evaluations is the same
one originally used in the Goldschneider experiments.23,30 For
vaccines targeting subcapsular antigens which are not ser-
ogroup-specific (ie, currently available MenB vaccines), the
choice of strains required for SBA assays to access broad protec-
tion is more complicated.92

In 2011, GlaxoSmithKline laboratories reported that use of
a MenA strain (strain 3125) different from that specified in
the standardized method30 (strain F8238) might be more
appropriate for evaluation of MenA immune responses.93

This suggestion was based on strain 3125 belonging to an
immunotype more commonly associated with invasive
MenA strains, whereas the strain F8238 immunotype was
more commonly associated with carrier strains. Studies across
multiple age groups indicated higher levels of natural immu-
nity to strain F8238 as compared with strain 3125 when
evaluated in rSBA. By contrast, postvaccination immune
responses were similar for the 2 strains, indicating that strain
3125 more accurately captured vaccine-induced protection
and that rSBA results using strain F8238 might be artificially
high. A recent MenACWY-TT study indicates continued use
of strain 3125.69 As might be expected, differences in strain
selection and other aspects of protocol dictate the inherent
complexity in comparing results across different
laboratories.21,33 Relatedly, rSBA assays for MenACWY-TT
immunogenicity assessments began being performed by

Public Health England rather than GlaxoSmithKline labora-
tories beginning around 2011,94,95 with one study directly
noting the resulting difficulties in correlating immunogenicity
results from the 2 laboratories.74

Discussion

Serum bactericidal antibody assays are the accepted surrogate
measure of efficacy for meningococcal vaccines.43 Parameters
used in SBA assays can vary, with the choice of rabbit or
human complement often having a profound effect on study
results.27,31,32,41 Current guidelines specify use of rSBA assays
for serogroups A and C vaccines and hSBA assays for ser-
ogroup B subcapsular vaccines.24,42

Postlicensure effectiveness studies for vaccines targeting ser-
ogroups C, A, and W support the use of rSBA for licensure of
these vaccines. The correlation between effectiveness and rSBA
titers ≥1:8 was formally established for MenC vaccines both
before and after their introduction in the United Kingdom.34,51

Subsequently, the widespread use ofMenA-TT in Africa enabled
postlicensure evaluations of impact which paralleled estimates of
protection based on rSBA data.85–87 More recently, for ser-
ogroupW, recent data demonstrating high impact and effective-
ness following MenACWY-TT vaccination programs in
England and Chile88,89,91 support the primary use of rSBA data
for licensure of this vaccine.57 Based on these observations for
serogroups C, A, and W, it is likely that rSBA data is similarly
accurate for meningococcal conjugate vaccines targeting ser-
ogroup Y.

In contrast to rSBA data, hSBA data from recentMenACWY-
TT studies corroborate previously published data questioning
the validity of these results for evaluating immunogenicity of this
vaccine.21 Specific concerns relate to lower responses to primary
vaccination as measured in hSBA compared with rSBA
assays,62,65,68,76,78 particularly for toddlers after 1 dose.62,76,78

Even more strikingly, some studies feature a more rapid decline
of hSBA compared with rSBA titers, which is particularly notable
for serogroup A, as well as an increase over time in initially lower
responses for serogroups W and Y despite lack of additional
dosing.60,65,67–69,76,78 There is no readily available explanation
for these perplexing hSBA assay results, which are also in conflict
with observed effectiveness data.88,89,91 These findings collec-
tively suggest that rSBA assays are the appropriate method for
measuring immune responses in MenACWY-TT studies,
whereas hSBA assays may be less relevant for these evaluations.
Data from MenACWY-CRM197

96 and MenA-TT97 studies also
demonstrate serogroup A titers that rapidly wane in hSBA
compared with rSBA. Rapidly waning serogroup A hSBA titers
have also been observed for MenACWY-D.84 These data suggest
that observations regarding MenACWY-TT may be extrapo-
lated to meningococcal conjugate vaccines using diverse carrier
proteins, in that rSBA assays may be preferable to hSBA assays
for immunogenicity evaluations.96

Meningococcal vaccine immunogenicity evaluations
remain limited by several considerations. As mentioned, stan-
dardization of the hSBA assay continues to be challenging,28,29

and despite more formal standardization of the rSBA assay
with regard to certain parameters,30 laboratories likely differ
with regard to others. Additionally, although rSBA titers ≥8
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are generally considered to correlate with protection for
MenACWY vaccines, these have only been formally correlated
with effectiveness for serogroup C.81
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