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Abstract: The tomato Sw-5b gene confers resistance to tomato spotted wilt virus (TSWV) and encodes
a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal Solanaceae-specific do-
main (SD). Although our understanding of how Sw-5b recognizes the viral NSm elicitor has increased
significantly, the process by which Sw-5b activates downstream defense signaling remains to be eluci-
dated. In this study, we used a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS)
system to investigate the roles of the SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1
genes in the Sw-5b-mediated signaling pathway. We found that chaperone SGT1 was required for Sw-
5b function, but co-chaperone RAR1 was not. Sw-5b-mediated immune signaling was independent of
both EDS1 and NDR1. Silencing NPR1, which is a central component in SA signaling, did not result
in TSWV systemic infection in Sw-5b-transgenic N. benthamiana plants. Helper NLR NRCs (NLRs
required for cell death) were required for Sw-5b-mediated systemic resistance to TSWV infection.
Suppression of NRC2/3/4 compromised the Sw-5b resistance. However, the helper NLRs ADR1 and
NRG1 may not participate in the Sw-5b signaling pathway. Silencing ADR1, NRG1, or both genes did
not affect Sw-5b-mediated resistance to TSWV. Our findings provide new insight into the requirement
for conserved key components in Sw-5b-mediated signaling pathways.

Keywords: tomato spotted wilt virus; Sw-5b; NLR receptor; plant innate immunity; defense signaling

1. Introduction

Plants have evolved different layers of defense against pathogen infection [1]. In the
first layer, plants use an extracellular pattern recognition receptor (PRR) to recognize a
pathogen-associated molecular pattern (PAMP) to trigger PAMP-triggered immunity (PTI).
In response, plant pathogens use multiple virulence effectors to suppress PTI. As a second
layer of defense, plants have evolved various intracellular nucleotide-binding leucine-rich
repeat (NLR) receptors to recognize these effectors and invoke effector-triggered immunity
(ETI). NLR proteins are the largest group of resistance genes in plants [2]. Plant NLRs
typically have a variable N-terminal domain: a Toll/interleukin-1 receptor (TIR) domain
or a coiled-coil (CC) domain, a central NB-ARC (nucleotide binding adaptor and APAF-1,
R proteins, and CED-4) domain, and a C-terminal leucine-rich repeat (LRR) domain [3,4].
Hereafter, NLRs with CC domains are referred to as CNLs, and NLRs with TIR domains
are referred to as TNLs. Effector-mediated NLR activation results in a robust defense
response that is typically associated with a hypersensitive response (HR) and constrains
pathogens at the site of infection [1,4–6]. However, our understanding of how NLRs activate
downstream resistance remains limited. To date, only a few common key downstream
immune-signaling components of NLR-mediated resistance have been identified.
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Tomato spotted wilt virus (TSWV, genus Orthotospovirus; family Tospoviridae) infects
more than 1000 different plants in at least 85 families [7] and is among the most destruc-
tive plant viruses [8–10], causing more than 1 billion USD in crop losses worldwide each
year [11]. The Sw-5b gene is the most effective resistance gene for controlling TSWV in
tomato [12–15]. Since it was introgressed from Peruvian tomato, Solanum peruvianum L.,
it has been used widely in tomato-breeding projects. Sw-5b encodes a protein belonging
to a CNL-type resistance gene. It specifically recognizes the movement protein NSm of
TSWV [16–18]. Sw-5b has also been found to confer broad-spectrum resistance against vari-
ous American-type tospoviruses by recognizing a highly conserved 21 amino-acid region
in NSm (NSm21) [19]. Sw-5b carries an extended N-terminal Solanaceae-specific domain
(SD) and develops a multilayered regulatory mechanism to control its autoinhibition and
activation [20]. For activation, Sw-5b uses a two-step recognition mechanism involving
both SD and the LRR domain in the detection of viral NSm [21]. This two-step recognition
increases the specificity of NSm recognition and also significantly enhances the sensitivity
of NSm detection. Although our understanding of how Sw-5b recognizes viral elicitor
NSm has increased significantly, the process by which Sw-5b activates downstream defense
signaling has yet to be elucidated.

SGT1 (suppressor of the G2 allele of skp1) has been found to be required for the
induction of the immunity mediated by many NLRs [22,23]. As a protein conserved
in eukaryotes, SGT1 functions in a variety of biological processes by interacting with
different protein complexes [24–26]. It regulates the protein accumulation levels of NLR
immune receptors [27] and participates in the nucleocytoplasmic distribution of tobacco
NLR protein N [28]. SGT1 is associated with RAR1, which is required for Mla12 resistance,
and heat-shock protein 90 (HSP90), forming a molecular chaperone complex that is required
for appropriate accumulation of NLR proteins [23]. Although SGT1 is required for the
establishment of the Sw-5b-mediated HR [29], the requirement for SGT1/RAR1/HSP90 in
Sw-5b-mediated induction of systemic resistance to TSWV has not been tested.

EDS1 (enhanced disease susceptibility 1) is a lipase-like protein that is needed for all
tested TNLs to activate downstream signaling. EDS1 is also necessary for some CNLs,
such as the CNL HRT and the CC R-protein RPW8 [30,31]. However, some CNLs, such
as RPS2, RPM1, and RPS5, require an alternate protein, NDR1 (non-race-specific disease
resistance 1), for immunity [32]. The requirement for EDS1/NDR1 in the Sw-5b/TSWV
resistance pathways has not yet been tested.

Salicylic acid (SA) plays an important role in many NLR-mediated resistance mecha-
nisms. In Arabidopsis, NPR1 (non-expresser of pathogenesis-related genes 1) is a central
component in SA signaling [33,34]. NPR1 was found to be a receptor of SA [35]. It controls
the transcription of approximately 90% of the SA-dependent genes in Arabidopsis [33,36–38].
NPR1 shuttles into the nucleus, where it interacts with TGA transcription factors, thereby
activating defense genes to establish plant immunity [39]. Tobacco NPR1 is required for
N-mediated resistance to tobacco mosaic virus (TMV) [37]. However, HRT-mediated resis-
tance to turnip crinkle virus (TCV) in Arabidopsis is independent of NPR1 [40]. The role of
NPR1 in the Sw-5b resistance pathway is not known.

Recently, many “sensor” NLR proteins have been found to require “helper” NLR pro-
teins to activate downstream immune signals [41,42]. Three types of “helper” NLR proteins
have been described in plants: the NRC (NB-LRR protein required for HR-associated cell
death) family, ADR1 (activated disease resistance 1) family, and NRG1 (N requirement
gene 1) family. All of these are CNL-type proteins [42,43]. The NRC family proteins
in tobacco and tomato are required for the induction of HR mediated by a variety of
NLRs [29,41,44]. Although NRC2/3/4 have been shown to be required for the induction of
HR mediated by Sw-5b [29], whether they are required for induction of systemic resistance
to TSWV remains to be elucidated. ADR1 family proteins that function downstream of
RPS4/RRS1, RPP2, SNC1, CHS1/SOC3, RPP4, and RPS2 are involved in both TNL- and
CNL-mediated immunity [45–48]. NRG1 was first identified in Nicotiana benthamiana L.
using virus-induced gene silencing (VIGS) and was found to be required for N-mediated
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resistance to TMV [49]. NRG1 is essential for Roq1, N, and RPP1-mediated HR and dis-
ease resistance [50]. Rysto-dependent extreme resistance to potato virus Y also requires
NRG1 [51]. NRG1 is likely a conserved key component of TNL-mediated immune sig-
naling pathways. The ADR1 and NRG1 gene families are function redundant, and their
N-terminal domains are related to RPW8-CC [46]. Disease susceptibility was enhanced in
an adr1 adr1-L1 adr1-L2 nrg1.1 nrg1.2 nrg1.3 sextuple helperless mutant in comparison to
adr1 triple and nrg1 triple mutants [47]. ADR1 and NRG1 were also found to be involved in
Rx2-mediated resistance to potato virus X (PVX) [46]. However, the requirement for ADR1
and NRG1 in Sw-5b/TSWV has not yet been tested.

In this study, we characterized the requirement for SGT1/RAR1, EDS1/NDR1, NPR1,
and NRC/ADR1/NRG1 genes in the Sw-5b-mediated immune signaling pathway using a
TRV-based virus induced gene silencing (VIGS) approach. We found that SGT1, but not
RAR1, was required for Sw-5b-mediated resistance. Sw-5b function was independent of
both EDS1 and NDR1. Suppression of NPR1 did not cause TSWV systemic infection in
Sw-5b-transgenic N. benthamiana plants. The helper NLRs NRC2/3/4, but not ADR1 and
NRG1, were required for Sw-5b-mediated systemic resistance to TSWV infection. These
findings provide new insights into the requirement for conserved components in the
Sw-5b-mediated signaling pathway.

2. Materials and Methods
2.1. Plasmid Construction

The cDNA fragments corresponding to Sw-5b (AY007366.1), NbHSP90 (Niben101Scf151
66g03015.1), NbRAR1 (LC314308.1), NbEDS1 (Niben101Scf06720g01024.1), NbNDR1
(AY438029.1), NbNPR1 (Niben101Scf14780g01001.1), NbNRC2a (KT936525.1), NbNRC2b
(KT936526.1), NbNRC3 (MK692736.1), NbNRC4 (MK692737.1), NbNRG1 (DQ054580.1), and
NbADR1 (Niben101Scf02422g02015.1) were amplified by polymerase chain reaction (PCR)
using PrimeSTAR High-Fidelity DNA Polymerase (TaKaRa, Dalian, China) and cloned
into pTRV2 [37]. For constructing TRV-NbNRC2/3/4 and TRV-NbNRG1/NbADR1, gene frag-
ments were fused by overlap PCR. The pTRV2-NbPDS, pTRV2-NbSGT1, and pTRV2-GUS
vectors have been described previously [52].

2.2. Host Plant and Virus

Four to 6 week old N. benthamiana plants were used for the VIGS experiments. The
source of the TSWV Yunnan isolate has been described previously [53]. TSWV Yunnan
isolates were propagated in N. benthamiana. For long-term preservation, fresh systemically
infected leaves of N. benthamiana were stored in a refrigerator at −80 ◦C. Plant leaves
containing TSWV were ground in 0.01 M phosphate buffer (pH 7.4). The Sw-5b-transgenic
N. benthamiana line has been described previously [20]. The VIGS-treated and TSWV-
inoculated plants were maintained in a growth chamber at a temperature of 24 ◦C under a
16 h light/8 h dark photoperiod.

2.3. VIGS Assay

pTRV1, pTRV2, and their derivatives were individually introduced into Agrobacterium
strain GV3101 cells by electroporation. Agrobacterium cultures were resuspended in
agroinfiltration buffer (10 mM MgCl2, 10 mM MES pH 5.6, and 100 µM acetosyringone)
and adjusted to a final concentration of OD600 = 0.5. The Agrobacteria containing TRV
RNA1 and RNA2 were mixed at a 1:1 ratio and incubated for 3 to 5 h in the dark at 28 ◦C.
The mixtures were co-infiltrated into fully expanded leaves of N. benthamiana using a
1 mL needleless syringe. Six plants were used for each treatment and/experiment. Each
experiment was repeated three times.

2.4. Total RNA Isolation and Quantitative RT-PCR Analysis

Total RNAs were extracted from N. benthamiana plant leaves using an RNA Easy
Fast Isolation kit (catalog no. DP452, Tiangen, Beijing, China). First-strand cDNAs were
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synthesized using Oligo-dT primer and M-MLV Reverse Transcriptase (Promega, Madison,
WI, USA). The expression of genes silenced by TRV-based VIGS was quantified on an ABI
7500 Real-Time PCR system (Life Technologies, Carlsbad, CA, USA) using Power SYBR
Green Master Mix (Life Technologies). All of the primers used for quantitative reverse
transcriptase (qRT)-PCR are listed in Supplementary Table S1. NbActin and NbEF1a were
used as internal controls in the assayed samples.

2.5. Western Blot Assays

Total proteins were extracted from N. benthamiana plant leaves in extraction buffer
(10% glycerol, 25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 10 mM DTT, 2%
polyvinylpolypyrrolidone, 1× protease inhibitor cocktail, 0.2% TritonX-100). The crude
plant extracts were centrifuged at 12,600× g for 10 min, and the supernatant was mixed
with 3 × SDS loading buffer (150 mM Tris-HCl, pH 6.8, 6% SDS, 0.3% bromophenol blue,
30% glycerol, 300 mM DTT) and boiled for 10 min. Protein samples were separated in 10%
SDS-PAGE gels and then transferred to PVDF membranes. The blots were probed with an
anti-TSWV N antibody followed by HRP-conjugated goat anti-rabbit antibodies (1:10,000).
An ECL Substrate Kit (Thermo Scientific, Hudson, NH, USA) was used to develop the blots.
A Bio-Rad ChemiDoc Touch imaging system (Bio-Rad, Hercules, CA, USA) was used to
visualize the signals.

3. Results
3.1. Silencing Sw-5b by TRV-Based VIGS Abolished the Resistance of Sw-5b-Transgenic N.
benthamiana to TSWV Infection

Our laboratory previously generated Sw-5b-transgenic N. benthamiana that confer
resistance to TSWV infection [20]. To investigate the downstream defense signaling of Sw-
5b-mediated resistance, we adopted a TRV-based VIGS to silence downstream candidate
genes in Sw-5b-transgenic N. benthamiana plants, followed by TSWV infection. Before
silencing the downstream candidate genes, we first tested silencing the Sw-5b gene in
Sw-5b-transgenic plants using a TRV-based VIGS approach, and we examined the process
of TSWV infection in the Sw-5b silenced plants. A 500 bp fragment of the Sw-5b gene was
amplified by PCR and inserted into the TRV2 vector. As a control, a fragment from the GUS
gene was inserted into the TRV2 vector. TRV2 carrying a fragment from NbPDS was also
used as a control. Agrobacterium carrying TRV1 mixed equally with Agrobacterium carrying
TRV2-Sw-5b, TRV2-GUS, or TRV-NbPDS was co-infiltrated into the leaves of 4–6 week old
Sw-5b-transgenic N. benthamiana plants. At 3 weeks post TRV treatment, newly emerged
leaves of Sw-5b transgenic N. benthamiana infected with TRV-NbPDS were photobleached
(Figure S1A), implying that NbPDS was silenced. At this stage, the corresponding newly
emerged leaves of Sw-5b-transgenic N. benthamiana plants pre-treated with TRV-Sw-5b
or TRV-GUS control (Figure 1A and Figure S1B) were inoculated with crude sap from
TSWV-infected tissue. At 14 days post TSWV inoculation (dpi), typical viral symptoms
including leaf curling, stunting, and systemic wilt were observed in the Sw-5b-transgenic
N. benthamiana silenced for Sw-5b (Figure 1B). No such symptoms were observed in the
plants treated with the TRV-GUS control (Figure 1B).

Total RNA was extracted from systemic leaves of TSWV-inoculated transgenic N.
benthamiana treated with TRV-Sw-5b or TRV-GUS. The RT-PCR analysis showed that the
TSWV N gene was detected in systemically infected leaves of the Sw-5b-silenced transgenic
N. benthamiana, but not in the TRV-GUS-treated control plants (Figure 1C). Western blotting
assays further confirmed that TSWV N protein accumulated in the systemically infected
leaves of Sw-5b-transgenic plants treated with TRV-Sw-5b, but not in those treated with the
TRV-GUS control (Figure 1D). These results imply that silencing Sw-5b by TRV-based VIGS
abolished Sw-5b-mediated resistance to TSWV infection in transgenic N. benthamiana plants.
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Figure 1. Silencing Sw-5b through VIGS abolished the resistance of Sw-5b-transgenic N. benthamiana
to TSWV infection. (A) Sw-5b-transgenic N. benthamiana plants treated with TRV-GUS and TRV-Sw-5b.
Agrobacterium harboring TRV1 was mixed equally with Agrobacterium harboring TRV2 with gene
fragments of GUS, or Sw-5b, and the mixture was co-infiltrated into 4–6 week old leaves of Sw-5b-
transgenic N. benthamiana. The treated plants were photographed at 3 weeks post TRV infection.
(B) Analysis of TSWV systemic infection of Sw-5b-transgenic N. benthamiana plants pretreated with
TRV-Sw-5b. TRV-GUS treatment was used as the control. The newly emerged leaves of Sw-5b-
transgenic N. benthamiana plants silenced for Sw-5b or pretreated with TRV-GUS at 3 weeks post TRV
infection were inoculated with crude extract of TSWV-infected tissues. The plants were photographed
at 14 days post TSWV inoculation. The systemic infection was evident in all 18 Sw-5b-silenced plants
in three repeated experiments. (C) RT–PCR analysis of the expression of TSWV N RNA in systemic
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leaves of Sw-5b-transgenic N. benthamiana plants pretreated with TRV-GUS or TRV-Sw-5b. The internal
reference gene was NbActin. (D) Western blot analysis of TSWV N accumulation in systemic leaves
of Sw-5b-transgenic N. benthamiana silenced for Sw-5b and pretreated with TRV-GUS control at 10 dpi
post TSWV inoculation. A plant sample expressing empty vector (Vec.) was used as a negative
control. Ponceau S staining of Rubisco was used as a protein loading control.

3.2. SGT1, But Not Rar1, Was Required for Sw-5b-Mediated Resistance to TSWV

SGT1, RAR1, and HSP90 are required for the induction of disease resistance mediated
by a variety of NLR proteins. They form a molecular chaperone complex that is important
for regulating the protein stability of plant NLRs [54,55].

To examine whether SGT1, RAR1, and HSP90 play essential roles in Sw-5b-mediated
resistance to TSWV, we used TRV-based VIGS to silence NbSGT1, NbRAR1, and NbHSP90
in Sw-5b-transgenic N. benthamiana. TRV-GUS was used as a negative control. At 3 weeks
post TRV treatment, in comparison with the TRV-GUS-treated controls, the transgenic N.
benthamiana plants treated with TRV-NbSGT1 and TRV-NbRAR1 did not exhibit significant
growth defects (Figure 2A and Figure S2). However, the transgenic N. benthamiana treated
with TRV-NbHSP90 were deformed, with extremely small newly emerged leaves and
inhibited growth, making it difficult to inoculate them further with TSWV (Figure S3A).
The qRT-PCR results showed that mRNA expression of NbSGT1, NbRAR1, and NbHSP90
was significantly reduced in newly emerged leaves of these transgenic plants (Figure 2B and
Figure S3B). The newly emerged leaves of transgenic N. benthamiana silenced for NbSGT1 or
NbRAR1 were inoculated with TSWV crude extracts from systemically infected tissues. At
14 days post TSWV inoculation, the TSWV spread to the systemic leaves, causing symptoms
including systemic wilting in NbSGT1-silenced plants (Figure 2C). No systemic infection
was observed in the TRV-GUS-treated control plants (Figure 2C). In the Sw-5b transgenic
N. benthamiana silenced for NbRAR1, to our surprise, neither TSWV systemic infection
nor viral symptoms were observed (Figure 2C). RT-PCR assays showed that the TSWV
N gene was detected in the systemically infected leaves of NbSGT1-silenced transgenic
N. benthamiana, but not in the TRV-NbRAR1 and TRV-GUS pretreated plants (Figure 2D).
Western blotting assays further confirmed that the TSWV N protein accumulated in the
systemically infected leaves of NbSGT1-silenced transgenic N. benthamiana plants, but not
in the leaves of TRV-NbRAR1- or TRV-GUS-treated plants (Figure 2E). These findings imply
that SGT1, but not RAR1, is involved in Sw-5b-mediated resistance to TSWV.

3.3. Suppression of EDS1 and NDR1 Did Not Disrupt Sw-5b-Triggered Immunity

EDS1 is a common signal component in the TNL-mediated ETI process [56], in which it
plays an important role downstream of TIR NADase activity [57,58]. EDS1 is also involved
in the immunity mediated by some CNLs [30,31]. NDR1 is a key signal component of the
plant immune response mediated by some CNLs [59–61]. To investigate whether EDS1
and NDR1 are involved in Sw-5b-mediated resistance to TSWV infection, Agrobacterium
cultures containing TRV1 were mixed with Agrobacterium carrying TRV-NbEDS1 or TRV-
NbNDR1 and co-infiltrated into leaves of Sw-5b-transgenic N. benthamiana. The TRV-GUS
was used as a control. At 3 weeks post TRV treatment, the transgenic N. benthamiana
treated with TRV-NbEDS1 and TRV-NbNDR1 did not show any differences compared to
the plant treated with the TRV-GUS control (Figure 3A and Figure S4). qRT-PCR confirmed
that expression of NbEDS1 and NbNDR1 mRNA transcripts in the corresponding silenced
plants was significantly reduced (Figure 3B). Subsequently, gene-silenced newly emerged
leaves of transgenic N. benthamiana plants were inoculated with TSWV. At 14 days post
TSWV inoculation, no obvious virus systemic infection was observed in the NbEDS1-
or NbNDR1-silenced transgenic N. benthamiana plants (Figure 3C). RT-PCR and Western
blot assays confirmed that TSWV was absent in the systemic leaves of the NbEDS1- and
NbNDR1-silenced transgenic N. benthamiana plants (Figure 3D,E). These results imply that
silencing expression of the NbEDS1 or NbNDR1 genes did not disrupt the resistance of
Sw-5b-transgenic N. benthamiana plants to TSWV infection.



Viruses 2021, 13, 1447 7 of 16Viruses 2021, 13, 1447 7 of 18 
 

 

 
Figure 2. Silencing expression of SGT1, but not RAR1, compromised the Sw-5b-mediated resistance 
to TSWV. (A) Sw-5b-transgenic N. benthamiana plants infected with TRV-NbSGT1 and TRV-NbRAR1 
at 3 weeks post TRV treatment. TRV-GUS treatment was used as a control. Agrobacterium harboring 
TRV1 was mixed equally with Agrobacterium harboring TRV2-NbSGT1 or TRV2-NbRAR1 and co-
infiltrated into leaves of 4–6 week old Sw-5b-transgenic N. benthamiana. The TRV-treated plants were 
photographed at 3 weeks post agroinfiltration. (B) Quantitative RT-PCR analysis of the expression 
of NbSGT1 and NbRAR1 mRNA in the newly emerged leaves of TRV-treated transgenic N. bentham-
iana plants at 3 weeks post agroinfiltration. The NbActin and NbEF1 genes were used as internal 
reference genes. Asterisks indicate significant differences (Student’s t-test, * p < 0.05). (C) Analysis 
of TSWV systemic infection of Sw-5b-transgenic N. benthamiana plants silenced for NbSGT1 and 
NbRAR1. TRV-GUS was used as a control. The gene-silenced newly emerged leaves of Sw-5b-trans-
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Figure 2. Silencing expression of SGT1, but not RAR1, compromised the Sw-5b-mediated resistance
to TSWV. (A) Sw-5b-transgenic N. benthamiana plants infected with TRV-NbSGT1 and TRV-NbRAR1 at
3 weeks post TRV treatment. TRV-GUS treatment was used as a control. Agrobacterium harboring
TRV1 was mixed equally with Agrobacterium harboring TRV2-NbSGT1 or TRV2-NbRAR1 and co-
infiltrated into leaves of 4–6 week old Sw-5b-transgenic N. benthamiana. The TRV-treated plants were
photographed at 3 weeks post agroinfiltration. (B) Quantitative RT-PCR analysis of the expression of
NbSGT1 and NbRAR1 mRNA in the newly emerged leaves of TRV-treated transgenic N. benthamiana
plants at 3 weeks post agroinfiltration. The NbActin and NbEF1a genes were used as internal reference
genes. Asterisks indicate significant differences (Student’s t-test, * p < 0.05). (C) Analysis of TSWV
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systemic infection of Sw-5b-transgenic N. benthamiana plants silenced for NbSGT1 and NbRAR1.
TRV-GUS was used as a control. The gene-silenced newly emerged leaves of Sw-5b-transgenic
N. benthamiana plants were inoculated with crude extract of TSWV-infected tissues. The TSWV
challenged plants were photographed at 14 days post viral inoculation. The systemic infection was
evident in all 18 NbSGT1-silenced plants. (D) RT–PCR detection of TSWV N RNA in systemic leaves
of Sw-5b-transgenic N. benthamiana plants silenced for NbSGT1 and NbRAR1 at 14 days post TSWV
inoculation. The internal reference gene was NbActin. (E) Western blot analysis of TSWV N protein
accumulation in systemic leaves of Sw-5b-transgenic N. benthamiana plants silenced for NbSGT1
and NbRAR1 using a TSWV N-specific antibody. The leaves were collected at 14 days post TSWV
inoculation. A plant sample expressed with p2300 empty vector (Vec.) was used as a negative control.
Ponceau S staining was used as a protein loading control.
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or TRV-NbNDR1 and co-infiltrated into leaves of 4–6 week old Sw-5b-transgenic N. benthamiana.
The TRV-treated plants were photographed at 3 weeks post agroinfiltration. (B) qRT-PCR analysis
of expression of NbEDS1 and NbNDR1 mRNA in newly emerged leaves of Sw-5b-transgenic N.
benthamiana treated with TRV-NbEDS1, TRV-NbNDR1, or TRV-GUS. Samples were collected at 3
weeks post TRV treatment. Values were normalized using NbActin and NbEF1a genes as a reference.
Student’s t-test was used for statistical analysis (* p < 0.05). (C) Analysis of TSWV systemic infection
in Sw-5b-transgenic N. benthamiana plants silenced for NbEDS1 and NbNDR1. TRV-GUS was used
as the control. The gene-silenced newly emerged leaves of Sw-5b-transgenic N. benthamiana plants
were inoculated with crude extract of TSWV-infected tissues. The plants challenged with TSWV
were photographed at 14 days post inoculation. (D) RT–PCR analysis of expression of TSWV N RNA
in systemic leaves of Sw-5b-transgenic N. benthamiana plants silenced for NbSGT1 and NbRAR1 at
14 days post TSWV inoculation. A TSWV-infected N. benthamiana sample was used as a positive
control. The reference gene was NbActin. (E) Western blot analysis of TSWV N protein accumulation
in systemic leaves of Sw-5b-transgenic N. benthamiana plants silenced for NbSGT1 and NbRAR1 in
panel C using specific antibodies against N. A plant sample expressed with p2300 empty vector (Vec.)
was used as a negative control. Ponceau S staining was used as a protein loading control.

3.4. Silencing Expression of NPR1 Did Not Result in TSWV Systemic Infection in
Sw-5b-Transgenic N. benthamiana Plants

NPR1 acts as a key regulator of SA-signaling pathways [33]. To examine whether
NPR1 plays a role in Sw-5b-mediated resistance to TSWV, the mixed Agrobacteria carrying
TRV1 and TRV-NbNPR1 were co-infiltrated into Sw-5b-transgenic N. benthamiana. The
Agrobacterium carrying the TRV-GUS was used as a control. At 3 weeks post TRV treat-
ment, the growth state of transgenic N. benthamiana plants treated with TRV-NbNPR1 was
comparable to that of plants treated with TRV-GUS (Figure 4A and Figure S5). qRT-PCR
assays confirmed that expression of NbNPR1 mRNA was silenced in TRV-NbNPR1-treated
plants (Figure 4B). The silenced plant leaves were inoculated with TSWV. At 14 days
post TSWV inoculation, no obvious symptoms were observed in the systemic leaves of
NbNPR1-silenced N. benthamiana plants (Figure 4C). RT-PCR and Western blot assays
further confirmed the absence of TSWV in systemic leaves of NbNPR1-silenced Sw-5b-
transgenic plants (Figure 4D,E). These data imply that silencing expression of NbNPR1 did
not result in TSWV systemic infection in Sw-5b-transgenic N. benthamiana.

3.5. The Helper NLRs NRC2/3/4 Were Required for Sw-5b-Mediated Systemic Resistance to
TSWV Infection

In N. benthamiana, the NRC family contains NRC2a, NRC2b, NRC3, and NRC4. NRC2,
NRC3, and NRC4 are functionally redundant. Simultaneous silencing of NRC2, NRC3, and
NRC4 expression in N. benthamiana suppressed the HR function of Sw-5b [29]. To examine
the role of the helper NLRs NRC2/3/4 in systemic resistance mediated by Sw-5b to TSWV,
we silenced NbNRC2a, NbNRC2b, NbNRC3, and NbNRC4 simultaneously (NbNRC2/3/4) in
Sw-5b-transgenic N. benthamiana by TRV-based VIGS (Figure 5A and Figure S6). The TRV-
GUS vector was used as a control. At 3 weeks after TRV treatment, expression of NbNRC2a,
NbNRC2b, NbNRC3, and NbNRC4 was significantly reduced in the newly emerged leaves
of N. benthamiana pretreated with TRV-NbNRC2/3/4 (Figure 5B). These silenced leaves
were challenged with TSWV. At 14 days post TSWV inoculation, TSWV was found to
have infected the NbNRC2/3/4-silenced Sw-5b-transgenic N. benthamiana plants, causing
systemic wilting (Figure 5C–E). These data imply that the NbNRC2/3/4 genes are required
for Sw-5b-mediated systemic resistance to TSWV infection, further supporting the essential
role of helper NLR NRCs in downstream signaling of the sensor NLR Sw-5b.
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p < 0.05). (C) Analysis of systemic infection of TSWV in Sw-5b-transgenic N. benthamiana plants si-
lenced for NbNPR1. TRV-GUS plants were used as a control. The gene-silenced newly emerged 
leaves of Sw-5b-transgenic N. benthamiana plants were inoculated with TSWV. The photographs of 
treated plants were taken at 14 days post TSWV inoculation. (D) RT–PCR detection of TSWV N RNA 
in systemic leaves of Sw-5b-transgenic N. benthamiana plants silenced for NbNPR1 at 14 days post 
TSWV inoculation. A sample from TSWV-infected N. benthamiana tissues was used as a positive 
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Figure 4. Analysis of the requirement for NPR1 in Sw-5b-mediated resistance to TSWV. (A) TRV-NbNPR1- and TRV-GUS-
treated Sw-5b transgenic N. benthamiana plants at 3 weeks post TRV agroinfiltration. (B) qRT-PCR analysis of the expression
of NbNPR1 mRNA in newly emerged leaves of Sw-5b transgenic N. benthamiana plant treated with NPR1-silenced transgenic
plants. The NbActin and NbEF1a genes were used as internal controls. Student’s t-test was used for statistical analysis
(* p < 0.05). (C) Analysis of systemic infection of TSWV in Sw-5b-transgenic N. benthamiana plants silenced for NbNPR1.
TRV-GUS plants were used as a control. The gene-silenced newly emerged leaves of Sw-5b-transgenic N. benthamiana plants
were inoculated with TSWV. The photographs of treated plants were taken at 14 days post TSWV inoculation. (D) RT–PCR
detection of TSWV N RNA in systemic leaves of Sw-5b-transgenic N. benthamiana plants silenced for NbNPR1 at 14 days
post TSWV inoculation. A sample from TSWV-infected N. benthamiana tissues was used as a positive control. The NbActin
gene was used as an internal reference gene. (E) Western blot analysis of TSWV N protein accumulation in the systemic
leaves of Sw-5b-transgenic N. benthamiana plants silenced for NbNPR1 in panel C using specific antibodies against TSWV N.
A plant sample expressed with p2300 empty vector (Vec.) was used as a negative control. Ponceau S staining was used as a
protein loading control.
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5b-mediated resistance to TSWV infection. (A) TRV-based NbNRC2/3/4, NbNRG1, NbADR1, and
NbNRG1/NbADR1 gene-silenced plants at 3 weeks post TRV treatment. (B) qRT-PCR analysis of the
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expression of NbNRC2a, 2b, 3, and 4 or NbNRG1 and NbADR1 mRNA transgenic plants treated
with TRV-NbNRC2/3/4, TRV-NbNRG1, TRV-NbADR1, and TRV-NbNRG1/NbADR1. The NbActin
and NbEF1a genes were used as reference genes. Student’s t-test was used for statistical analysis
(* p < 0.05). (C) Analysis of systemic TSWV infection of Sw-5b-transgenic N. benthamiana plants
silenced for NbNRC2/3/4, NbNRG1, NbADR1, or NbNRG1/NbADR1. TRV-GUS-treated plants were
used as a control. The gene-silenced newly emerged leaves of Sw-5b-transgenic N. benthamiana plants
were inoculated with TSWV. The photographs of TSWV-challenged plants were taken at 14 days post
TSWV inoculation. The systemic infection was evident in all 18 NbNRC2/3/4-silenced plants in three
repeated experiments. (D) RT–PCR detection of TSWV N RNA in systemic leaves of plants in panel
C at 14 days post TSWV infection. A sample from a TRV-GUS-treated plant was used as a negative
control. The NbActin gene was used as an internal reference gene. (E) Western blot analysis of the
accumulation of TSWV N protein in systemic leaves of plants in panel C using N-specific antibodies.
The samples were harvested at 14 dpi. A plant leaf sample expressed with p2300 empty vector (Vec.)
was used as a negative control. Ponceau S staining was used as a protein loading control.

3.6. Silencing Expression of the Helper NLRs NRG1 and ADR1 Did Not Affect Sw-5b-Mediated
Systemic Resistance to TSWV

ADR1 and NRG1 play important roles in the regulation of ETI mediated by multiple
NLRs [47,62]. To examine whether NRG1 and ADR1 are involved in Sw-5b-mediated
resistance, we silenced NbNRG1, NbADR1, and both genes (NbNRG1/NbADR1) in Sw-5b-
transgenic N. benthamiana plants using TRV-based VIGS. At 3 weeks post TRV treatment,
the growth states of NbNRG1-, NbADR1-, and NbNRG1/NbADR1-silenced N. benthamiana
plants were similar to that of TRV-GUS-treated plants (Figure 5A and Figure S6). The
TSWV crude extract was inoculated onto the gene-silenced newly emerged plant leaves. At
14 days post TSWV inoculation, no systemic viral infection was found in systemic leaves
of NbNRG1-, NbADR1-, or NbNRG1/NbADR1-silenced plants (Figure 5C). RT-PCR and
Western blot assays confirmed the absence of TSWV in the systemic leaves of the NbNRG1-,
NbADR1-, and NbNRG1/NbADR1-silenced plants (Figure 5D,E). These results imply that
the helper NLRs NRG1 and ADR1 may not be involved in Sw-5b-mediated resistance.

4. Discussion

Here, we used the TRV-based VIGS system to characterize the roles of the SGT1/RAR1/
HSP90, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 genes in Sw-5b-mediated resistance
to TSWV. We found that chaperone SGT1 was essential for Sw-5b function; however,
co-chaperone RAR1 was not. Suppression of both EDS1 and NDR1 did not affect Sw-5b-
mediated resistance to TSWV. Moreover, suppression of NPR1 did not result in TSWV sys-
temic infection in Sw-5b-transgenic plants. However, silencing the helper NLRs NRC2/3/4
compromised systemic resistance to TSWV infection in Sw-5b-transgenic N. benthamiana
plants. Silencing another two helper NLRs, ADR1 and NRG1, did not affect Sw-5b-mediated
immune signaling.

We explored the role of the SGT1–RAR1–HSP90 chaperone complex in Sw-5b-mediated
immunity. Scofield et al. found that all three chaperone molecules, SGT1–RAR1–HSP90,
were required for Lr21–mediated resistance. Silencing any of the three compromised
resistance [63]. In our study, silencing HSP90 resulted in significant morphological defects
in the transgenic N. benthamiana, which led us to discontinue further investigation into
the role of HSP90. Silencing SGT1 compromised Sw-5b function; however, silencing RAR1
did not. SGT1–RAR1–HSP90 forms a chaperone complex. However, Sw-5b-mediated
immune signaling is independent of RAR1. A previous study on Mi-1.2 also reported that
Mi-1.2-mediated pest resistance required SGT1 but not RAR1 [64]. SGT1 has diverse roles
in cellular pathways. For example, it plays an important role in nucleoplasm partitioning
of tobacco N NLR [28]. We hypothesized that SGT1 may help in stabilizing Sw-5b immune
receptor. In addition to functioning as a chaperone, SGT1 may play other roles in Sw-5b-
and Mi-1.2-mediated defense signaling, and these roles of SGT1 may be independent
of RAR1.
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We tested the role of EDS1/NDR1 in Sw-5b-mediated resistance to TSWV. Early studies
revealed that EDS1 was necessary for some CNLs. We found that the Sw-5b-mediated
immune response was independent of EDS1. Arabidopsis CNLs such as RPS2, RPM1, and
RPS5 are dependent on NDR1 for immunity. Our Sw-5b-mediated immunity was not
dependent on NDR1. Arabidopsis CNLs, including HRT, ZAR1, RPP7, and RPP8, have also
been found to be NDR1-independent [65]. In addition, the CNLs RPP13 and ZAR1 were
independent of both EDS1 and NDR1 [66,67]. These findings imply that Sw-5b may induce
EDS1- and NDR1-independent immune signaling pathways that remain to be uncovered.

We also explored the role of NPR1 in Sw-5b-mediated resistance. SA plays important
roles in plant innate immunity and system acquired resistance (SAR). NPR1 acts as a
receptor of SA and is a core player in SA signaling pathways. In our study, silencing
expression of NPR1 did not disrupt Sw-5b resistance to TSWV. However, NPR1 has been
shown to be required for the function of the tobacco N gene. Our results imply that
Sw-5b-mediated resistance may not rely on the NPR1-dependent SA signaling pathway.

Lastly, we tested the function of “helper” NLR proteins in Sw-5b-mediated systemic
resistance to TSWV infection. NRCs are required for HR mediated by various NLRs in
Solanaceae and disease resistance mediated by Rpi-blb2 and Rx [29]. Here, we found that
silencing the helper NLRs NRC2/3/4 compromised Sw-5b-mediated resistance to TSWV,
further supporting the essential role of NRC in NLR-mediated resistance in Solanaceae.
ADR1 proteins are involved in both TNL- and CNL-mediated immunity [45–48]. NRG1
is a key component involved in TNL-mediated immune signaling pathways. ADR1 and
NRG1 function redundantly in mediating NLR immune signaling [62]. Silencing ADR1
and NRG1 simultaneously partially compromised resistance to PVX [46]. We found that
silencing NRG1, ADR1, or both had no effect on Sw-5b-mediated resistance to TSWV.

Mixed infection by two different viruses may have synergistic or suppressive effects.
Our presented data are based on the use of TRV for gene silencing, followed by TSWV
infection. We cannot rule out the possibility that infection of Sw-5b transgenic plants by
TRV constructs may have enhanced or reduced the resistance to TSWV infection. In the
future, gene knockout mediated by CRISPR/Cas9 in Sw-5b transgenic plant is needed to
confirm the results obtained in this study.

In summary, we systematically investigated the requirement for the SGT1/RAR1/HSP90,
EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 genes in Sw-5b mediated immune signaling.
We demonstrated that SGT1 and NRCs are conserved essential components of Sw-5b-
mediated resistance to TSWV. Our results showing the independence of EDS1/NDR1
and NPR1 also indicate that Sw-5b has some unique and undiscovered defense signaling
pathway that remains to be elucidated. As Sw-5b-mediated resistance is dependent on
NRCs, we proposed that Sw-5b may either directly recruit downstream helper NLRs or
indirectly transfer the upstream pathogen perception signals to downstream helper NLRs
to amply and induce robust defense signaling.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13081447/s1. Figure S1. Silencing NbPDS and Sw-5b by TRV-based VIGS in Sw-5b-transgenic
N. benthamiana plants. Figure S2. Sw-5b-transgenic N. benthamiana plants infected with TRV-GUS,
TRV-NbSGT1, and TRV-NbRAR1 at 3 weeks post TRV treatment. Figure S3. Silencing the expression
of NbHSP90 in Sw-5b-transgenic N. benthamiana plants. Figure S4. Sw-5b-transgenic N. benthamiana
plants infected with TRV-GUS, TRV- NbEDS1, and TRV-NbNDR1 at 3 weeks post TRV treatment.
Figure S5. Sw-5b-transgenic N. benthamiana plants infected with TRV-GUS and TRV-NbNPR1 at
3 weeks post TRV treatment. Figure S6. Sw-5b-transgenic N. benthamiana plants infected with TRV-
GUS, TRV-NbNRC2/3/4, TRV-NbNRG1, TRV-NbADR1, and TRV-NbNRG1/ADR1 at 3 weeks post TRV
treatment. Table S1. List of primers used in this study.
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