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Prostate cancer; Methods: A thorough literature review was performed using PubMed to identify recent studies
Multiparametric involving focal therapy for the treatment of localized prostate cancer.

magnetic resonance Results: In an effort to decrease the morbidity associated with prostate cancer treatment,
imaging; many urologists are turning to focal therapy as an alternative treatment option. With this
Imaging; approach, the cancer bearing portion of the prostate is targeted while leaving the benign tis-
Innovation; sue untouched. Multiparametric magnetic resonance imaging remains the gold standard for
Technology visualization during focal therapy, but new imaging modalities such as prostate specific mem-

brane antigen/positron emission tomography and contrast enhanced ultrasound are being
investigated. Furthermore, several biomarkers, such as prostate cancer antigen 3 and prostate
health index, are used in conjunction with imaging to improve risk stratification prior to focal
therapy. Lastly, there are several novel technologies such as nanoparticles and transurethral
devices that are under investigation for use in focal therapy.

Conclusion: Focal therapy is proving to be a promising option for the treatment of localized
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prostate cancer. However, further study is needed to determine the true efficacy of these

exciting new technologies.

© 2021 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Prostate cancer remains one of the most common non-
cutaneous malignancies in men [1]. With the introduction
of prostate-specific antigen (PSA) screening, there was a
great increase in the number of men diagnosed with pros-
tate cancer [2]. While this biomarker detected many
aggressive diseases and saved countless lives, it also
detected indolent disease [3]. As a result, thousands of
men each year were subject to aggressive interventions,
including biopsy, surgery or radiation, for a disease that was
unlikely to cause death or harm [4].

In an effort to address the morbidity associated with
prostate cancer treatment, active surveillance (AS) was
introduced [5]. During surveillance, favorable-risk disease
is closely monitored rather than being treated upon diag-
nosis with the goal of pursuing definitive intervention if
more aggressive disease manifests. While this has proven to
be an effective strategy for low-risk prostate cancer [6],
there is still controversy over whether patients with
intermediate-risk disease are candidates for AS. Previous
studies have shown these patients are not only more likely
to progress, but also progress faster [7]. In addition, AS is
not morbidity-free, as patients are subject to financial
strain, anxiety, and potential side effects of repeat biopsies
such as infection and bleeding [8,9].

As surgery may be too aggressive and AS is too conser-
vative, an opportunity for new interventions must be uti-
lized for further care. Focal therapy adopts a minimally to
non-invasive approach that targets known cancer area,
termed the "index lesion” [10]. This approach is based on
the premise that the index lesion drives the prostate cancer
biology [11], and most metastatic prostate cancers are
monoclonal in origin and derive from the index lesion [12].
Therefore, destroying the index lesion would lead to cancer
control. The advent of multiparametric magnetic reso-
nance imaging (mpMRI) facilitates urologists to perform
focal therapy, as the cornerstone of this approach relies
entirely on accurate localization and treatment of intra-
prostatic disease [13—17]. One of the most important at-
tributes of successful focal therapy is proper patient
selection, which again relies on pre-procedural diagnostic
evaluation with mpMRI, biopsies, and biomarkers.

There are several different focal therapy modalities
used in practice today [18]. Cryotherapy was the first focal
therapy modality introduced and induces apoptosis of
cancer cells through rapid freeze/thaw cycles [19]. The
next focal therapy modality to be studied was focal laser
ablation (FLA) which works by delivering thermal energy to
the tumor through small laser fibers, creating a homoge-
nous area of coagulative necrosis [20]. More recently,
another modality explored as a focal therapy option is high-

intensity focused ultrasound (HIFU), which utilizes a
transrectal probe to deliver multiple burst of ultrasound
energy to targeted regions with a goal of causing prostate
cancer tissue coagulation [21]. Focal therapy is not only
gaining popularity in Western medicine but is also proving
to be a viable treatment option for localized prostate
cancer in Asian countries [16]. As these countries continue
to increase their utilization of mpMRI and MRI-targeted bi-
opsies, it is likely that urologists will more likely to consider
focal therapy as a treatment option for localized disease.

In addition to focal therapy, there are a number of new
technologies that are actively being investigated to treat
prostate cancer [18,22].

2. Improved selection of candidacy for focal
therapy

2.1. Current imaging

In an attempt to minimize focal therapy treatment and
selection failure, new imaging technology is being utilized
and developed to help aid in appropriate patient selection.
As previously mentioned, accurate characterization of dis-
ease burden is imperative to treatment success. mpMRI has
proven to be a useful tool for patient selection of candi-
dates of focal therapy for several reasons. The adoption of
MRI-targeted biopsies has proven to detect more clinically
significant disease than the traditional systematic trans-
rectal ultrasound (TRUS) biopsy [23], with the combination
of modalities detecting the most clinically significant dis-
ease [24]. In a recent metanalysis, Sathianathen et al. [25]
found that mpMRI had a negative predictive value (NPV) of
90.8% for detecting Gleason grade group (GG) 2 disease,
and a NPV of 97.1% for detecting GG3 disease. This is
important to consider, as identification and treatment of
the index lesion is the driving force behind focal therapy.
Additionally, a study by Liu et al. [12] demonstrated that
most, if not all, metastatic prostate cancers are mono-
clonal in origin. Bott et al. [26] studied pathology results
from 100 consecutive radical prostatectomy specimens and
found that there were no cases where the index lesion was
found to have insignificant disease and secondary lesions
were found to have significant disease. In fact, a study on
135 patients showed that MRI/TRUS fusion biopsies accu-
rately (>90%) predicted location and primary Gleason grade
of Index tumor as correlated with radical prostatectomy
specimens [27]. Considering these data in conjunction with
the high NPV and ability of MRI-targeted biopsy to detect
clinically significant disease, expert consensus has been
reached that mpMRI should be the standard imaging tool to
select patients for focal therapy at this time [17].
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In addition to patient selection, mpMRI (combined with
prostate and cancer mapping biopsies) also assists urolo-
gist in determining the appropriate boundaries of treat-
ment for focal therapy [28,29]. While other ablation
templates (quadrant, “hockey stick”, subtotal and hemi-
ablation) do not require imaging to target a specific
focus of cancer, they do rely on MRI for identifying
anatomic boundaries in order to avoid unintended organ
damage within the pelvis [14].

2.2. Further improvements in imaging

While mpMRI remains the gold standard for focal therapy,
novel imaging modalities are being investigated that may
have a significant role in improving focal therapy treatment
in the future. There is some concern when relying solely on
MRI for disease localization as studies have shown this im-
aging modality may underestimate tumor volume [30].
Therefore, recent efforts aim to incorporate nuclear im-
aging into treatment planning for focal therapy for
improved disease localization. A recent study by Piert et al
[31]. aimed to evaluate how accurate mpMRI and '8F-
choline positron emission tomography and computed to-
mography (PET/CT) were in tumor segmentation in prostate
cancer, and found that the combination of the two imaging
modalities decreased the mean underestimated tumor
volume. %8Ga-labled prostate specific membrane antigen
(PSMA) is another nuclear label that is being investigated
for PET/CT. In a cohort of men with equivocal MRI results or
contraindication for mpMRI, Lopci et al [32]. found that
%8Ga-PSMA PET/CT was able to detect cancer in 55% of
patients. In addition, the uptake value was significantly
higher in GG2 cancers compared with GG1. While these
results are encouraging, further study is required to
determine the added benefit of PET/CT in treatment
planning.

Other new imaging modalities that may be useful in focal
therapy are 7 tesla (T) MRI and contrast-enhanced ultra-
sound (CEUS). Compared with 1.5 Tor 3 T MRI, 7 T MRI has
doubled the magnetic field strength and offered remark-
able spatial resolution [33]. One study demonstrated the
ability to complete imaging studies in less than 2 min [34].
However, increased magnet strength can also amplify
artefact during studies. CEUS utilizes microbubble ultra-
sound enhancing contrast to identify areas of tissue with
greater and longer signal enhancement, thereby identifying
regions of cancer [35,36]. In systematic review by van Hove
et al. [37], the investigators found that the addition of
CEUS to traditional systematic biopsy led to an absolute and
relative improvement in the detection of prostate cancer.
While these novel modalities have showed an improvement
in prostate imaging, more research needs to be done in this
area to determine their value in focal therapy patient se-
lection and treatment planning.

2.3. Role of biomarkers

While biomarkers are currently used to help guide treat-
ment in prostate cancer, their specific use in focal therapy
is yet to be determined. Traditionally, PSA is used to

determine prostate cancer prognosis, but currently several
other biomarkers exist that help refine the risk stratifica-
tion for prostate cancer. The prostate health index (PHI) is
a mathematical formula that combines total PSA, free PSA,
and [-2] proPSA to determine the probability of prostate
cancer in men with an elevated PSA [38]. Urinary bio-
markers also exist such as prostate cancer antigen 3 (PCA3)
(formerly known as differential display code [DDC] 3),
which is a prostate-specific mRNA that is found to be
overexpressed in 95% of prostate cancer tissue [39,40].
Sarcosine, an N-methyl derivative of the amino acid glycine
that can also be detected in urine, has be found to highly
elevated in patients with evidence of prostate cancer
progression and metastasis [41]. A third urinary biomarker,
SelectMDx ®, evaluates HOXC6 and DLX1 mRNA levels to
determine the risk clinically significant disease (>GG2)
prior to biopsy [42].

Several studies have been conducted to better under-
stand these biomarkers. Canitello et al. [43] evaluated
156 patients who underwent radical prostatectomy and
aimed to determine the ability of PHI and PCA3 to predict
adverse pathologic features. The investigators found that
the addition of PHI to their baseline model improved the
area under the receiver operating curve (AUC) for pre-
dicting tumor volume >0.5 mL by 7.9% (89.3% vs. 97.2%,
p<0.05), while PCA3 did not. For patients with GG1 dis-
ease, PHI also showed to improve the AUCs for predicting
upgrading to > GG2 on final pathology (AUC:83.1 vs. 89.0).
Despite not being able to predict tumor volume and GG on
final pathology, PCA3 has shown to be useful in predicting
multifocality of disease [44]. In another study comparing
the value of PCA3, PHI, and Sarcosine, Ferro et al. [45]
evaluated 78 patients who underwent radical prostatec-
tomy after having biopsy-proven cancer. When comparing
the AUC of the biomarkers for predicting adverse pa-
thology, the investigators found that PHI was an accurate
predictor of high-stage, high-grade, and high-volume dis-
ease. Sarcosine demonstrated a comparable AUC for
predicting T3 stage, where PCA3 showed an inferior AUC
in all categories. PHI and PCA3 have also been tested in AS
populations. When retrospectively analyzing 188 patients
who underwent radical prostatectomy despite being
eligible for AS according to Epstein [46] or Prostate Cancer
Research International: Active Surveillance (PRIAS)
criteria [47], Canitello et al. [48] found that PHI out-
performed PCA3 in predicting clinically insignificant
disease.

SelectMDx ® has also shown great promise in improving
the prostate cancer pathway. In a study evaluating the
test’s efficacy as a triage tool prior to biopsy, Van Neste
et al. [42] found that SelectMDx had a 98% negative pre-
dictive value for predicting >GG2 on biopsy. When
SelectMDx ® is used to select against biopsy in patients with
a low-risk of clinically significant disease, Govers et al. [49]
found that this biomarker may reduce healthcare costs
while improving long-term quality-adjusted life years.

The results from these studies may have important im-
plications for focal therapy in the future. Having additional
tests to confirm tumor volume, GG and multifocality prior
to focal therapy will help guide urologists and patients in
decision-making and management strategies prior to
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treatment. Using these tools in tandem with imaging will
improve patient selection for focal therapy.

3. New technology

3.1. Gold-silica nanoshells (GSNs)

Currently, nanoparticle technology is in the spotlight for
various cancer treatments, however recently it has come to
the forefront of focal therapy treatment of prostate can-
cer. “Nanoparticles” can capture light intensity in a process
known as collective electronic excitation [50]. The nano-
particles are composed of a gold shell surrounding a silica
core and long wavelengths of light are absorbed and
focused in shorter wavelengths resulting in stronger energy
currents that are aimed directly at tumor tissue [50]. For
prostate cancer, the utility for this therapy is the sparing of
surrounding tissue with focal therapy due to its potential to
provide a conformal ablation restricted to where cancer is
present and where nanoparticles would aggregate based on
perfusion characteristics of the tumor. The relatively poor
deposition of nanoparticles in non-target tissue can avoid
thermal ablation in these areas consequently preserving
erectile function (neurovascular bundle) and urinary in-
continence (external urethral sphincter).

After success with animal models [51], recent studies
cited the feasibility of nanoparticles for the treatment of
prostate cancer in humans. In a study conducted by Rasti-
nehad and colleagues [50], 15 men who were diagnosed
with low- or intermediate-risk prostate cancer underwent
treatment of GSN infusion and high-precision laser ablation.
At 12 months follow-up, all patients had evidence of
coagulative necrosis and 88% (14/16) of individuals were
not found to have residual cancer on biopsy. Although this
study demonstrated promising results on repeat biopsy,
further long-term follow-up is necessary to ensure disease-
free survival.

3.2. Transurethral ultrasound ablation (TULSA)

Another novel therapy developed for the treatment of
prostate cancer is the magnetic resonance imaging guided
transurethral ultrasound ablation (MRI-guided TULSA). With
this treatment, therapeutic ultrasound is delivered to the
gland through the urethra [52]. This leads to ablation of
prostatic tissue for both benign and malignant tissue by
thermal coagulation. This approach serves to give a real-
time quantitative thermometry image to inform feedback
control on the ultrasound as well as localizing the prostate
cancer with higher accuracy [53]. With this high level of
spatial precision, healthy prostatic tissue could be spared
of unnecessary ablation, resulting in less morbidity. It can
overcome some limitations of treatment distance during
transrectal high intensity focused ultrasound ablation of
anterior cancers.

There have been several animal trials conducted with
TULSA in order to better understand its efficacy. Partanen
et al. [54] treated three canines using a prototype of the
MRI-guided TULSA system. Upon pathological review, the
investigators found that the lesions treated with TULSA
were nonviable. Another animal study demonstrated that a

catheter-based approach may improve accuracy due to a
modified device curvature, temperature sensitivity, and
rate of ablation [55].

This treatment approach has been tested in several
phase | clinical trials. In one trial, 21 men were treated
with TULSA and the investigators found that the mean
treatment time of the whole gland ablation around the
capsule was 36 min [56]. After one-month follow-up, the
median PSA decreased by 87% (5.8 ng/mL vs. 0.8 ng/mL),
total cancer core length on biopsy was reduced by 61%. In
another study, Bonekamp et al. [57] found that after 12
months follow-up, the prostate volume was reduced by
88.8% when compared with baseline (43.0 mL vs. 4.8 mL).
Upon imaging of the prostate, a contrast-enhanced MRI
non-perfused volume showed only 64% of the ablation site,
as opposed to 88% when the authors utilized the delayed
thermal ablation volumes. While these data are encour-
aging, further studies in humans with longer follow-up are
needed to better understand the oncologic outcomes of
TULSA.

3.3. Bipolar radiofrequency ablation (RFA)

RFA is another modality that recently used and tested for
focal therapy of prostate cancer. The RFA utilizes radio
waves to perform thermal ablation [58]. With this treat-
ment, medium to high frequency currents create frictional
heating between ions through kinetic energy, with target
treatment temperature of 50°C as this is when radio waves
start to destroy tissue through cell membrane damage and
protein denaturation [59]. In most procedures, this is per-
formed in a urinary catheter with a monopolar needle or
bipolar needles to ablate the tumor.

There have been several animal studies demonstrating
the efficacy of RFA for prostate cancer [59,60], with the
first human study being completed in 1998 [61]. Aydin
et al. [62] recently published their results from a pilot
study of 10 men who underwent bipolar RFA for the
treatment of their prostate cancer. All patients had T1c
disease with Gleason score <7. After 6 months follow-up,
only one patient was noted to have Grade 3 gross hema-
turia, and two out of four patients with baseline healthy
sexual function were noted to have erectile dysfunction
following treatment. No patients reported incontinence or
any episodes of urinary infection. While this study showed
the feasibility and safety of bipolar RFA, there is a great
need for oncologic outcomes to better understand if this
modality can successfully treat prostate cancer.

3.4. Targeted cell-perforating agents

Topsalysin is a prodrug that is targeted for cancer therapy.
It is a modified form proaerolysin which has a prostate
specific protease cleavage site. When it is injected into the
prostate, topsalysin has a delayed effect as it causes the
production of aerolysin which then oligomerized to form
heptamers that can form large membrane channels and
induce lysis of PSA expressing prostate cells [63]. Its us-
ability and its selective nature of therapeutic effect make
it a ideal candidate to cause precise disruption of mem-
brane integrity of cancerous cells.
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Currently, topsalysin is in phase Il trials and has shown
promise in their phase | and phase Il studies (NCT02499848).
The greatest limitation to a PSA-based approach is that
there is an androgen component that needs to be moni-
tored since androgen decrease is seen in topsalysin
administration in a short-term phase. This limits the acti-
vation of topsalysin. Additionally, even and predictable
distribution of local injections in the prostate can be a
challenge, though the prospect of a tissue-specific
approach has remarkable potential (Table 1).

3.5. Microwave therapy

Microwave coagulation therapy is a modality that has had
success with kidney and liver cancer ablation [64], but is
still in preliminary testing for prostate cancer. Under MRI-
guidance, needles are placed in the gland and microwave
activation amplifies heat onto a specific site. The micro-
wave is set to 30 W or 60 W and the irradiation takes place
for 30 s, causing destruction of malignant tissue [65].
Preliminary results of the microwave approach have
shown promise. In 2019, Yamada et al. [65] open a phase |
clinical trial investigating microwave therapy, with a
target enrollment of five participants. Follow-up visits are
scheduled 1 week, 1 month, 3 months and 6 months
following treatment to measure PSA levels. mpMRI will be
performed at 6-month follow-up, with targeted biopsy if
there is demonstrated disease persistence or recurrence
on imaging. This treatment modality has had success in
treating benign prostate hyperplasia (BPH) [66],

suggesting that microwave therapy successfully destroys
prostatic tissue.

3.6. Focal radiation therapy

Finally, focal radiation therapy is a new method for
treatment of prostate cancer. With the overall goal of
prostate cancer procedures to have the endpoint of
retaining prostatic and erectile function, focal therapy
provides the ability for the prostate to have a specific dose
of radiation to predetermined zones to isolate cancer
therapy [67]. While initially treating only peripheral zone
tumors [68], there is a renewed interest in focal treatment
using low-dose rate brachytherapy, high-dose rate
brachytherapy, and stereotactic body radiation therapy
approaches [69].

Currently, there are a few studies looking into the
feasibility of focal therapy with different radiation doses,
with the focus primarily on workflow and how doses will
target only the prostate without affecting other organs.
Fischbach et al. [70] has been currently working on this
workflow with nine patients treated so far. Their current
findings showed that mean PSA decreased from 8.8 ng/mL
to 1.7 ng/mL with a 34-min intervention time. No pa-
tients demonstrated signs of infection and no residual
prostate cancer was detected in the treated region on
follow-up. As this approach to treatment is still in the
novel stage, further study is required to determine how
effective focal radiation will be for the treatment of
prostate cancer.

Table 1 Key studies of various novel technologies that are being investigated as potential treatments for prostate cancer.
Study Modality Number of Outcome Side effect
patients
Rastinehad et al., 2019 [50] Gold silica 15 -At 12 months follow-up, 100% of None reported
nano shells patients had evidence of

coagulative necrosis in tumor

and 14/16 patients had no cancer

on biopsy.

Chopra et al., 2012 [52] TULSA 8 -Treatment resulted in a temperature None reported
uncertainty was less than 2°C in all patients.

Chin et al., 2016 [56] TULSA 30 -Reduction of median PSA to 0.8 ng/mL Hematuria, UTI, acute
at 12 months with a 61% reduction in urinary retention, and
cancer length in positive biopsies. epididymitis

Bonekamp et al., 2019 [57] TULSA 30 -Median prostate volume reduction was None reported

88.8% which was best seen by delayed
thermal ablation volume.

Zlotta et al., 1998 [61] Bipolar RFA 15

-All patients showed evidence of

None reported

coagulative necrosis with PSA
becoming undetectable.

Ahmed 2009 [10] Topsalysin 37

-10/37 patients saw clinically significant

None reported

response to the first dose and 15 patients
showed a partial response.

Yamada et al., 2019 [65] Microwave 5

-80% of the subjects had a multifocal

None reported

disease when ablation was performed;
study is ongoing.

PSA, prostate-specific antigen; RFA, radiofrequency ablation; TULSA, transurethral ultrasound ablation; UTI, urinary tract infection.
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3.7. Comparison with current focal therapy
modalities and traditional whole gland treatment

With regards to oncologic control, GSNs have shown similar
efficacy when compared with current focal therapy
modalities. After 12 months follow-up, Rastinehad et al.
[50] reported that 88% of patients were found to have no
cancer on biopsy after treatment with GSNs. These
outcomes are comparable to a recent FLA study by
Walser et al. [71] which reported that 83% did not
require additional treatment for their cancer 12 months
after focal therapy. This is also similar to results from a
pooled analysis by Albisinni et al. [72] which found an 87%
negative biopsy rate at 12 months following treatment with
HIFU. In the first United States series investigating the use
of HIFU exclusively for focal therapy, Abreu et al. [73]
found a 2-year radical treatment free survival of 91%. In a
Chinese study investigating the efficacy of cryotherapy,
Lian et al. [74] reported a 22% positive biopsy rate at 6—12
months following treatment. It is important to note that
the other new technologies are in the preliminary stages of
investigation and therefore oncologic data are limited at
this time. The urology community will be interested to see
how these new technologies develop and how effective
they will be at treating localized prostate cancer.

With regards to morbidity, both nanoparticles and focal
radiation have proven to be safe as no side effects have
been reported in early studies [50,70]. This is comparable
to FLA where recent studies have shown that patients
experienced no significant changes to their sexual or uri-
nary function [71,75]. RFA has shown to cause hematuria as
well as erectile dysfunction following treatment [62].
Erectile dysfunction is also associated with both cryo-
therapy and HIFU. After initial treatment of localized
prostate cancer, Lian et al. [74] reported a potency pres-
ervation rate of 77% in their series. In a feasibility study
exploring the use of HIFU in Japan, Shoji et al. [76] re-
ported that only 37.5% (6/16) of patients retained erectile
function at 24 months following urethral sparing HIFU. In
addition, the investigators reported that 93.3% of patients
did not develop a urethral stricture following treatment
with HIFU. Incontinence is relatively uncommon but can be
seen in patients treated with HIFU [18]. In a pooled anal-
ysis of patients treated with either focal of hemiablative
HIFU for localized prostate cancer, Albisinni and colleagues
[72] found that continence rates ranged from 91% to 100%,
but the definition of continence was not homogenous
across studies.

4. Conclusion

The literature surrounding the treatment of prostate can-
cer is rapidly evolving. There has been a push to explore
more conservative treatment options for patients with low-
to intermediate-risk disease in an effort to avoid the mor-
bidities associated with whole gland treatment. The
incorporation of mpMRI into the diagnostic pathway facili-
tated the advancement of focal therapy and allowed for
the exploration of novel approaches. The addition of nu-
clear imaging to mpMRI may improve tumor localization,
allowing for more accurate focal therapy. Biomarkers can

be used to assist and augment patient selection for focal
therapy. Lastly, several novel technologies exist that are
being actively explored and tested as treatment options for
prostate cancer. While many of these technologies have
shown encouraging results, further studies are needed to
better understand their safety and efficacy in prostate
cancer treatment.
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