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Abstract: With the popularity of portable positioning devices, crowd-sourced trajectory data have
attracted widespread attention, and led to many research breakthroughs in the field of road network
extraction. However, it is still a challenging task to detect the road networks of old downtown areas
with complex network layouts from high noise, low frequency, and uneven distribution trajectories.
Therefore, this paper focuses on the old downtown area and provides a novel intersection-first
approach to generate road networks based on low quality, crowd-sourced vehicle trajectories. For
intersection detection, virtual representative points with distance constraints are detected, and the
clustering by fast search and find of density peaks (CFDP) algorithm is introduced to overcome low
frequency features of trajectories, and improve the positioning accuracy of intersections. For link
extraction, an identification strategy based on the Delaunay triangulation network is developed to
quickly filter out false links between large-scale intersections. In order to alleviate the curse of sparse
and uneven data distribution, an adaptive link-fitting scheme, considering feature differences, is
further designed to derive link centerlines. The experiment results show that the method proposed
in this paper preforms remarkably better in both intersection detection and road network generation
for old downtown areas.

Keywords: crowd-sourced vehicle trajectories; old downtown areas; intersection extraction; link
identification; Delaunay triangulation network

1. Introduction

Road networks are of great significance to urban development and for traveling. How
to obtain road information for reasonable planning and resource allocation has always
been an economic issue for national economies and people’s livelihoods [1]. With the
development of surveying, mapping, communications, computers, and other technologies,
we can infer road networks based on various data sources, such as crowd-sourced vehicle
trajectories [2–5], laser point clouds [6,7], remote sensing images [8,9], aerial images [10–12],
OpenStreetMap [13–15], etc. Among these data sources, crowd-sourced trajectories have
become mainstream data sources of generating road information, and have triggered a
large amount of research on road extraction in the past few years, focusing on prominent
features, such as wide coverage, high update frequency, and low acquisition cost [16].

However, some challenges still exist in extracting road elements for old downtown
areas, based on crowd-sourced vehicle trajectories. On the one hand, old downtown
areas has a complicated road network structure, making it the most difficult area for road
network extraction, which is mainly reflected in the following two aspects:
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• The distance between road intersections/road segments is narrow (Figure 1b). Compared
with other regions, old downtown areas has high-density buildings and people. In order
to ensure good traffic capacity, old downtown areas has been renovated many times and
the roads are much denser.

• The road network of old downtown areas is mixed with primary and secondary roads.
The main roads in old downtown areas form the basic road network frameworks, with
branch roads scattered throughout. However, other areas (Figure 1b) are still under
development, and the roads are relatively wide, with little difference in road grades.
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Figure 1. The road network example. (a) Trajectory distribution in Hankou old downtown areas
(red line is a single trajectory); (b) remote sensing images of Hankou old downtown areas and new
downtown areas in Jiangxia.

On the other hand, the quality of the vehicle trajectories in the old downtown areas is
relatively low and the characteristics of road networks in old downtown areas form unique
trajectory distributions, which affect the effective extraction of road networks. It can be
reflected in the following three aspects:

• The low accuracy of the vehicle receiving equipment and interference from road
surroundings to Global Positioning System GPS) signals has caused serious noise
for crowd-sourced vehicle trajectories [17], which induce spatial uncertainties and
increase the difficulty of knowledge mining (Figure 1a).

• Crowd-sourced vehicle trajectories are usually sparsely sampled (the red track in
Figure 1a), and the trajectories of some roads are densely distributed [18]. Therefore,
adjacent intersections or road segments are difficult to distinguish.

• The mixture of trunk roads and branches in old downtown areas directly leads to the
over concentration of traffic flow on the main roads and fewer trajectory points on
the secondary road [19], which increases the difficulty of extracting the complete road
network (yellow district in Figure 1a).

Due to the challenges above, the existing methods do not work well when using
crowd-source trajectories to extract roads in old downtown areas. Cao and Krumm [20]
cannot effectively fuse road segments to form the road network, while, Edelkamp and
Schrödl [21] can only detect cluster points, as shown in Figure 2a,b. The intersection linking
method proposed by Karagiorgou and Pfoser [22] also does not work well and takes
more than 1 week to generate results based on our experimental data. Even if the raster
method proposed by Davies [23] can form the road network, the adjacent road segments in
old downtown areas cannot be effectively distinguished, and road segments around the
intersections are deformed, as shown in Figure 2c. Furthermore, raster methods produce
many burrs and affect the connectivity of the road network.
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Figure 2. Extraction results of existing methods for old downtown areas. (a) The method of Cao; (b) the method of
Edelkamp; (c) the method of Davies.

To this end, this paper adopts a novel intersection priority strategy to address the
aforementioned challenges to automatically generate a road network of old downtown
areas, based on crowd-sourced big trajectory data. First, intersections are extracted by
clustering virtual representative points, and then the different category link fitting methods
are used to infer road segments based on the guidance information of intersections, so as
to construct the road network of old downtown areas in a divide and conquer manner. The
main contributions are as follows:

• Virtual representative points, considering distance constraints, were designed to
eliminate the influence of curve segments and noise points. On this basis, the clustering
by fast search and find of density peaks (CFDP) algorithm was introduced to detect
intersections, which overcomes the sparseness of trajectory sampling and ensures the
accuracy of intersection positioning.

• A corresponding strategy of links identification based on the Delaunay triangulation
network was established according to characteristics of road structure and trajectory
distribution, which avoids the calculation of redundant links and guarantees the
generation of more realistic structures.

• An adaptive link-fitting scheme, considering feature differences, was designed to ef-
fectively alleviate the curse of sparse and uneven distribution and ensure the precision
of the extraction results. In addition, a new method based on piece-wise link fitting,
focusing on sparse GPS road segments, was proposed.

2. Related Work

The extraction of road network for old downtown areas is of great significance and
directly affects the quality of urban construction and development. However, the complex
structure of road network in old downtown areas and the low quality of the crowd-sourced
trajectories have brought a series of challenges for road network extraction [24]. Therefore,
it is necessary to make a great contribution to extracting geometric (or attribute information)
in old downtown areas, based on crowd-sourced trajectories, automatically.

At present, an inferring road network based on crowd-sourced trajectory data is a hot
spot, and some researchers have completed several seminal works, which can be divided
into incremental methods [25–27], clustering methods [28–30], raster methods [31,32], and
intersection-link methods [33–35]. Incremental methods conform to the law of human
cognition, continuously add new trajectory lines to merge with the previous generated
lines to form a road network, but cannot optimize the abnormal trajectory of low-frequency
trajectory data, and are sensitive to noise [36]. Clustering methods mainly detect road
feature points or clusters to infer road networks. Raster methods extract road centerlines
by processing the raster image converted from the original GPS trajectories. These two
methods can effectively solve the low frequency problem, but cannot distinguish two roads
that are close in space. In addition, the three methods above cannot guarantee the position
of road intersections leading to generation of many unrealistic structures that are distorted
near intersections, and cannot infer the road segments in low-grade roads or sub-district
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roads with sparse trajectories [37]. In sum, the three methods are not available for old
downtown areas to extract road networks directly based on crowd-sourced trajectories.

Intersection-link methods detect road intersections first based on density distribu-
tion of trajectory sampling points and their implicit semantic features [15,38], trajectory
point direction, speed, and their implicit dynamic features [17,39], and then connect these
intersections to form the road network. However, current research mainly focuses on inter-
section extraction, and seldom conduct further road network generation [40]. Moreover,
most road generation methods are based on high-frequency trajectories [41,42]. Recently,
a challenge piqued the interest of some researchers, and several new solutions were pro-
posed [43–45] to calculate the road segments. However, this challenge was also based on
a high-quality trajectory date. Thus, intersection-link methods mentioned above are also
not available for road network generation of old downtown areas from crowd-sourced
trajectory data.

In our previous work, we designed intersection-priority urban road network gen-
eration technology from crowd-sourced trajectory data, which combines mathematical
morphology processing and CFDP. However, the features for intersection and road extrac-
tion are more suitable for dense areas. Considering the importance of road intersections,
a more effective method for road network generation based on intersection extraction
results, which consider low-frequency characteristic of GPS traces and the knowledge of
old downtown areas road network surroundings, has been developed.

3. Road Network Generation Method

Due to the road characteristics of old downtown areas, in order to ensure that the road
extraction results near intersections are not distorted, we adopt an intersection-link scheme
to infer the road network of old downtown areas based on the analysis above. Unlike
other approaches of calculating links directly after intersection detection, our method first
identifies links and then creates road segments, which can make road extraction faster and
more precise. The corresponding road information extraction scheme for old downtown
areas, including three key parts, as shown in Figure 3, are:

• Road intersection extraction. In order to obtain more accurate road intersections, we
extracted representative points by limiting the distance of turning point pairs, then
performed Kernel Density Estimation (KDE) for data smoothing, and finally extracted
the road intersections by the CFDP algorithm.

• Link identification. Delaunay triangulation network was constructed, and correspond-
ing judgment criteria were proposed to identify links based on trajectory distribution
and road structure features. We also fused the road extraction results based on the
morphology method [1] to optimize true link identification.

• Targeted link fitting. Based on the above process, for different types of links, three
different fitting methods were used to infer road segments. Straight line fitting and
optimizing result fitting were used for dense GPS road segments, and a new piece-wise
fitting method was proposed for sparse GPS road segments to effectively alleviate the
curse of trajectory data sparse and uneven distribution, which can ensure the integrity
of the extraction results.

3.1. Intersection Detection Based on CFDP with Representative Points

Road intersections play a significant role in the road network connection. Inspired by
the phenomenon that vehicle-heading directions will change directly (more than 45◦) when
a turn process is completed at the road intersections, Wu [46] extracts converging points
(intersection points of turning point vectors, as shown in Figure 4a,b) and detects road
intersections based on improved X-means algorithm. However, this algorithm requires
more parameters, and the intersection positioning accuracy is not high. Furthermore, with
the car moving in the curve roads, turning point pairs with long distance will yield many
converging points away from the road, which will seriously affect true location detection
of road intersections (green points), as shown in Figure 4b. Thus, distance of turning
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point pairs can be limited and eliminate the influence of curved road sections. The road
intersection results (green points) of distance limited are better than non-distance limited
as shown in Figure 4c. Distance limit threshold can be set to 200 m, which has a higher
frequency in the distance statistics of turning point pairs (Figure 4d).
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According to Figure 4c, except concentrated points, there are some discrete points
(noise points) distributing around road intersections, which may also result in the detection
results deviating their true locations. Therefore, KDE was used for data smoothing, as shown
in Figure 4e. Setting appropriate threshold K to extract high-density cells and detecting road
intersections by CFDP algorithm can guarantee the location precision of road intersections
again. The Kernel density estimator at point x can be shown in Equation (1):

∧
f (x) =

3
mh2

m

∑
i=1

K(
1
h
(x− xi)) (1)

where m is the number of neighbor cells, xi is the center point of the i-th cell, h is the
bandwidth, and K(x) is the kernel function adopted in this work, as shown in Equation (2):

K(x) =

{
3π−1(1− XTX)

2, XTX < 1
0, otherwise

(2)

CFDP algorithm is used to detect road intersections thanks to its threshold settings
and stability of results [1]. In order to find density peaks, this algorithm needs to calculate
the local density and distance of cell points. Due to estimating density processing, high-
density cells have had the density attributes {ρi}N

i=1 and their distance attributes δqi can be
calculated based on Equation (3):

δqi =


min
qj
j < i

{dqiqj}, i ≥ 2

max
j≥2

(δqj), i = 1
(3)

where {qi}N
i=1 is the descending order of {ρi}N

i=1.
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Figure 4. Road intersections extraction. (a) Turning point vectors; (b) converging points; (c) extraction results of distance
limited; (d) distance statistics; (e) Kernel density; (f)The decision graph of δqi and ρi (the right picture is part of the
amplified result).

Setting appropriate distance threshold d and omitting the density threshold can obtain
more road intersections, which not only locate in high-density areas, but also low-density
areas. Therefore, according to the decision graph (Figure 4f); threshold d can be set to 20 m.

It must be mentioned that after the processing above, some false intersections still
exist in the extraction results. Pseudo intersections that fall outside the road will affect
subsequent extraction of road segments. Therefore, we collect trajectory points that fall into
the buffer of radius r1 and deleted those results whose count is less than the given threshold
c to eliminate the impact of this kind of false intersections. Other false intersections that
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land on the road and have two or fewer connected roads can be pruned based on the
following road network generation results.

For road intersection extraction, the experimental parameters include kernel density
threshold K, the bandwidth h, the cell size s, clustering distance threshold d, radius r1
and point number threshold c. The parameters of h, s, d, and r1 are easy to set. In order
to distinguish adjacent intersections, bandwidth h can be set as the minimum distance
between intersections in old downtown areas. Cell size s was the minimum width and
height of the study area divided by 250. Distance threshold d can be easy set according to
the decision graph. The parameter r1 is usually set as the minimum width of road in the
study area. The parameters K and c are set empirically. By default, c is set to 10 and K is set
to one fifth of the average density. These two parameters are difficult to set and require
further research.

3.2. Link Extraction Based on Delaunay Triangulation Network

After intersection detection, we can connect them to generate road network. For low
frequency of crowd-sourced trajectory data and narrow spacing between road segments of
old downtown areas, directly traversing the trajectory data to connect road intersections
will produce a large number of invalid sections and increase the calculation amount. As
a method of constructing topological relationship of data set, the Delaunay triangulation
network can reflect the similarity relationship between data objects well, and some links of
it are completely consistent with most road links. Therefore, we can first identify which
intersections have links based on the adjacency relationship of the Delaunay triangulation
network and some hidden rules, and then create road segments. However, some of these
links are located in dense trajectory areas, and some are located in sparse trajectory areas.
Moreover, some other links in density area cannot be constructed based on the Delaunay
triangulation network. Hence, for the above three type links, a targeted road centerline
identification, and fitting strategy considering feature differences was designed to infer
large-scale road segment by divide-and-conquer calculations. Compared with processing
all links formed by permutation and combination of intersections, our proposed method
can reduce redundancy and guarantee precise results.

3.2.1. Link Identification

Directly using the Delaunay triangulation network constructed by intersection results
for road true links identification will produce pseudo results around the edge of the study
area, which is mainly caused by peripheral long and narrow triangles. Therefore, we
detected triangles with two common sides, and then deleted those triangles that the angle
of two common sides is larger than a certain threshold T (by default, T = 135◦) through
iteration to construct the initial links identification network, as shown in Figure 5a. Based on
the above processing results, we first give the three type links definition, and then introduce
the corresponding identification schemes. The three type links are defined as follows.

Type I links: some links that can be constructed based on the Delaunay triangulation
network. They are located in dense trajectory areas and can represent the road links.

Type II links: some links that cannot be constructed based on the Delaunay triangulation
network. They are located in dense trajectory areas and can represent the road links.

Type III links: some links that can be constructed based on the Delaunay triangulation
network. They are located in sparse trajectory areas and can represent the road links.
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1. Type I links identification: according to observations, we found that true links often
contain more trajectory points around them compared with pseudo links. Therefore,
we proposed Criterion 1 to help identify true links. However, due to the dense
roads in old down town and the small distance between roads, some false links will
be identified. Therefore, considering road structure features that urban roads are
generally designed to be square and rarely involve triangular forms, and the minimum
reference intersection angle of two roads is generally set to 60◦ [34], Criterion 2 and
Criterion 3 were proposed to eliminate false links from candidate true links obtained
by Criterion 1. The specific criteria are set as follows:

• Criterion 1: assuming that Tr is the trajectory data set, L is the triangle edge.
We divided L into m segments. If there are n trajectory points for each divided
segments satisfy the conditions: dis(Pcenter, p) < a and |dir(P1, P2)-heading(p)|
< b or |dir(P2, P1)-heading(p)| < b, then edge L was set as candidate true link.
Where, p ∈ Tr, Pcenter is the center point of each segment, P1 and P2 are the start
and end point of each segment, dis and dir are the function of the Euclidean
distance and azimuth between two points, heading is the move angle of trajectory
point. Here, considering both time cost and results precision, we recommend
using the values m = 3, n = 5, a = 20 m, b = 30◦.

• Criterion 2: if three sides of a triangle are identified as the candidate true links
and at least one non-hypotenuse is not the hypotenuse of other triangles, the
bevel edge of this triangle is defined as a false link.
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• Criterion 3: if the candidate true link is a hanging edge, and the angle between
this edge and other true links is less than 60◦, it is a false link.

2. Type II links identification: Since Delaunay triangulation network meets the maximum
empty circle criteria, some true links between some intersections cannot be formed and
identified, as the yellow line shows in B district of Figure 5b. Furthermore, this paper
only constructs links based on road intersections; there will also have some missing
links in the edge region, as the yellow line shows in A district of Figure 5b. Therefore,
this paper integrates morphological methods [1] to optimize and supplement Type I
links identified by Criterion 1, Criterion 2, and Criterion 3, which can help eliminate
more false links by using other criteria and generate more precise road network.
Preliminary identification results after optimization are shown in Figure 5c. The
optimization steps are as follows:

• Extracting missing road segments. A flat-head buffer with radius of r2 (by
default, r2 = 50 m) was established based on candidate true links. Then, centerline
extracted by morphological method can be classified missing road segments (red
line) and matched lines (blue line), as shown in C district of Figure 5d.

• Repairing missing road segments. The short missing road segments were deleted
first, and then we match the missing road segments to the corresponding inter-
sections or end points of missing road segments by considering direction and
distance, as shown in D district of Figure 5d.

• Generating Type II links. The end points of repaired missing road segments were
connected to generate new true links.

3. Type III links identification: the above processing focuses on dense areas, but there
are still some true links, which are located in sparse areas and cannot be identified.
Therefore, based on road structure features above mentioned, we propose some other
criteria to identify Type III links from remaining links by removing false links. False
link identification criteria are as follows:

• Criterion 4: If two edges of a triangle are identified as true links, the third is
defined as false link.

• Criterion 5: if the angle of one link and one true link at the common intersection
is less than 60◦, the link is the false link.

• Criterion 6: If one side of a triangle is true link and one side is false link, and if
the last side is bevel edge, it must be false link.

3.2.2. Adaptive Link Fitting

Based on the above process, dense GPS road links can be easily identified by Criteria 1,
2, and 3, and optimization, while sparse GPS road links can be judged by Criteria 4, 5, and
6. Different road links have different visual features and form different fitting methods.

1. Type I links fitting: the straight-line type I link identified by Criteria 1, 2, and 3, which
coincides with road segments, can directly represent the centerlines of these road
segments, as shown in Figure 5c.

2. Type II links fitting: optimizing results can be used not only to eliminate false links,
but also to effectively supplement road segment recognition results. Therefore, type
II links identified by optimizing can also be fitted by optimizing results in turn, as
shown in Figure 5d.

3. Type III links fitting: type III links are located in sparse trajectory areas; it is difficult
to identify pure true links. Therefore, in order to guarantee correctness of road
generation results, we filtered type III links by judging whether there are sub-trajectory
points between their end points (road intersections) and proposed a piece-wise fitting
method to infer road centerlines for sparse GPS road segments.

For one trajectory T, if one sampling point pi is found within the buffer threshold d1
of intersection Ik and sampling point pj is found within the buffer threshold d2 of another
intersection Ij, the track segment (pi, pj) belongs to the section (Ik, Ij). Traverse all trajectory
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data, and calculate all track segments between Ik and Ij, sub-trajectory points can be
obtained: (Ik, Ij)~{p1, p2, p3, . . . , pn}.

The buffer threshold d1 and d2 are import parameters. If the thresholds are set too
small, many sub-trajectories cannot be extracted. If they are set too large, road extraction
results will include false road segments. Furthermore, the buffer threshold cannot be set to
the same value for uneven distribution of trajectory data. According to observation, the
scale of every intersection will not excess the distance of the shortest edge of the triangle
with intersections as the common vertex. With intersections as the center of the circle and
shortest edges as the radius, the scale range of each intersection can be well determined.
Therefore, d1 and d2 can be set as the scale radius of intersections Ik and Ij, as shown in
Figure 6a.
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In order to eliminate sub-tracks that pass through the intersection Ik and then pass
through other intersections for a long time to reach the intersection Ij, the following
restrictions in distance, direction, and time were given. Take the link calculation between
C1 and C2 in Figure 6b as an example, the limitations ensure that sub-trajectories between
C1 and C2 do not pass through C3, C4.

Distance limitation: the length of GPS road segments between two intersections is
generally not longer than its Euclidean distance between two intersections, which can be
represented based on Equation (4).

dis(Ik, p1) + ∑ dis(pi, pj) + dis(pn, Ij) ≤ K1D (4)

Direction limitation: the heading direction of the vehicle does not change too much
unless it turns at the intersections. Therefore, direction limitation (5, 6) is set to 60◦

according to the minimum intersection angle of two roads.

|dir(I1, I2)− heading(pi)| ≤ 60◦ (5)

|heading(p1)− heading(pn)| < 60◦ (6)

Time limitation: for vehicle, the time it takes to travel directly from the starting
point to the end point is generally less than the time it takes to reach the end point after
passing through another intersection. Thus, we also set the time limitation, which can be
represented based on Equation (7).

(v1 + vn)(tn − t1)/2 ≤ K2D (7)

where, K1 and K2 are the adjustment coefficient and generally set to 1.2 considering
the curved road segments, vi is the speed of trajectory point pi, ti is the time-stamp of
trajectory point pi, ∑ dis(pi, pj) is the length of sub-trajectories passing through adjacent
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intersection points Ik and Ij, 1 < I < j < n, D represents the Euclidean distance between two
intersection points.

The above sub-trajectory extraction results can be used, not only to determine whether
type III links is true, but also to further fit the road segments of corresponding true links.
Typically, road centerlines have higher point density and sub-trajectory points of Curved
road segments often deviate some distance from the line between two intersections, as
shown in Figure 7. Hence, we proposed piece-wise fitting method to create road segments.
Considering low sampling frequency, these sub-trajectory points from Ik to Ij or Ij to Ik are
all used for fitting road segments between Ik and Ij. More specifically, we divide the space
into M parts successively from the beginning to the end point in the vertical direction of the
line connecting two intersections. The corresponding sample Si is the max density point
that located in the bin. Then we connect the start intersection point, the max density points,
and the end intersection point into a line segment and adopt Douglas algorithm to simplify.
Here, M = |D/N| and the density can be calculated based on Equation (8):

ρi = ∑
j

χ(dij − dc) (8)

where χ(x) = 1 if (dij − dc) < 0 and χ(x) = 0 otherwise, and the distance threshold in
Douglas algorithm and the cutoff distance dc can be set as 20 m by default, N is the length
of the bin (by default, N = 15 m).

Sensors 2021, 21, x FOR PEER REVIEW 12 of 19 

 

 

density points, and the end intersection point into a line segment and adopt Douglas algo-

rithm to simplify. Here, M = |D/N| and the density can be calculated based on Equation (8): 

 
j

ciji dd )(
 

(8)

where 1)( x  if (
cij dd 

) < 0 and 0)( x  otherwise, and the distance threshold in 

Douglas algorithm and the cutoff distance dc can be set as 20 m by default, N is the length 

of the bin (by default, N = 15 m). 

   

(a) (b) (c) 

 
  

(d) (e) (f) 

Figure 7. Illustration of different segments fitting. (a,d) Space dividing (b,e) results extraction based on density sampling 

(c,f) segment creating based on Douglas algorithm. 

4. Experiments and Analysis 

4.1. Study Area and Data Sets 

In order to reflect our methods’ performance, two old urban areas of Wuhan (Hankou 

District and Hongshan District) with different road structure layouts were used for exper-

imental analysis, as shown in Figure 8a,b. The road network in Hankou District, which 

has a grid pattern distribution, is relatively regular. While the road network in Hongshan 

Square District, which is distributed in a circular radial pattern, exist much more complex 

situation. These two research areas not only have many old buildings, but also have many 

new buildings, which cause small distance between road intersections and a lot of noise 

in trajectories (Figure 8c,d). They are representative in the analysis and mining of road 

information. Moreover, [47] believes that when the collection period exceeds 7 days, the 

coverage of taxi data on the roads in Wuhan gradually stabilizes. Therefore, for the two 

research areas in Wuhan, we test our method based on the selecting 7-day taxi trajectory 

data from 29 May to 4 June, 2014. The sampling frequency of two data sets are mainly 

concentrated in 30–50 (s). Table 1 lists the basic statistics of these two data sets. 

Figure 7. Illustration of different segments fitting. (a,d) Space dividing (b,e) results extraction based on density sampling
(c,f) segment creating based on Douglas algorithm.

4. Experiments and Analysis
4.1. Study Area and Data Sets

In order to reflect our methods’ performance, two old urban areas of Wuhan (Hankou
District and Hongshan District) with different road structure layouts were used for exper-
imental analysis, as shown in Figure 8a,b. The road network in Hankou District, which
has a grid pattern distribution, is relatively regular. While the road network in Hongshan
Square District, which is distributed in a circular radial pattern, exist much more complex
situation. These two research areas not only have many old buildings, but also have many
new buildings, which cause small distance between road intersections and a lot of noise
in trajectories (Figure 8c,d). They are representative in the analysis and mining of road
information. Moreover, [47] believes that when the collection period exceeds 7 days, the
coverage of taxi data on the roads in Wuhan gradually stabilizes. Therefore, for the two
research areas in Wuhan, we test our method based on the selecting 7-day taxi trajectory
data from 29 May to 4 June, 2014. The sampling frequency of two data sets are mainly
concentrated in 30–50 (s). Table 1 lists the basic statistics of these two data sets.
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sensing image for Wuhan2 in Hongshan District; (c) trajectory dataset for Wuhan1 in Hankou District;
(d) trajectory dataset for Wuhan2 in Hongshan District.

Table 1. Statistics of these two data sets.

Data Set Trajectory Points Average Sampling Rate (s) Area (km2) Average Speed (km/h)

Data set 1 800,868 >45 4.2 × 2.8 31.6
Data set 2 1,343,409 >45 5.7 × 3.9 33.2

4.2. Results Evaluation and Analysis

Outlier points may affect the experimental results significantly. However, in order
to extract more road intersections and road network, the process of road intersection
extraction and road generation of our method only use the trajectories that have been
removed the duplicate record points and some data whose heading is 0 and velocity is 0 or
velocity is more than 100 km/h. For Hankou district, there are a total of 123 intersections,
we initially extracted 217, within 50 m matching distance, the true value reaches 120. For
Hongshan district, there are a total of 168 intersections, we initially extracted 289, within
50 m matching distance, the true value reaches 138. In Hankou District, some pseudo-
intersections fall outside the road and need to be eliminated. To further ensure the accuracy
of intersection extraction, false intersections connected by only two roads are also pruned
based on road network extraction results. In this section, we compare our method with an
incremental method of Ahmed [25], an intersection linking method of Karagiorgou [22]
and a raster method of Davies [23]. Implementations of these three algorithms are provided
by Ahmed [48].

4.2.1. Visual Inspection

Obviously, our method obtained good results in both research regions (Figure 9), even
for the Hongshan District, with more complex roads. The road segments near the intersec-
tions rarely present distortion and deformation. Road intersections or segments, which
have quite sparse distribution of trajectories or locate close in space, are also identified. For
the Wuhan dataset, with a lot of noise, the good results show that the method in this paper
has anti-noise property, and can be applicable to the extraction of road networks in the old
downtown areas.
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method for Wuhan dataset 2; (c) results of Davies’ method for Wuhan dataset 1; (d) results of Davies’ method for Wuhan
dataset 2; (e) results of Ahmed’s method for Wuhan dataset 1; (f) results of Ahmed’s method for Wuhan dataset 2; (g) results
of Karagiorgou’s method for Wuhan dataset1; (h) results of Karagiorgou’s method for Wuhan dataset 1.
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However, for Ahmed’s method, there are many errors in the extracted road segments.
Although Davies’ method has a good effect, it is difficult to apply to the low-density areas,
and the road results are also distorted and have many burrs. The method of Karagiorgou,
which is the intersection linking method, also cannot guarantee the correctness of road
intersections, and generates many false links. Compared with our method, these three
methods, which cannot extract more correct road intersections and segments, are not
suitable for low frequency and high noisy trajectory data in old downtown areas.

4.2.2. Quantitative Comparisons

We also made a quantitative comparative analysis of different road extraction methods,
and calculated Precision, Recall, F-score from two aspects of road extraction results and
intersection extraction results. For Wuhan dataset 1 and dataset 2, we downloaded Open-
StreetMap, and then selected roads that were traversed by one and more trajectory as the
ground-truth road networks. The indicator of Precision, Recall, F-score can be computed
utilizing Equations (9)–(11).

Precision =
matched
extracted

(9)

Recall =
matched

ground− truth
(10)

F− vaue =
2 ∗ precision ∗ recall

precision + recall
(11)

According to the method of Mariescu-Istodor [40], we converted the ground-truth
road network and extraction road network into cells, and then calculated the difference of
two sets. Our method always has the highest F-value in road extraction with the growing
of grid resolution (Figure 10). The Karagiorgou method has relatively good recall, but the
lowest precision, which means it generates many false road segments. Davies’ method has
higher precision than our method at the grid resolution of 50 m, which was mainly caused
by a large amount of burrs in extraction results of Davies. Most of these burrs are more than
40 m in length, as shown in Figure 9c,f. On the other hand, as the grid resolution increases,
many identified adjacent roads are merged together, which increases the recognition rate of
Davies’ method. Even though this method has a higher precision in 50 m grid resolution, it
still has low recall and many missing road segments. This is consistent with the analysis
results of visual inspection.

Although using different matching distances, our intersection extraction method also
performs well, and has high Precision, Recall, and F-score, as shown in Figure 11. This
suggests that the intersection location accuracy of other three method is not good; the
road segments extracted near intersections are distorted. That is why our method has
high precision in road extraction results. To some extent, this shows that the accuracy of
intersections affects the results of road network extraction.

According to the observation from Figure 11, when the matching distance excesses
40 m, Precision, Recall, F-score of our road intersection results are stable. Correspondingly,
all of the road evaluation indicators reach relatively large values at a grid resolution of
40 m, as shown in Figure 10. The distance between roads in the old downtown areas is
small. If the grid resolution is set too large, the road results will be merged and affect the
evaluation results. Here we set 40 m as the final comment searching scope. The comparison
result of different methods is listed in Table 2.
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Figure 10. Quantitative comparisons of road extraction. (a–c) Wuhan dataset 1; (d–f) Wuhan dataset 2.
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Figure 11. Quantitative comparisons of intersection extraction. (a–c) Wuhan dataset 1; (d–f) Wuhan dataset 2.

Table 2. Comparison of experimental results.

Dataset Method
Intersection Extraction Road Segment Extraction

Precision Recall F-Value Precision Recall F-Value

Dataset 1

Proposed 96.2% 81.3% 88.1% 75.6% 70.4% 72.9%
Davies 49.4% 32.5% 39.2% 69.5% 53.7% 60.6%
Ahmed 38.0% 15.4% 22.0% 66.8% 51.9% 58.4%

Karagiorgou 35.4% 50.4% 41.6% 56.1% 59.6% 57.8%

Dataset 2

Proposed 84.4% 70.8% 77.0% 78.5% 69.4% 73.7%
Davies 23.7% 15.9% 19.0% 61.5% 40.1% 48.6%
Ahmed 21.2% 13.1% 16.2% 55.0% 46.3% 50.3%

Karagiorgou 22.8% 32.1% 26.7% 49.5% 44.2% 46.7%
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5. Conclusions

The unique distribution characteristics of crowd-sourced trajectories and the complex
and diverse road layout increase the difficulty of road network extraction in old downtown
areas. Moreover, traditional road network extraction algorithms seldom consider structural
characteristics of the road network in old downtown areas. Therefore, our objection was
dedicated to generate a road network in old downtown areas, based on crowd-sourced tra-
jectories. First, we focused on the intersections, and then constructed a road network based
on the Delaunay triangulation network. During the process, the relative link identification
criteria based on trajectory distribution and road structure features were proposed. We
also fused the road extraction results of the morphology method to enhance the extraction
integrity. Finally, a targeted link fitting strategy was proposed to generate a road network.
The 7-day taxi trajectory data in Hankou and Hongshan district was used to test our
method. It does not have complex pre-processing, can effectively avoid bad results caused
by low quality data, and produce a relatively accurate and integral road network for old
downtown areas. In sum, this method provides a promising solution for enriching and
updating road networks for old downtown areas, and can be applied in navigable road
network construction, intelligent transportation systems, and city planning.

However, it still has some limitations. Due to the inherent problems of high noise, low
frequency, and low precision for experimental data, some road segments with extremely
sparse trajectories cannot be extracted, and some road segments with high noise are
incorrectly identified. In fact, these two defects listed above are essentially due to low data
quality and are difficult to be solved through single data source, which would orient a
future study, to fuse other sourced data, such as pedestrian trajectories and remote sensing
images, to further supplement true road segments and eliminate false road segments.
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