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Abstract: (1) Background: The purpose of this study was to determine the prevalence of clostridia
strains in a hospital environment in Algeria and to evaluate their antimicrobial susceptibility to
antibiotics and biocides. (2) Methods: Five hundred surface samples were collected from surfaces in
the intensive care unit and surgical wards in the University Hospital of Tlemcen, Algeria. Bacterial
identification was carried out using MALDI-TOF-MS, and then the minimum inhibitory concentra-
tions (MICs) of various antimicrobial agents were determined by the E-test method. P. sordellii toxins
were searched by enzymatic and PCR assays. Seven products intended for daily disinfection in the
hospitals were tested against Clostridium spp. spore collections. (3) Results: Among 100 isolates,
90 P. sordellii were identified, and all strains were devoid of lethal and hemorrhagic toxin genes.
Beta-lactam, linezolid, vancomycin, tigecycline, rifampicin, and chloramphenicol all proved effective
against isolated strains. Among all strains tested, the spores of P. sordellii exhibited remarkable
resistance to the tested biocides compared to other Clostridium species. The (chlorine-based 0.6%,
30 min), (glutaraldehyde solution 2.5%, 30 min), and (hydrogen peroxide/peracetic acid 3%, 15 min)
products achieved the required reduction in spores. (4) Conclusions: Our hospital’s current cleaning
and disinfection methods need to be optimized to effectively remove spores from caregivers’ hands,
equipment, and surfaces.

Keywords: Paeniclostridium sordellii; hospital environment; MICs; antibiotics; disinfectant products;
antimicrobial resistance

1. Introduction

Clostridia are composed of a broad spectrum of Gram-positive, spore-forming, and
anaerobic bacilli, whose taxonomic classification of genera has been updated. Toxin-
producing species can cause mild to life-threatening infections, the most famous being the
genus Clostridium (Clostridium botulinum, Clostridium perfringens), the genus Paeniclostridium
(Paeniclostridium sordellii), and the genus Clostridioides (Clostridioides difficile) [1]. The
clostridial spores display intrinsic resistance to high temperatures and biocides and persist
for several months on abiotic surfaces [2]. Their environmental stability and antimicrobial
tolerance are significant reasons that this group of bacteria can cause severe problems
within healthcare settings [3].

P. sordellii (previously Clostridium sordellii, reclassified in 2016) [4] are ubiquitous in
soil, in the gastrointestinal tracts of animals and humans, and in the vaginal microbiota of a
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modest number of healthy carrier women [5]. As with C. perfringens, P. sordellii is most often
associated with fulminant toxic shock syndrome, sepsis, and gas gangrene in postpartum
and post-abortive women, in injection drug use, or after trauma or surgery [6]. P. sordellii
causes infection in humans sporadically; it is less prevalent than C. perfringens infections,
but its lethality rate is relatively higher, close to 70% [7]. The infection can develop from
endogenous self-contamination or spore transmission from the environment [8]. Generally,
this infection is afebrile, and the clinical manifestations include tachycardia, hypotension,
leukemoid reaction, hemoconcentration, edema, and hemorrhage [9].

P. sordellii shares substantial genomic similarity with C. difficile (previously Clostridium
difficile, reclassified in 2016) [10], but each has specificities regarding the site of infection and
clinical manifestation [11]. Pathogenic isolates produce at least five toxins, two of which
are essential for virulence, lethal toxin (TcsL) and hemorrhagic toxin (TcsH). TcsH and TcsL
are highly similar in their biological activity and their antigenicity to toxin A (TcdA) and
toxin B (TcdA) of C. difficile, respectively, and they can be revealed through cross-reactivity
by C. difficile toxin detection [12,13]. These toxins are monoglucosyltransferases, and their
main targets are endothelial cells. In addition, numerous studies have reported that non-
toxigenic P. sordellii strains are associated with invasive infection cases and had cytotoxicity
power towards the mammalian cell in vitro [14–17].

P. sordellii infections are severe, with a brief period between the onset of symptoms
and death. The only viable treatment option is antibiotic therapy [5]. All P. sordellii isolates
reported in the literature are highly susceptible to various antibiotics, such as b-lactam,
erythromycin, metronidazole, and glycopeptides [5,18]. However, the resistance patterns
to clindamycin were different between studies [5].

The presence of spores on surfaces and in the environment in high-risk departments
such as intensive care units (ICU) and operating rooms (OR) could be the direct cause
of nosocomial infections [19]. The invasive procedures and cutaneous barrier breaking
facilitate the penetration and germination of spores in the host and lead to severe compli-
cations, such as myonecrosis, gas gangrene, bacteremia, and septicemia [20]. Alkylating
agents, oxidizing agents, and chlorine-releasing agents are the most sporicidal disinfectants
commonly used in the hospital; despite the success in inactivating spores, routine applica-
tions are limited due to their toxic and corrosive properties, and their instability during
storage or after preparation influences the quality of disinfection and, more specifically, the
elimination of spores [21–23].

The goal of the present work was to evaluate the prevalence, and antimicrobial suscep-
tibility, of clostridia strains isolated from environmental surfaces in the University Hospital
of Tlemcen (Northwest Algeria). Moreover, molecular investigation of toxin genes was
performed on P. sordellii isolates, given the large number of isolates obtained in this study.

2. Results
2.1. Environmental Samples

One hundred out of 500 (20%) surface samples collected were positive for clostridia
strains after culture. Of these 100 isolates, 90 were identified as P. sordellii, showing
a prevalence of 18%; the other Clostridium spp. belonged to seven species, including
Clostridium tertium (3/100), C. perfringens (2/100), Clostridium irregulare (2/100), Clostridium
sporogenes (2/100), and C. botulinum (1/100) (Figure 1). Eighty percent of strains were
isolated from operating room surfaces, with full concentration in three wards (orthopedic–
trauma surgery, surgical emergency, general surgery). Regarding the sampling site, a
large number of strains (41%) were isolated from mobile medical equipment (stretchers,
drip stands, mayo tables, instrumental tables, work tables, trolleys, mobile radiography
systems, mobile ultrasound machines, baby incubators). Ten percent of P. sordellii isolates
were recovered from cleaning and disinfection equipment and sterile surgical instruments
(Figure 1).
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Figure 1. Distribution of clostridia strains isolated in hospital environment according to sampling
sites and wards.

2.2. Antibiotic Susceptibility Test

Overall, all isolated strains were susceptible to beta-lactam, linezolid, vancomycin, tige-
cycline, rifampicin, and chloramphenicol (Table 1). In addition, one strain of C. perfringens
displayed resistance to two antibiotics—metronidazole and clindamycin (MIC 8 and
16 µg/mL, respectively)—and three other strains (two C. tertium, one P. sordellii) were
resistant only to clindamycin (MIC 64 µg/mL).

Table 1. Minimum inhibitory concentration ranges and interpretations of the tested antibiotics to
isolated strains from environmental samples.

Species N◦ of
Isolates AC XL TP IP ETP CM MZ LZ VA TGC RI CL

MIC range
(µg/mL) 100 0.125–

0.25
0.047–
0.25

0.047–
0.19

0.008–
0.012

0.008–
0.012

0.25–
64

0.032–
8

0.064–
0.25

0.032–
0.094

0.047–
0.125

0.032–
0.094

0.006–
0.016

P. sordellii 89 S S S S S S S S S S S S
P. sordellii 1 S S S S S R S S S S S S
C. tertium 2 S S S S S R S S S S S S
C. tertium 1 S S S S S S S S S S S S

C. perfringens 1 S S S S S S S S S S S S
C. perfringens 1 S S S S S R R S S S S S
C. irregulare 2 S S S S S S S S S S S S
C. sporogenes 2 S S S S S S S S S S S S
C. botulinum 1 S S S S S S S S S S S S

Abbreviations: Amoxicillin (AC), Amoxicillin–Clavulanic Acid (XL), Piperacillin–Tazobactam (T/P), Imipenem
(IP), Ertapenem (ETP), Clindamycin (CM), Metronidazole (MZ), Linezolid (LZ), Vancomycin (VA), Tigecycline
(TGC), Rifampicin (RI), Chloramphenicol (CL), Resistant (R), Sensitive (S).

2.3. Testing of Sporicidal Activity

The disinfectant tests were carried out as part of a suspension test under clean condi-
tions, without the addition of organic loads, and in dirty conditions, with the presence of
organic loads (3% bovine serum albumin and 0.3% sheep erythrocytes) added to the test
solution to mimic the organic contamination in the hospital environment. The effectiveness
of the disinfectants was strongly associated with the product composition, the targeted
strain, and the conditions of experimentation. Among the seven products tested), three
disinfectants—sodium dichloroisocyanurate (D1), glutaraldehyde (D5), and hydrogen per-
oxide/peracetic acid (D3)—achieved the required reduction in spores for all tested strains
under clean conditions (4 log10) and under dirty conditions (3 log10).
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2.3.1. Under Clean Conditions

The highest log10 reduction was measured with D1 (chlorine-based) and D5 (glu-
taraldehyde solution 2.5%) against spores of all strains tested at a contact time of 30 min.
D3 (hydrogen peroxide/peracetic acid) also achieved the recommended reduction rate on
all spores. D6 (peracetic acid-based) was found effective against spores of C. perfringens,
C. botulinum, C. tertium, and C. difficile, giving a reduction of 5.5 log10, at the concentration
and the contact time recommended by the manufacturer. Remarkably, this disinfectant
showed limited sporicidal activity against P. sordellii, C. sporogenes, and Bacillus spp., with a
3 log10 reduction (Figures 2 and 3).
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Figure 2. The effect of D1 (chlorine-based), D2 (didecyldimethylammonium chloride-based), and
D3 (hydrogen peroxide/peracetic acid) against spores of tested strains using the European and
French standard NF EN 14347, in clean conditions with a standard initial bacterial charge of
3.5 × 108 CFU/mL. Untreated sample was used as a control for experimental conditions. The
spore suspensions were suspended in sterile deionized water, for 20 min, and then were filtered and
incubated. (C.S) indicates reference strains used as control.
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Figure 3. The effect of D4 (isopropyl alcohol), D5 (glutaraldehyde solution), D6 (peracetic acid-based),
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The disinfectants D2 (didecyldimethylammonium chloride) and D4 (isopropyl alcohol)
and the antiseptic D7 (Figures 2 and 3) were not reliably effective on the spores of all tested
strains, showing log10 reductions lower than 4.

2.3.2. Under Dirty Conditions

The products D2 and D7 were not included in this experiment because they did not
show any activity against all species tested under clean conditions.

In dirty conditions, we noted that the activity of most disinfectants slightly decreased,
as illustrated in Figure 4. D5 (glutaraldehyde solution 2.5%) kept its effectiveness against
the spores of all strains tested, giving a log10 reduction of 5. In contrast, D1 (chlorine-based)
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lost its activity slightly in the presence of interfering substances, recording a log10 reduction
of 2.9 against spores of P. sordellii and C. sporogenes. Indeed, the biocide D3 (hydrogen
peroxide/peracetic acid) was always effective on C. perfringens, C. botulinum, C. difficile,
and C. tertium, giving a log10 reduction of 4, with a log10 reduction of 3.6 for the four other
remaining species.
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Figure 4. The effect of D1 (chlorine-based), D3 (hydrogen peroxide/peracetic acid), D4 (isopropyl
alcohol), D5 (glutaraldehyde solution), and D6 (peracetic acid-based) against spores of tested strains
using the European and French standard NF EN 13704, in dirty conditions, with a standard initial
bacterial charge of 1 × 106 CFU/mL. Untreated samples were used as a control for experimental
conditions. The spore was suspended in sterile deionized water with the addition of (3% bovine
serum albumin and 0.3% sheep erythrocytes); after 20 min of contact, the spore suspension was
filtered and incubated. (C.S.) indicates reference strains used as control.
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The D4 disinfectants (isopropyl alcohol) showed a log10 reduction of 1.6, and the D6
disinfectants (peracetic acid-based) showed a log10 reduction of 1.8. They, therefore, did not
achieve the required reductions of 3 log10 on all spore species tested after the recommended
exposure times under dirty conditions.

2.4. Toxin Enzyme Immunoassays (EIA) and PCR Reaction in P. sordellii Isolates

All P. sordellii isolates were negative for the TcsL and TcsH toxins, as tested using the
C. DIFF QUIK CHEK COMPLETE kit. The results of the designed PCR on the extracted
genomic DNA of 288 bacterial strains (Table S2), including 239 clostridia strains, with 26
Gram-negative and 23 Gram-positive strains, were 100% specific and only positive on
P. sordellii ATCC 9714 and P. sordellii VPI 9048 strains harboring either the tcsL or tcsL and
tcsH genes. The detection limit of the tcsL gene in P. sordellii ATCC 9714 and P. sordellii VPI
9048 was 37 and 35 CFU/mL, respectively. In addition, the tcsH gene’s detection limit in
P. sordellii VPI 9048 was 40 CFU/mL.

3. Discussion

The Environmental Protection Agency (EPA) in the USA has defined spores as the
most complicated organism to destroy [24]. In clinical settings, the inanimate environ-
ment and healthcare workers’ hands are the most common factors for propagating and
transmitting bacterial spores, particularly C. difficile spores [25,26]. Moreover, the pres-
ence of other clostridial species in a hospital environment that may be more persistent
and virulent is also a reality. In this study, numerous P. sordellii strains were isolated in
surgical wards. However, in high-risk departments, the invasive procedures and cutaneous
barrier breaking facilitate the penetration and germination of spores in the host. Several
authors revealed that clostridia are commonly implicated in deeper tissue infections, gas
gangrenous, myonecrosis, and septicemia [20,27]. P. sordellii infections were reported in
various pathologies, affecting several anatomical sites, including gynecological infections,
peritonitis, endocarditis, pneumonia, arthritis, cellulitis, and myonecrosis [28].

In this study, the contamination of mobile medical equipment such as stretchers, drip
stands, mayo tables, instrumental tables, work tables, and trolleys was remarkable; these
devices served as potential vectors in spore dissemination in the hospital environment [29].
Ten percent of P. sordellii isolates were recovered from cleaning and disinfection equipment
and sterile surgical instruments, probably due to intrinsic spore resistance to biocides and
high temperatures [30].

P. sordellii are known to be susceptible to beta-lactam, metronidazole, and vancomycin [5,31],
corresponding to the majority of our isolates. Some strains that showed high MICs to clin-
damycin were reported [31–33]. According to numerous studies, enzyme immunoassays
and PCR amplification revealed that all P. sordellii isolates were toxin-free [17,34]. The Paloc
region of P. sordellii, carrying the lethal toxin tcsL gene, was found mainly within mobile
plasmids (pCS1 family) [12]. It is worth noting that they are unstable, and the majority of
P. sordellii isolates can be lost quickly upon collection and subculture, thus compromising
their detection. In addition, only sporadic research has succeeded in detecting the tcsL gene
in a small number of P. sordellii strains isolated from different origins: 2/283 strains from
rectal and vaginal swabs [35], 1/14 strains from cadaveric tissue donation [36], and 5/44
strains from clinical and veterinary infections [37]. Invasive diseases are also associated
with non-toxinogenic strains according to several clinical reports [14–17].

The present study is among the few studies designed to assess the sporicidal activity
of a range of biocides on clostridia spores. We tried to achieve an experimental situation
that best simulated the real conditions of disinfection in the hospital by testing under clean
and dirty conditions and for times and concentrations of exposure as recommended by
the manufacturer and applied by the hygiene teams. Glutaraldehyde solution at 2.5%
was the most effective disinfectant on all spore species at a contact time of 30 min, under
both clean and dirty conditions. In concordance with many studies, glutaraldehyde is an
effective sporicidal agent, used in most hospitals to disinfect thermosensitive and reusable
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materials [38–40]. However, the application of glutaraldehyde solution to surfaces has not
been documented, probably because of its relative respiratory and dermal toxicity [41].
A 0.6% sodium dichloroisocyanurate solution in our study effectively inactivated the
clostridial spores.

Several authors have stated that chlorine-based products significantly reduce C. difficile
spores [42,43]. Despite their sporicidal effect, these products can quickly interfere with
specific materials and/or organic matter, leading to a loss of their activity and the formation
of toxic by-products [44]. In addition, they have a corrosive action on various supports,
such as stainless and galvanized steel, and are irritating to manipulators [43,45]. For these
reasons, their application is often limited to rooms and surfaces close to patients infected
with C. difficile [46]. This product is rarely used in the environment of asymptomatic
patients, so they are also a potential source of C. difficile contamination [47].

Recent publications [48–50] report that the peracetic acid/hydrogen peroxide combi-
nation reacts synergistically, having robust sporicidal activity, also observed in the presence
of an organic load. In our study, this disinfectant achieved a recommended log10 reduction
on various spores of clostridia species, including virulent strains such as C. perfringens,
C. difficile and C. botulinum, P. sordellii, and C. sporogenes, and spores of aerobic strains.
Peracetic acid oxidates the sulfhydryl and sulfur bonds and denatures enzymes and pro-
teins [51]. Many studies have shown that peracetic acid-based disinfectants inactivate
bacterial spores of C. difficile and C. sporogenes in 15 to 30 min [22,52]. The product has
proven its effectiveness during our experiment on C. perfringens, C. botulinum, C. tertium,
and C. difficile spores, although limited sporicidal activity was observed against P. sordellii
and C. sporogenes strains. However, the peracetic acid-based solution decreases their activity
in the presence of organic matter and at the time of storage, and it is very corrosive [53,54].

The manufacturer does not report the sporicidal activity of the disinfectants D2 (dide-
cyldimethylammonium chloride) and D4 (isopropyl alcohol). It is already known that
alcohol and quaternary ammonium compounds have a narrow spectrum of action and,
therefore, a lack of activity against bacterial spores [55–57]. We note that disinfectants D2
(didecyldimethylammonium chloride) and D4 (isopropyl alcohol) are extensively used in
our hospitals. The widespread use of non-sporicidal disinfectants may encourage bacte-
rial sporulation and participate in their persistence in the environment [25]. In addition,
wiping with these products facilitates the spread of bacteria by transferring spores from
contaminated sites to clean sites [58]. Healthcare workers’ hands play an essential role in
contaminating surfaces and equipment and can transmit bacterial spores between patients.

Many studies have reported that typical hand washing with soap and water does
not permanently eliminate C. difficile spores [59,60]; our results confirmed these findings.
Recent research suggests new approaches that may be more effective against clostridia
spores, such as soaking or wiping hands with electrochemically activated saline solution,
generating hypochlorous acid (Vashe) [61], and washing hands with sand- or oil-based
products [62].

4. Materials and Methods
4.1. Samples Collection

Over two years (2016 to 2018), a total of 500 surface sample swabs were collected
from nine departments of the University Hospital of Tlemcen (urologic surgery, surgical
emergency, gynecologic surgery, orthopedic–trauma surgery, general surgery, neurosurgery,
intensive care unit, neonatal intensive care unit, ambulance).

A variety of areas in these high-risk units were swabbed after routine cleaning, in-
cluding mobile equipment (stretchers, drip stands, mayo tables, instrumental tables, work
tables, trolleys, mobile radiography systems, ultrasound machines, baby incubators), fix
equipment (passbox, operating tables, storage racks, surgical lighting, computers), anesthe-
sia equipment, door keypads, sterilization and cleaning equipment, scrub sinks, ventilation
system equipment, and surgical instruments.
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4.2. Culture and Bacterial Identification

The swabs were suspended and incubated at 37 ◦C for 48 h in BHI (Laboratoire Conda
S.A, Torrejón de Ardoz, Spain). Then, the enrichment broth was heated for 10 min at 80 ◦C
to destroy the vegetative cells and activate the spore formation. Then, 100 µL was cultured
on Brazier’s agar without added selective agents (D-cycloserine and cefoxitin) and on
7% sheep blood agar, incubated at 37 ◦C for 48 h/72 h in an anaerobic atmosphere using
the GENbag anaer (bioMérieux, Marcy l’Etoile, France). The bacterial identification was
performed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)
mass spectrometry (MS) (Microflex™; Bruker Daltonic, Bremen, Germany) as previously
described [63] and confirmed by 16S rRNA sequencing.

4.3. Antibacterial Susceptibility Testing

Antimicrobial drug susceptibility was determined using the E-test method. Mini-
mum inhibitory concentration (MIC) results were interpreted using breakpoints recom-
mended by the Antibiogram Committee of the French Microbiology Society and Euro-
pean Committee on Antimicrobial Susceptibility Testing (CA-SFM/EUCAST 2019) https:
//www.sfm-microbiologie.org/2019/01/07/casfm-eucast-2019/ (accessed on 11 April
2020). The following antibiotics were selected for susceptibility testing: amoxicillin (AC),
amoxicillin–clavulanic acid (XL), piperacillin–tazobactam (T/P), imipenem (IP), ertapenem
(ETP), clindamycin (CM), metronidazole (MZ), linezolid (LZ), vancomycin (VA), tigecycline
(TGC), rifampicin (RI), chloramphenicol (CL) (Ia2, Montpellier, France).

4.4. Spore Preparation and Chosen Biocides

We evaluated the efficacity of biocides for the inactivation of clostridial spores on a col-
lection of nine bacterial strains: seven clostridia species strains and two Bacillus spp. strains.
Additional information regarding all strains tested is presented in Table 2. Clostridia spores
were prepared as described by Perez et al. (2011) [64] with some modifications. Bacillus
spp. spores were prepared according to the ASTM E2197-11 standard [43]. The spores’ con-
centration was measured by traditional hemacytometer counting. The rate of germinating
spores was estimated by counting the number of germinated spores after culture versus
the total count of spores.

Table 2. List of strains tested and their origins, with concentration and percentage of germination of
spores in stock solutions.

Tested Strains Origins Spore Concentration
(mL−1)

Spore Germination
Percentage (%)

C. perfringens Hospital environment,
surface (UHT) 1.24 × 108 86.29%

C. botulinum Hospital environment,
surface (UHT) 1.14 × 108 90.35%

C. sporogenes Hospital environment,
surface (UHT) 3.20 × 107 93.75%

C. tertium Hospital environment,
surface (UHT) 2.67 × 108 93.26%

P. sordellii Hospital environment,
surface (UHT) 1.24 × 108 91.13%

C. difficile CSUR (P8093) 1.32 × 108 90.15%

P. sordellii DSM 2141 1.19 × 108 92.44%

B. subtilis DSM 347 3.17 × 108 94.63%

B. cereus DSM 106266 2.97 × 108 93.60%

Seven disinfectant products routinely used in Algerian and French hospital settings
were evaluated, including six disinfectants used for the disinfection of surfaces, thermosen-
sitive equipment, instrumentation, and medical devices, and one product used for hand

https://www.sfm-microbiologie.org/2019/01/07/casfm-eucast-2019/
https://www.sfm-microbiologie.org/2019/01/07/casfm-eucast-2019/
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washing among medical staff. Active ingredients and commercial forms are reported in
Table 3. The contact times and concentrations were applied according to the manufacturer’s
instructions for sporicidal products and as used by the hygiene teams for non-sporicidal
products (Table 3). The D2 and D7 products were supplied in ready-to-use liquid form
and tested only under clean conditions. The other products were provided in liquid and
powder formulations and were prepared by mixing with sterile deionized water.

Table 3. Product forms, ingredients, use concentrations, and contact times.

Product Disinfectant
Forms Active Ingredient Concentration Contact Time and Type

of Application
Spectrum of

Activity

D1 Effervescent tablet
Sodium

dichloroisocyanurate (81%),
(N◦ CAS 2893-78-9), pH: 7.4

0.6%
30 min
Surface

Disinfection

Fungicidal,
virucidal,

sporicidal, and
bactericidal

D2 Spray
Didecyldimethylammonium
chloride 3 mg/g (N◦ CAS

7173-51-5), pH: 6 ± 0.5
Ready to use

30 min
Surface and medical
device disinfection

Fungicidal,
virucidal, and

bactericidal

D3 Liquid
concentrated solution

Hydrogen peroxide 255.9
mg/g (N◦ CAS 7722-84-1),
Peracetic acid 48 mg/g (N◦

CAS 79-21-0),
pH: 4

3%
15 min

Surface and instrument
disinfection

Fungicidal,
virucidal,

sporicidal, and
bactericidal

D4 Liquid
concentrated solution

Isopropyl alcohol (N◦ CAS
67-63-0), pH: 7.4 90% 20 min

Instrument disinfection
Virucidal and
bactericidal

D5 Liquid
concentrated solution

Glutaraldehyde (N◦ CAS
111-30-8), pH: 5.2 2.5% 30 min at 20 ◦C

Instrument disinfection

Fungicidal, virucidal,
sporicidal, and

bactericidal

D6 Granules

Peracetic acid 750 ppm (N◦

CAS 79-21-0),
Dimethylammonium

chloride 0.012% (N◦ CAS:
85409-22-9), pH: 9.3

0.5%
15 min

Cleaning and disinfection
of floors and surfaces

Fungicidal, virucidal,
sporicidal, and

bactericidal

D7 Liquid

Lauramphocarboxyglycinate,
Sodium lauryl sulfate,

Linoleamide DEA,
benzyl alcohol, sodium

benzoate, pH: 6.5

Ready to use 30 s
Hand washing No

4.5. Testing of Sporicidal Activity

The disinfectant tests were carried out as part of a suspension test following the guide-
lines of the European and French standard NF EN 14347 under clean conditions, without
the addition of organic loads, and according to the European and French standard NF EN
13704, in dirty conditions, with the presence of organic loads (3% bovine serum albumin
and 0.3% sheep erythrocytes) added to the test solution to mimic organic contamination in
the hospital environment [55].

The sporicidal activity was determined in triplicate. For each experiment, a standard
initial bacterial charge of 3.5 × 108 CFU/mL and 1 × 106 CFU/mL was used for clean and
dirty conditions, respectively, according to the European and French standards mentioned
above. After the contact time (Table 3), the suspensions were filtered using membrane fil-
tration (0.22 µm) and washed three times with phosphate-buffered saline (PBS) to eliminate
any effects of residual antimicrobial components.

After 48 h of incubation, the number of viable spores was determined using the
standard colony count method. Log10 reductions were calculated by comparing log10 CFU
recovered from disinfectant solutions to untreated controls (spores suspended in deionized
water). The sporicidal activity was defined as a reduction of 4 log10 under clean conditions
and 3 log10 under dirty conditions.

4.6. Enzyme Immunoassays and PCR for the Detection of P. sordellii Toxins

Enzymatic research on P. sordellii toxins was performed with the C. DIFF QUIK CHEK
COMPLETE assay kit (TECHLAB, Blacksburg, VA, USA). The only non-C. difficile micro-
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organisms detected by the C. DIFF QUIK CHEK COMPLETE® test were P. sordellii strains
that produce toxins TcsL and TcsH, which are homologous to toxins TcdA and TcdB, from
C. difficile, respectively [65]. Isolated colonies were suspended in the dilution buffer and
tested according to the manufacturer’s protocol; P. sordellii VPI 9048 strain was used as a
positive control.

For the molecular detection of P. sordellii lethal toxin (TcsL) and hemorrhagic toxin
(TcsH), two sets of primers were designed to amplify an internal fragment of 1221 bp size
and 1430 bp size, respectively (Table S1). The primers were validated and optimized using
DNA extracted from 288 bacterial strains, including 239 clostridia strains, 26 Gram-negative
and 23 Gram-positive strains, and two control strains—P. sordellii ATCC 9714 and P. sordellii
VPI 9048 (Table S2).

5. Conclusions

P. sordellii is capable of causing severe and often fatal infections. Our study is the first
to report a high prevalence of P. sordellii isolates in the hospital environment in Algeria.
This situation is probably due to a deficiency in the cleaning of surfaces and instruments,
leading to the massive presence of spores in our hospital. This situation needs to be
controlled quickly and significantly, since these strains may rapidly acquire the genes
of toxins and antibiotic resistance. We observed that the spores of P. sordellii showed
higher resistance to all products tested compared to spores of other clostridia species and
Bacillus spp. Our results reveal that sodium dichloroisocyanurate (0.6%), glutaraldehyde
(2.5%), and hydrogen peroxide/peracetic acid (3%) were the most effective and should
be prioritized for routine disinfection in the hospital. Our hospital’s current cleaning and
disinfection methods need to be optimized to effectively remove spores from caregivers’
hands, equipment, and surfaces.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11010038/s1, Supplementary Table S1: List of primers
designed and validated in this study. Supplementary Table S2: List of the bacterial strains tested for
the specificity of the designed PCR assay.
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