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ABSTRACT Malaria symptoms are caused by the development of the parasites within
the blood of an infected host. Bulk RNA sequencing (RNA-seq) of infected blood can reveal
interactions between parasites and the host immune system during an infection, but
because multiple developmental stages with distinct transcriptional profiles are con-
currently present in infected blood, it is necessary to correct such analyses for differences
in cell composition among samples. Gene expression deconvolution is a statistical approach
that has been developed for inferring the cell composition of complex tissues characterized
by bulk RNA-seq using gene expression profiles from reference cell types. Here, we describe
the evaluation of a species-agnostic reference data set that can be used for efficient
and accurate gene expression deconvolution of bulk RNA-seq data generated from any
Plasmodium species and for correct gene expression analyses for biases caused by differ-
ences in stage composition among samples.

IMPORTANCE Differences in cell type proportions among samples can introduce artifacts
in gene expression analyses and mask genuine differences in gene regulation. Gene expres-
sion deconvolution allows estimation of the proportion of each cell type present in one sam-
ple directly from bulk RNA sequencing data, but this approach requires a reference data set
with the signature profile of each cell type. Here, we evaluate the suitability of a rodent
malaria parasite gene expression data set for estimating the proportions of each parasite
developmental stage present in bulk RNA sequencing data generated from blood-stage
infections with the human parasites Plasmodium falciparum and Plasmodium vivax. These
analyses provide a species-agnostic approach for reliably estimating stage proportions in
infected human blood and correcting subsequent gene expression analyses for these
variations.
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Despite decades of progress toward elimination, Plasmodium parasites, the causative
agents of malaria, remain endemic in 85 countries (1). In 2020, these parasites caused

241 million infections and over 600,000 deaths (most in children younger than 5 years), a
significant increase compared to previous years (1). This reversal of progress, possibly due
to emerging resistance to the most effective therapies (2), highlights the need for continued
research into these medically important parasites.

At least five species of Plasmodium parasites cause human infections: P. falciparum, P. vivax,
P. malariae, P. ovale, and P. knowlesi (3). P. falciparum causes the vast majority of malaria cases
in Africa, while P. vivax causes most cases in South America and Southeast Asia (1). All these
Plasmodium species share a complex life cycle that includes several distinct developmental
stages across two hosts: humans and Anophelines mosquitoes. However, all malaria symp-
toms are caused by the intraerythrocytic development cycle (IDC) (4) of the parasites in the
blood. After maturing in the liver, merozoites are released into the bloodstream, invade cir-
culating erythrocytes, and mature into rings, trophozoites, and schizonts (4). Blood schizonts
eventually release new merozoites that infect new red blood cells (RBCs) and continue the
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IDC (4). Asexual replication of parasites during the IDC occurs every 24 to 72 h (depending
on the Plasmodium species) and increases the parasite load by 10- to 30-fold each cycle
(4). A fraction of asexual parasites also differentiate into sexual stages (i.e., male and female
gametocytes) that, once they are taken up by a mosquito during a blood meal, can continue
their development and support malaria transmission (4).

Given the central role that blood-stage parasites play in disease severity, immune
evasion, and transmission, analyses of parasite gene expression from patients’ blood would
best allow us to understand how these parasites are regulated and interact with their host.
However, relatively few studies have characterized the parasite gene expression profiles
directly from patients (5–7). The main challenge of analyzing patient blood is the concurrent
presence of multiple parasite stages in the blood (8), each with their own gene expression
profiles (9, 10). This simultaneous presence of multiple stages in vivo is observed for all
Plasmodium species, although to a lesser extent with P. falciparum due to the sequestra-
tion of mature stages (11, 12). Importantly, the proportions of the different blood stages
vary with time and among patients, which can confound gene expression analyses: with-
out controlling for the stage composition, differences in gene expression observed between
samples might reflect differences in composition rather than transcriptional differences. To
circumvent this limitation, several studies have used in vitro or short-term ex vivo cultures to
synchronize parasites. However, these studies are limited to specific Plasmodium species
(e.g., P. falciparum [13, 14] or P. knowlesi [15]), suffer from relatively low throughput, and
might not fully recapitulate the in vivo parasite transcriptional profiles (15–18). A recent and
appealing alternative is to use single-cell RNA sequencing (scRNA-seq) to characterize the
heterogenous parasite populations present in one sample (13, 19). Unfortunately, these
studies (i) are difficult to implement with patient samples due to the need for intact cells
(which complicates storage), (ii) are expensive, and (iii) only provide a superficial charac-
terization of the transcriptomes (since only the most expressed genes are robustly char-
acterized). In this context, several approaches (20–22) have been used to estimate the
proportion of the different stages present in a sample characterized by bulk RNA sequenc-
ing. Many methods rely on a prespecified set of marker genes for each cell type (i.e., parasite
developmental stage) (23), which is problematic, as few Plasmodium genes are consistently
expressed at a single stage (19). One alternative approach that is used extensively to differ-
entiate cell types in complex human tissues is to leverage the information for hundreds of
genes by using gene expression deconvolution (23, 24). We used this approach previously
to analyze Plasmodium-infected blood samples (5, 7), but the robustness and accuracy of
this method need to be rigorously evaluated.

CIBERSORTx (25) is a commonly used gene deconvolution software that first generates
a “signature matrix” (i.e., a signature gene expression profile for each cell type) from a
scRNA-seq reference data set and then uses this matrix to estimate the proportion of
each of the cell types present in the sample characterized by bulk RNA-seq (25). While
several scRNA-seq data sets have been generated for several Plasmodium species (13, 19,
26–28), the most comprehensive data set to date that captures parasites throughout the
full IDC as well as male and female gametocytes comes from Plasmodium berghei (13), a
rodent parasite distantly related to human malaria parasites. The ability to detect all
blood stages, including gametocytes, in patient samples is essential to fully account for
their presence and correct gene expression analyses for their variations among samples.
Importantly, cell types that are present in bulk data but not included in the reference data
set are redistributed across all other cell populations during deconvolution (23), which leads to
biased estimates of all other cell types in the mixture (23).

Here, we evaluated the performance and limitations of different Plasmodium
scRNA-seq data sets for gene expression deconvolution of both in vivo and in vitro
samples. We provide a species-agnostic signature matrix to reliably analyze bulk
RNA-sequencing data from any human Plasmodium parasites, allowing correction
of gene expression analyses for parasite developmental stages present during an
infection.
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RESULTS
Single-cell RNA-seq data can reliably deconvolute bulk RNA-seq data from the

same species. We first tested whether scRNA-seq data sets could be used to deconvolute
Plasmodium bulk gene expression data from the same species. We used CIBERSORTx (25) to
generate signature profiles from a P. falciparum scRNA-seq expression data set (13) that
encompassed three asexual stages—rings, trophozoites and schizonts—using all P. falcipa-
rum genes expressed (see Materials and Methods for details). We then used this signature
matrix to deconvolute bulk RNA-seq data generated from a tightly synchronized P. falcipa-
rum culture sampled at 4-h intervals (13 time points, each in duplicate) (14). Overall, the
gene expression deconvolution performed well, recapitulating the gradual progression of
these samples through the IDC (Fig. 1A). CIBERSORTx (25) determined that the majority of
the mRNAs from early samples (0 to 12 h postsynchronization) were derived from rings,
while transcripts from trophozoites were most abundant in intermediate samples (24 to 32
h postsynchronization). We expected schizonts to dominate late cultures but these samples,
while they did show the highest proportions of schizonts, seemed more heterogenous than
those from earlier time points, possibly reflecting a gradual loss of synchronicity of the para-
sites as the cultures progressed.

The next step toward obtaining a universal signature matrix to deconvolute mixtures of
blood-stage parasites from any Plasmodium species was to test whether reducing the number
of genes used to generate the signature matrix lowered the efficiency and resolution of the
gene expression deconvolution. We therefore reiterated the gene expression deconvolution
of the same in vitro cultures but used only the 3,541 genes with 1:1:1 orthologs in the P. ber-
ghei, P. falciparum, and P. vivax genomes (instead of all 4,923 P. falciparum genes) to generate

FIG 1 scRNA-seq data can reliably deconvolute bulk RNA-seq data. Each vertical bar represents one RNA-seq experiment generated from a
synchronized P. falciparum in vitro culture (organized chronologically along the x axis) and is colored according to the proportion of transcripts
derived from Ring (red), Trophozoite (green), Schizont (blue), Female gametocytes (black), and Male gametocytes (gray), as determined by
CIBERSORTx. (A) Deconvolution of P. falciparum bulk RNA-seq data using all 4,923 P. falciparum genes of the scRNA-seq data to generate the
signature matrix. (B) Deconvolution of the same P. falciparum bulk data using only the 3,391 P. falciparum genes with 1:1:1 orthologs to
generate the signature matrix. (C) Deconvolution of the same P. falciparum bulk data using the 3,509 P. berghei genes with 1:1:1 orthologs
from a scRNA-seq data set to generate the signature matrix.
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the signature matrix. Reducing the number of genes only minimally impacted the deconvolu-
tion results and yielded very comparable results (Fig. 1B).

Single-cell RNA-seq data from one Plasmodium species can reliably deconvolute
RNA-seq data from another species.We next tested whether scRNA-seq data generated
from the rodent parasite P. berghei could be used to deconvolute P. falciparum bulk data.
We selected P. berghei as a possible reference here since the available scRNA-seq for this spe-
cies included all asexual blood-stage parasites (as in the P. falciparum data above), as well as
male and female gametocytes, which we expect to be present in at least some of the infected
patient blood samples. We used the P. berghei scRNA-seq data set (13), including only genes
with 1:1:1 orthologs in P. berghei, P. falciparum, and P. vivax, to generate a signature matrix
and deconvolute the bulk RNA-seq data described above. Overall, the proportions of each
developmental stage estimated in each sample were very similar to the results obtained
using P. falciparum as reference, suggesting that using only genes conserved across Plasmodium
species performed quite efficiently (although the gene expression deconvolution seemed to
systematically infer more trophozoites in all culture samples) (Fig. 1C). Importantly, inclusion
of gametocytes in the signature matrix did not lead to inferences of many gametocytes in
the culture samples; we did not expect gametocytes to be present in these culture samples
and, indeed, less than 10% gametocytes were inferred by deconvolution (Fig. 1C).

We also evaluated how this species-agnostic signature matrix would perform on
P. vivax blood-stage parasites. Since we lacked bulk RNA-seq data from synchronized
P. vivax parasites, we generated mock RNA-seq data by aggregating scRNA-seq data
from individual parasites at the same stages (19) (see Materials and Methods). The P.
vivax scRNA-seq data set did not include ring-stage parasites (due to limitations of
the enrichment method used before library preparation [19]), and we therefore generated
five data sets representing P. vivax parasites across the IDC from early trophozoites (bin 1)
to late schizonts (bin 5). In addition, we included two mock populations made of male or
female gametocytes. The proportions inferred by gene expression deconvolution for each
mock data point approximately matched the expected proportions (Fig. 2), although with
an apparent systematic overestimation of trophozoites, similarly to Fig. 1. Interestingly,
despite the use of a signature derived from P. berghei gametocytes, P. vivax gametocytes
of each sex were correctly identified (despite a high “misassignment” to trophozoites; see
below).

Gene expression deconvolution provides a robust but relative assessment of stage
composition across samples.We then assessed the accuracy of the gene expression decon-
volution by analyzing mock bulk gene expression data generated by mixing P. berghei par-
asites from different developmental stages. We randomly sampled 100 cells from selected

FIG 2 A species-agnostic reference matrix can be used to deconvolute P. vivax bulk mixtures, as shown by
this deconvolution of P. vivax mock bulk data with a signature matrix generated from P. berghei scRNA-seq
single-cell expression profiles. Cells were binned into equal bins by pseudotime to represent progression
from early trophozoites (bin 1) to late schizonts (bin 5) along the x axis.
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stages from the P. berghei scRNA-seq data set (13) to obtain mixed populations of two stages
in different proportions. We then compared the estimated proportions obtained after
deconvolution with the true proportions of mixed cells. In all mock mixtures, the estimated
proportion of each stage increased linearly with the true proportion of that stage, indicating
that deconvolution is highly accurate (Fig. 3).

When this method was applied to mock mixtures of the P. falciparum scRNA-seq data,
we still observed a monotonic increase in estimated percentage of each stage as the actual
percentage increased, reinforcing that our species-agnostic signature matrix is efficient
across species (see Fig. S1 in the supplemental material). However, the proportion of schiz-
onts was systematically underestimated in all mock mixtures. This could be due to inclusion,
in the mock mixtures, of parasites labeled as schizonts in the scRNA-seq data but actually
representing earlier parasites than the P. berghei schizonts and were therefore assigned by
deconvolution into a different group.

DISCUSSION

Here, we evaluated the performance of CIBERSORTx, a gene expression deconvolution
program (29), for estimating the stage composition of Plasmodium blood infections charac-
terized by bulk RNA-seq. This approach has been used previously for analyzing blood sam-
ples from malaria patients (5, 7) but without comprehensive benchmarking of its accuracy
and resolution. We showed here that we can use this approach to leverage the transcrip-
tional profiles determined from P. berghei parasites by scRNA-seq data to reliably estimate
the proportions of the blood stages of human Plasmodium infections characterized by bulk
RNA-seq.

One key feature of gene expression deconvolution is that it relies on hundreds of
genes to determine the signature profiles of the reference populations or stages (see
below). We showed that CIBERSORTx performance was not dramatically reduced when
we used only the subset of genes conserved across Plasmodium species. We then

FIG 3 Accuracy of gene expression deconvolution using a species-agnostic signature matrix. Each plot displays the
estimated proportion of a specific P. berghei stage each cell type (y axis) in simulated mixtures compared to the true
proportions (x axis).
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demonstrated that we could use scRNA-seq data from P. berghei, a distantly related
rodent malaria parasite, to efficiently deconvolute data generated for the human para-
sites P. falciparum and P. vivax. This result, which derives from the overall conservation
of the regulation of Plasmodium gene expression throughout their life cycle (30, 31), is
critical, as P. berghei is currently the species most comprehensively characterized and
for which scRNA-seq data are available for all asexual and sexual blood stages. In addi-
tion, the P. berghei scRNA-seq data were generated from short-term ex vivo cultures
(13) and might therefore better recapitulate patient infections than data generated
from parasites cultivated in vitro (15, 32).

The stage proportions estimated by gene expression deconvolution should be interpreted
with caution. First, it is likely that this approach will systematically underestimate specific
stages: gene expression deconvolution estimates the proportion of the transcripts derived
from each stage but, since some Plasmodium stages are much more transcriptionally active
than others (33), the gene expression deconvolution might not match microscopy results
1 to 1. For example, while P. falciparum ring-stage parasites are expected to predominate
in patients due to sequestration (11, 12), their relatively low transcriptional activity, com-
pared to schizonts and trophozoites (33), could lead to an underestimation of their abun-
dance (i.e., ring transcripts will account for a lower fraction of all mRNAs than expected
based on cell numbers). Second, the results are dependent on the “reference” populations
used. While development of blood stage along the IDC and the changes in gene expres-
sion are continuous (13, 19), we used discrete categories to assign parasites into stages
and, consequently, samples containing late trophozoites might be represented as a mix-
ture of trophozoites and schizonts. This could complicate interpretations of the estimated
stage composition and comparisons between data sets deconvoluted with different refer-
ences. However, this limitation does not hamper the correction of gene expression data
from patient samples for stage differences, since the same biases will affect all samples
similarly. The linear correlation between the true and estimated proportions of variable
mixtures (Fig. 3) is essential in this regard, as it ensures that correction for stage differences
between samples will rely on, if not absolute estimates, at least estimates proportional to
the true proportions and therefore correct appropriately for variations among samples.

Several approaches have been previously applied to correct Plasmodium gene expression
analyses for differences in stage composition among samples. Several studies have measured
the overall correlation between the profiles of bulk samples with synchronized cultures
at different time points to cluster samples according to their overall stage distribution
(20, 22). While this approach allows identification of outlier samples with drastically dif-
ferent distributions, it may fail to fully account for more subtle differences in stage compo-
sitions. Alternatively, some studies have used carefully selected “marker” genes specific to
each stage (21) to estimate the relative proportions of different stages. While conceptually
similar to the gene expression deconvolution method implemented in CIBERSORTx, this
approach relies on a handful of selected genes, and any difference in the regulation of these
marker genes will lead to biases in the estimation of the stage composition. This shortcom-
ing highlights the main advantage of CIBERSORTx: because it uses the combination
of hundreds of genes as “signatures,” the deconvolution is robust to changes in the regulation
of specific genes.

By robustly estimating relative proportions of each sexual and asexual stage present
in an infection characterized by bulk RNA-seq, gene expression deconvolution alleviates the
main limitation of using infected blood samples, without culture, for Plasmodium gene expres-
sion analyses: without rigorously estimating the stage composition of each sample, it is diffi-
cult to determine whether gene expression differences between samples are due to (i) genu-
ine differences in gene expression between parasites or (ii) differences in the developmental
stages present in each sample. Due to sequestration (11, 12), most P. falciparum parasites
present in the circulation tend to be early-stage parasites (i.e., rings). However, even a minor-
ity of late-stage parasites might dramatically affect the overall RNA-seq profiles, since those
parasites can disproportionally contribute to the mRNA populations due to their higher tran-
scriptional activity (33). In addition, P. falciparum infections can vary extensively in the
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proportion of sexual parasites present at a given time (34). In non-falciparum infections, this
stage heterogeneity is magnified by the lack of sequestration, which enables all parasite
stages to be simultaneously present in the bloodstream and, in the case of P. vivax, the ear-
lier appearance of gametocytes in an infection (34). Our analyses provide a species-agnostic
solution to robustly address this heterogeneity. Using a comprehensive P. berghei scRNA-seq
data set, including the detailed descriptions of the transcriptional profiles of sexual and asexual
blood-stage parasites, CIBERSORTx enables rigorous estimation of the stage compositions of
bulk samples which can then be used as covariates in testing for differential expression
between groups. This simple method will allow analysis of large numbers of blood samples,
without the need to culture the parasites before profiling (which is both time- and resource-
consuming), and use of standard bulk RNA-seq methods, which are much cheaper than
scRNA-seq and provide a deeper characterization of the transcriptome. Overall, the method
described in this study will provide a solid foundation to implement Plasmodium gene
expression analyses for patient infections and to better understand the role of these para-
sites in disease etiology and severity (e.g., by comparing symptomatic versus asymptom-
atic infections, or uncomplicated malaria cases to cases of severe malaria), or to examine the
molecular mechanisms underlying immune evasion.

MATERIALS ANDMETHODS
scRNA-seq data sets and preprocessing. We used two publicly available 10� Genomics single-cell

RNA-seq data sets from Howick et al. (13): one characterizing stages of the intraerythrocytic develop-
mental cycle (IDC) of P. falciparum and one for P. berghei that included gametocytes in addition to asex-
ual parasites. Raw count tables were downloaded for 6,737 cells representing the P. falciparum IDC
(stages: ring, early trophozoite, late trophozoite, and schizont) and 4,884 cells representing the P. berghei
blood stages (stages: early ring, late ring, early trophozoite, mid-trophozoite, late trophozoite, early
schizont, mid-schizont, late schizont, male gametocyte, and female gametocyte). To ensure that enough
cells were included to accurately recapitulate the gene expression profile of a specific stage, we pooled
cells at slightly different time points within broadly defined developmental stages. For the P. falciparum
data set, cells labeled as early and late trophozoites were grouped together as “trophozoites” (while par-
asites labeled as rings and schizonts were unchanged). For the P. berghei data set, cells labeled as early
and late rings were pooled together as “rings”; early, mid-, and late trophozoites were grouped into
“trophozoites”; and early, mid-, and late schizonts were grouped into “schizonts.”

We also used a 10� Genomics scRNA-seq data set generated from blood-stage P. vivax parasites (19)
(without ring parasites, since these were lost during enrichment). A raw count table was available for 9,215
blood-stage parasites, including male and female gametocytes. Individual stage labels were not available for
IDC stages, so cells were binned by pseudotime into five bins of equal length, representing progression from
early trophozoites to late schizonts. Male and female gametocytes were individually labeled.

Bulk RNA-seq data sets and preprocessing. To evaluate the efficiency of deconvolution, we used
one bulk RNA-seq data set (14) and included 13 time points along a highly synchronized P. falciparum 3D7 cul-
ture (in 4-h increments, with duplicates of each time point, for 56 h total [35]). Cultures of mostly rings (by mi-
croscopy) were synchronized with sorbitol (35). Two additional sorbitol synchronizations at 10 h and 28 h after
initial synchronization ensured tightly synchronized cultures (35). Each sample was labeled with its correspond-
ing time point (in hours postsynchronization) and stage (ring, trophozoite, or schizont), confirmed by micros-
copy. Read counts were collapsed by gene by summing the counts determined from each isoform.

Orthologous genes across three Plasmodium species. A table of orthologous genes in P. falciparum,
P. berghei, and P. vivax was obtained from PlasmoDB (36). Briefly, we downloaded a table of all P. falciparum
3D7 genes and their orthologs in the P. vivax P01 and P. berghei ANKA genomes. We then removed all genes
with no or multiple orthologs in any of the three species, retaining a total of 3,541 1:1:1 orthologous genes.

Generation of signature matrices. We generated and evaluated three signature matrices from the
scRNA-seq data: (i) P. falciparum scRNA-seq including all 4,923 genes in the data set; (ii) a P. falciparum scRNA-seq
subset to include only genes with 1:1:1 orthologs; and (iii) a P. berghei scRNA-seq data set subset to include only
1:1:1 orthologs (with the P. berghei gene names replaced by orthologous P. falciparum or P. vivax gene names).

Mock mixture data.We generated mock RNA-seq data by “mixing” 500 parasites from the P. falcipa-
rum or P. berghei scRNA-seq data set using varying proportions of each stage. Randomly sampled cells
from the selected stages were collapsed by sum to generate a single mixture data set. We generated
these data sets by simply summing the actual scRNA-seq read counts per gene.

CIBERSORTx. Each reference data set (described above) was uploaded to CIBERSORTx (25) and used
to generate a signature matrix defining the gene expression profiles of each developmental stage in the
data set. The minimum expression threshold was reduced from 0.75 (default) to 0 to reduce data sparsity result-
ing from the smaller number of genes captured in 10� data sets and ensure enough genes were included to
generate a reliable signature matrix. All other parameters were used with default settings.

CIBERSORTx (25) was then used to estimate proportions of each cell type in the bulk data sets
described above. Batch correction was enabled in S-mode to correct for sequencing differences between
single-cell and bulk data sets. Quantile normalization was disabled. Default settings were used for all
other parameters, with 500 permutations for analysis.
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Code availability. All programs, versions, and parameters used in this study are described in
Materials and Methods. Custom codes and gene lists are available at https://github.com/tebbenk/GED.
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FIG S1, JPG file, 0.05 MB.
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