
Published online 22 December 2021 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 1
https://doi.org/10.1093/nargab/lqab114

OLOGRAM-MODL: mining enriched n-wise
combinations of genomic features with Monte Carlo
and dictionary learning
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ABSTRACT

Most epigenetic marks, such as Transcriptional Reg-
ulators or histone marks, are biological objects
known to work together in n-wise complexes. A suit-
able way to infer such functional associations be-
tween them is to study the overlaps of the corre-
sponding genomic regions. However, the problem
of the statistical significance of n-wise overlaps of
genomic features is seldom tackled, which prevent
rigorous studies of n-wise interactions. We intro-
duce OLOGRAM-MODL, which considers overlaps
between n ≥ 2 sets of genomic regions, and com-
putes their statistical mutual enrichment by Monte
Carlo fitting of a Negative Binomial distribution, re-
sulting in more resolutive P-values. An optional ma-
chine learning method is proposed to find complexes
of interest, using a new itemset mining algorithm
based on dictionary learning which is resistant to
noise inherent to biological assays. The overall ap-
proach is implemented through an easy-to-use CLI
interface for workflow integration, and a visual tree-
based representation of the results suited for expli-
cability. The viability of the method is experimentally
studied using both artificial and biological data. This
approach is accessible through the command line in-
terface of the pygtftk toolkit, available on Bioconda
and from https://github.com/dputhier/pygtftk

INTRODUCTION

Modern genomic analysis methods can localize many dif-
ferent types of genomic features, such as histone modifica-
tions, transcriptional regulator binding sites or gene pro-
moters. As such, a fundamental question arises: do those
sets of features have a functional association? A typical ap-
proach is to represent such features as regions, or intervals

(hence, as ‘Browser Extensible Data’ or BED files ) and look
for significant co-localization through the statistical signifi-
cance of the amount of overlap between them, against (H0)
of overlapping no more than by chance. This is especially
important since co-localization is often associated to func-
tional association in genomic elements (1).

Pairwise overlaps between two sets can be analyzed with
methods such as GeometriCorr, BEDTOOLS fisher (2),
GREAT, Genomic HyperBrowser (3), mostly available in the
coloc-stats interface (4). Those methods are usually based
on shuffles or on a statistical model. Challenges in such
approaches have been summarized in a recent review (5).
Recently, we proposed another type of method involving
Monte Carlo fitting of a Negative Binomial distribution
while keeping inter-region distances, proven to be more res-
olutive than previous approaches (6). However, considering
only pairwise overlaps will not reveal higher order associ-
ations, that is to say associations between a query inter-
val set and multiple reference sets simultaneously. Indeed,
most chromatin components such as transcriptional regu-
lators or histones are known to work in combinations and
form complexes (7) when binding to the genome. As such,
a method is required to rigorously evaluate those combina-
tions. Pairwise overlaps are sometimes used to build asso-
ciation networks (8) but this can be misleading, as an as-
sociation of a regulator A with B and of B with C does not
necessarily mean A and C will be found in the same complex
in real conditions.

However, the problem of the significativity of multiple
overlaps is rarely tackled. Some existing approaches include
MULTOVL (9) which uses empirical P-values determined
from shuffling the region sets to determine the statistical
enrichment of higher-order associations. Furthermore, sim-
ply evaluating the enrichment of all n-wise combinations of
k sets returns up to 2k possibilities, which can be hard to
parse. To filter those, other current approaches such as TF-
Coop (10) look for combinations of factors that best explain
a given factor, but uses linear regressions which does not
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show the diversity of existing complexes, instead giving a
weight to each set.

Itemset mining, which groups many methods aimed at
identifying patterns between sets (11), i.e. when an element
of set A is present, sets B and C are often present as well)
has also been used to identify interesting combinations of
genomic regions (12). For instance, GINOM selects n-wise
itemsets that best explain the query region set (13). A more
distant parallel can also be drawn to ChromHMM (14),
which however divides the genome in mutually exclusive
states without hierarchizing combinations. Although item-
set mining is mostly performed with tree-based algorithms
(15) such as apriori (16), some advances are made with non-
negative matrix factorization, including inferring TF (tran-
scription factors) combinations (17), and with dictionary
learning (18).

Another reason to use itemset mining to identify combi-
nations of interest is the presence of noise. For example in
ChIP-seq, which is a technique used to locate binding sites
of proteins on the genome, there are known difficulties re-
sulting in false positive peaks, either for biological or tech-
nical reasons (19). This may complicate analysis leading to
spurious results. Some methods seek to correct the noise,
sometimes also leveraging combinations between sets (20).
In particular, matrix factorization methods are quite effec-
tive although costful on such noisy data (21).

However, using itemset mining to find combinations of
interest based on a criterion and assessing their enrich-
ment are two different approaches, which are worthwhile
to now be combined. This paper proposes a method named
OLOGRAM-MODL to leverage both, by calculating the
significance of mined combinations of overlaps of inter-
est. OLOGRAM is a statistical framework that evaluates
the statistical enrichment of a given combination of sets
overlapping, while MODL is an itemset mining algorithm
used to select the most representative combinations. We also
showcase the approach both on artificial and biological data
through several experiments.

MATERIALS AND METHODS

As an extension of OLOGRAM (6), OLOGRAM-MODL
(OverLap Of Genomic Regions Analysis using Monte Carlo
- Multiple Overlap combinations with Dictionary Learning)
can now process overlaps between n ≥ 2 sets of genomic
regions. We begin by introducing some notations and defi-
nitions:

Definition 1 (Set of genomic regions). Let Ai be a ge-
nomic region, that is a position interval on the genome (e.g.
Ai[1001; 2001] = ‘chromosome 1, base pairs 100 to 200’).
Then, the set A = {A1, A2, ...} is defined as a finite set of
individual genomic regions.

Definition 2 (Operator of intersection +). In this paper,
the operator + over sets of genomic regions, e.g. A + B, is
used as a convenient notation to designate the intersection
of regions from sets A and B (see example below). It does
not correspond to the Minkowski sum.

Definition 3 (Combination). A combination � = {A + B
+ C} is defined (is non empty) whenever genomic regions

included in A, B and C, embed at least one common ge-
nomic position. Combinations can be defined on any n ≥ 2
sets.

For example, let A = {A1[1001: 2001], A2[5001: 5501]}
and B = {B1[4801: 5201], B2[1002: 2102]}. Now consider the
combination � 1 = {A + B}: it combination is defined over
{A + B} = {�1[5001: 5201]}. The intersection set contains
only one contiguous region of 20 base pairs, therefore S(�1)
= 20 and N(� 1) = 1

Definition 4 (Measures over a combination: S and N). For
a given combination � , we define two measures: S(� ) is the
total number of base pairs on which this combination is ob-
served, and N(� ) is the number of windows (defined as a set
of contiguous base pairs) on which this combination is ob-
served.

For each combination � , the objective is to determine
whether it is observed in the real data at a higher frequency
than it would be under the null hypothesis (H0). In this ap-
proach, (H0) is that the positions of the regions in a given set
are independent of the positions of the regions in any other
set. Within a set, regions are not assumed to be uniformly
distributed, since the distribution of inter-region lengths is
kept (see later).

OLOGRAM-MODL can compute statistically relevant
P-values for each combination’s S(� ) (also for its N(� ), but
S(� ) is generally more relevant). The optional MODL al-
gorithm is proposed to filter the list of considered combina-
tions. The general pipeline of the approach is presented in
Figure 1. First, the real overlaps are computed and stored
in a relevant matrix (Figure 2) from which candidate com-
binations can, optionally, be easily extracted. Then overlaps
are also computed on shuffles (Computing the combination
enrichment section) and used to statistically model the en-
richment of the combinations (Statistical model discussion
section).

OLOGRAM enrichment analysis

Definition 5 (Enrichment of a combination �). Let � be
a combination as defined above (Definition 3). Its enrich-
ment, also called fold change, is:

m(γ ) = log2

(
Sobs(γ )
Sexp(γ )

)

where Sobs(� ) is the S statistic (nb. of base pairs on
which the combination is observed) for this combina-
tion in the real data, and Sexp(� ) is the expected value
of S(� ) under (H0), estimated through shuffling (see
below).

As such, the higher the Sobs compared to Sexp, the higher
the enrichment. Analytic calculation of the enrichment is
difficult, since the sets have varying numbers of regions
which themselves have varying sizes. Instead, we use a
Monte Carlo approach: OLOGRAM’s original principle
(6) is to determine the statistical significance of the over-
lap between two region sets by shuffling them independently
many times. This shuffle is done by permutation of the
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Figure 1. OLOGRAM-MODL pipeline. General pipeline of the OLOGRAM-MODL approach. We fit a Negative Binomial distribution on the number
of base pairs on which each combination of elements is observed (see section OLOGRAM enrichment analysis). The list of combinations for which this
fitting is done can be obtained in different ways. It can consist of all observed combinations, a selection made by the proposed MODL itemset mining
algorithm (see MODL itemset mining algorithm section), a selection based on the most frequent or most significant, and finally a custom selection given
by the user.

Figure 2. Multiple overlap algorithm implemented in OLOGRAM-MODL. The algorithm belongs to the sweep line family, and takes as input n ≥ 2
sets from BED files. It registers critical points (beginnings and ends of genomic regions) and remembers how many such points of each type have been
previously encountered. For each observed overlap, the algorithm returns a vector giving the number of regions from each set that are open at this position.
The output is the intersection matrix X, highlighted in a blue dotted box. It consists of all such vectors x such that

∑
x ≥ 2, meaning at least two sets are

open. X has one row per intersection and one column per region set.

series of regions lengths, but also inter-region lengths. It
is possible (and usually recommended) for the user to re-
strict the shuffling and analysis to certain regions of the
genome, which are of interest. OLOGRAM does this by
creating a subgenome through concatenation of the inter-
esting regions. If the shuffling is restricted to a sub-genome,
regions outside of it are discarded. It essentially amounts to
a remapping on shorter chromosomes. Of course, since the
shuffling is done only inside the sub-genome, under the null
hypothesis we not only assume that the features are inde-

pendent but also that they can only be located in the sub-
genome. It is also possible to lock the positions of the re-
gions in given sets during the shuffling through an explicit
instruction in the command line.

The key contribution was using these shuffles to esti-
mate the parameters of an underlying Negative Binomial
model, instead of using empirical P-values. As such, OLO-
GRAM has already been shown to be much more resolutive
in terms of P-value compared to state-of-the-art tools. Here,
OLOGRAM-MODL generalizes this principle to overlaps
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between potentially more than two (n ∈ N) sets of genomic
regions.

To compute the overlaps in both real and shuffled data,
we designed and use an algorithm based on the sweep line
principle (22) presented in Figure 2. It takes as inputs many
sets of regions and returns a matrix representation of their
overlaps. Its time complexity is O(Nlog N), where N is the
total number of regions in all sets, at initialization, as it re-
quires sorting the critical points through a merge sort (23).
However, querying overlaps has a complexity of O(

∑
ni)

where ni is the number of regions in the ith set. This is in con-
trast with interval trees (used in BEDTOOLS fisher) whose
complexity is O(log n) per queried region, simplifying to
O(n2log n1) for only two sets.

Computing the combination enrichment. For any combina-
tion � , we fit a Negative Binomial model on each measure
N(� ) and S(� ) (Definition 4), and give the P-value for the
actual observed occurrences to happen by chance.

By default, the approach computes the enrichment of
all combinations observed in the real data. To perform a
selection among those instead, the MODL algorithm (see
MODL itemset mining algorithm section) is proposed. The
user can also provide a custom selection, as the intersec-
tion matrix itself can be accessed in our Python API to
help make that selection. Only combinations containing the
specified query region are considered. The counting of each
S(� ) is further dependent on the transitivity of the partial
order defined on combinations:

Definition 6 (Partial order � over combinations). A com-
bination �2 may include all the sets of a combination � 1,
plus some others: � 1 is the parent and � 2 is the child of the
relationship, denoted by � 2�� 1. This order induces a lattice
structure of combinations where inheritance is defined.

For example, {A + B} is a parent of {A + B + C} and of
{A + B + D}, but not of {B + C}. Counting a combination �
simply refers to computing its measures N(� ) or/and S(� ).
This can be done on any ensemble of intervals: for the real
data, for a shuffle, or anything else. By default, counting a
combination is not exact, which means that it includes the
observation of its children by transitivity.

Definition 7 (Exact and inexact counting). The exact (sin-
gle) counting of S and N of a combination � does not con-
sider neither its parents nor its children.

Conversely, inexact (transitive) counting of a combina-
tion � takes into account the counting of � , added with the
unduplicated observation of any child of � at any given ge-
nomic position.

Let A and B be the toy sets of genomic regions given in
the previous example where A = {A1[1001: 2001], A2[5001:
5501]} and B = {B1[4801: 5201], B2[1002: 2102]}, and � 1 =
{A + B}. In this case, recall that we would have � 1 defined
over {A + B} = {�1[5001: 5201]}. Now let C = {C1[5101:
5202]} and let � 2 = A + B + C. We have � 2�� 1. As a result
of the introduction of the new set C, the regions focused by
the combinations � 1 and � 2 have changed. Instead, we now
have the following: {A + B} = {�1[5001: 5101]} and {A +
B + C} = {�2[5101: 5201]}.

An exact counting of � 1 will only count on �1, resulting
in S(� 1) = 10 base pairs. But in a transitive counting (done
by default) the regions on which any children of a combi-
nation is defined are still counted. Since � 2�� 1, the regions
where � 2 is defined are counted too, and we now have S(� 1)
= 20 (N(� 1) = 1 in both cases, since contiguous regions are
merged a posteriori).

In conclusion, in a transitive counting A + B actually
represents all combinations of type A + B + � (its chil-
dren), where � is any combination of sets of regions ex-
cluding A and B, and is labeled as such. Counting is tran-
sitive by default, as this allows easier study of cases where
multiple regulators can have a combined effect. An exact
counting will instead highlight cases where, for example, the
only true biological complex is made of the tripartite as-
sociation of A + B + C, and A + B by themselves are not
enriched.

Statistical model discussion. Consider the regions sets A,
B, C of a combination A + B + C. Under (H0) of no as-
sociation between the sets, consider the Bernoulli random
variables (r.v.) IAi ,Bj ,Ck = �Ai ∩Bj ∩Ck �=∅.

Proposition 1. For any combination γ , if (H0) is true then
a Negative Binomial distribution is a good approximation for
the distribution of S(γ ).

To justify this, we propose the following heuristic proof:

Heuristic argument Consider the regions sets A, B, C of a
combination A + B + C. Under (H0), consider the Bernoulli
r.v. IAi ,Bj ,Ck = �Ai ∩Bj ∩Ck �=∅. They can be expressed as a
product of pairwise IAi ,Bj ∗ IAi ,Ck ∗ IBj ,Cj . Those are de-
pendant Bernoulli r.v. for two reasons. First, the locations
of the regions are permuted in the shuffles, so if Ai and
Bj overlap in a shuffle the likelihood of Ai also overlap-
ping with a different region Bk of the set B is greatly re-
duced, since the regions are merged. Second, if Ai over-
laps Bj and Bj overlaps Ck, it is likely that Ai also over-
laps Ck. Let us express this in terms of conditional proba-
bilities: P(IAi ,Bj ,Ck) = P(IAi ,Bj = 1) ∗ P(IAi ,Ck = 1|IAi ,Bj =
1) ∗ P(IBj ,Cj = 1|IAi ,Bj = IAi ,Ck = 1). If one approximates
each term as the result of another Bernoulli variable of un-
known but fixed probability P, one can approximate their
products IAi ,Bj ,Ck themselves as dependant Bernoulli r.v. of
unknown P. While calculating the P themselves requires the
expression of the correlations between the variables, they
can be instead estimated via a Monte Carlo approach. In-
deed, (6) shows that the sum of dependent Bernoulli r.v. fol-
lows a Negative Binomial distribution, which is also true for
S(� ) = ∑

I*�I where �I is the length of each intersection.
However, this is true only if the following two conditions

are met. First, that � follows a log-normal distribution; this
is often the case empirically since the log-normal distribu-
tion is versatile. Second, that the various I of the Bernoulli
sum be exchangeable. The pairwise IAi ,Bj can be considered
exchangeable because: if A1 overlaps B1, it is unlikely to also
overlap B2 and vice versa. But it does not matter which of
the two (B1 or B2) is overlapping A1: when taking the joint
distribution of all IA1,Bj over A1 and all regions in B, the
probability is the same. The same logical argument applies
to n-wise intersections by taking the joint distribution over



NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 5

many sets. And in any case, if the pairwise I are exchange-
able, since a sum of n-wise I is the sum of their constituent
pairwise I, it does not really matter.

In practice, this is only an approximation since, for in-
stance, the various regions of B will not have the same
lengths, nor inter-region lengths. The shuffling contributes
to making the I approximation work by shuffling the inter-
regions lengths. But this still requires that the sets be com-
posed of many regions (to have many inter-region lengths),
and that the region lengths remain close to each other, and
small compared to the inter-region lengths.

Considering these assumptions, N and S follow a Beta-
Binomial distribution under H0. In practice it is preferable
to approximate it with a Negative Binomial distribution, for
both precision and computational complexity reasons that
are detailed in the Results and Discussion. This approxi-
mation is only asymptotically correct when � and n tend to
infinity (24) but works well in practice.

In conclusion, we propose that S(� ) can be approximated
reasonably well by a Negative Binomial distribution of un-
known parameters in most application cases, under the
above assumptions. This is in large parts thanks to the re-
sampling procedure. Furthermore, the algorithm performs
a goodness of fit test (after shuffling) for the Negative Bino-
mials for each combination, in order to exclude the case that
the null hypothesis is false because the empirical distribu-
tion is not a good approximation of the Negative Binomial.
This test is based on Cramer’s V-score (6). This is expanded
in Artificial data and comparison to existing approaches
section, where we also present examples of empirical distri-
butions being fitted with the Negative Binomial law.

When running the algorithm, the parameters of the Neg.
Binom. distributions are estimated based on the empirical
mean and variance observed in the shuffles. This is known
as method-of-moments fitting. In most cases, 100–200 sam-
ples (here, shuffles) are enough to fit a Negative Binomial
distribution reasonably well (6), and Supplementary Figure
S7.

Poor fits are mainly observed when the combination in
question is too rare in the shuffles (when one of its sets cov-
ers a too small proportion of the genome), when there are
too few regions in a set, or conversely when the shuffling was
restricted to a too small genome. Estimated P-values will
tend to be too conservative in those cases, but fold changes
are accurate.

Using a statistical model instead of empirical P-values is
crucial for combinations containing a large number of sets
(i.e. high order), for which the likelihood of observing high
values of S(� ) in the shuffles will be low. This also means
that one should be careful when comparing enrichment be-
tween combinations of different orders (the order of a combi-
nation is the number of region sets it concerns). We expand
upon this in the Discussion section.

Time scaling. The scaling of OLOGRAM (just OLO-
GRAM, the scaling of MODL itself is discussed in the next
section) is multifaceted. It consists of three main steps: (i)
shuffling the sets and computing their intersections (Com-
puting the combination enrichment section), (ii) comput-
ing for each combination of interest whether it is transitive

with all other combinations in the shuffles and (iii) fitting
the Negative Binomials.

Runtime depends on ei, the expected number of intersec-
tions to be computed in each shuffle, which in turn depends
on the density of each source region set. If we also have en
the number of different combinations encountered in the
shuffles and et the number of different combinations in the
true data, globally step (i) scales in O(ei) on top of the al-
ready advantageous scaling of the sweep line algorithm, step
(ii) scales in O(en*et) and step (iii) in O(et*ei). Steps (ii) and
(iii) are generally only time consuming if k (number of sets)
is large.

MODL itemset mining algorithm

Up to 2k combinations are possible with k sets of regions,
(although usually much fewer are observed in practice).
Furthermore, simply sorting by P-value may not be help-
ful, since the most enriched combinations are not necessar-
ily the most interesting: a combination that was expected
across 2 base pairs but observed on 2000 bp will be very
enriched but may still be one of the rarest observed com-
binations and not be biologically very relevant. Both these
facts can make interpretation of the results difficult.

To alleviate this, by default combinations are sorted by
their observed S(� ) (number of base pairs) in the true data.
To go one step further, we introduce the optional MODL
(Multiple Overlap Dictionary Learning) algorithm for item-
set mining (Algorithm 1). In OLOGRAM-MODL, it can
be used to pre-select combinations of sets which are of in-
terest, hence reducing afterward the total number of en-
richment computations and making the results easier to
interpret.

Algorithm 1 Multiple Overlap Dictionary Learn-
ing (MODL) algorithm for combination mining

Extraction of relevant sub-complexes with dictionary learn-
ing. In the OLOGRAM-MODL approach, the input ma-
trix of MODL is the matrix of overlap flags provided by the
algorithm in Figure 2. It has one row per overlap and one
column per set in the real, non-shuffled data. However, any
matrix matching this format can be used.
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Figure 3. Principle of itemset mining via dictionary learning. Dictionary
learning is a special case of matrix factorization, where the goal is to learn
the sparse code U and the dictionary V from the data X under certain con-
straints, minimizing the reconstruction error. The dictionary should have a
small number of rows (atoms). It can be clearly seen how the atoms (rows)
of the learned dictionary V can be mined for frequent itemsets in the data,
giving sets that are often present together. Although this figure pictures bi-
nary matrix, any real-valued matrix X and U can be used. Note that in real
dictionary learning, the rows of V2 sum to 1, but the principle is the same
as illustrated here. In OLOGRAM-MODL, X corresponds to the matrix
of intersections as created in Figure 2, taking only all rows where overlap
is ‘Yes’. Each row of the dictionary V is a potentially relevant combination
� .

Figure 3 shows the principle of dictionary learning (21)
as used by MODL, which is a factorization matrix problem
with sparsity that entails solving:

(U∗, V∗) = arg minU,V
1
2
‖X − UV‖2

2 + α‖U‖1

subject to ‖Vi‖2 = 1 for all 0 ≤ i ≤ natoms

It shows that relevant itemsets can be extracted from the
atoms of the dictionary V. A dictionary is composed of
atoms (its rows), which are used to rebuild richer words
(rows of X are observed combinations). Here, atoms rep-
resent biologically relevant sub-complexes. Adding redun-
dant atoms (i.e. (11) if (01) and (10) are already present) if
they improve the rebuilding can be warranted to represent
the entire complex.

MODL is less vulnerable (but not immune) to noise than
usual tree-based approaches, since it is based on matrix fac-
torizations (25), (26) and Results and comparison section.
Noise is defined broadly as any factor that causes an ob-
servation different of the biological reality. It can be fully
random, but since matrix factorization focuses on strong
signals it can still accommodate a coherent signal acting as
noise, as long as it is weak compared to the main biological
signal. Biologically, this can be due to ChIP-seq false posi-
tives, or any number of causes depending on the experiment.
As such, the learned atoms can be buildings blocks referring
to parts of a complex (group of sets), like in the third line of
Figure 3 instead of minor variations of the combinations.

Definition 8. The usage of an atom Vj in the rebuilding of
a given word X̂i (where X̂i = Ui V) is given by Ui, j, and is
simply the multiplicative coefficient associated to it in this
particular rebuilding. An atom’s total usage is thus equal to∑m

i Ui, j .

However, the atoms present in the learned dictionary
heavily depend on the parameters, mainly �. As such,

MODL consists of two steps. In step 1, MODL performs
various reconstructions with dictionary learning with var-
ious sparsity constraints to produce a library of candidate
atoms. In step 2, a greedy algorithm builds the final selection
by getting the best encoding candidates using the maximiza-
tion of a local function with regularization. In the following,
let k be the number of sets in the matrix X ∈ Rm×k of m ob-
servations, and q the queried final number of itemsets is a
parameter of MODL.

Library creation through sparse dictionary learning. Since
MODL’s goal is to best reconstruct the input matrix, its
cost scales with matrix size, and it emphasizes combinations
found in the most frequent observations. To mitigate this,
a compressed version of the input matrix X is processed
instead, called a smothered matrix, where the abundance
of each combination is quadratically reduced. The full pre-
processing applied to X is detailed in Supplementary Note
S-I. This results in a pre-processed matrix called �(X).

Then, the first step of MODL itself is to compute a li-
brary of candidate atoms. This is done by performing sev-
eral successive factorizations on �(X) as explained in Ex-
traction of relevant sub-complexes with dictionary learn-
ing section. The reconstructions are repeated with differ-
ent sparsity constraints � to get candidate atoms of various
lengths. At each iteration, � is increased by i/k where i is
the iteration number: this resutls in the learning of longer
atoms because a higher � allows less atoms to be used. This
step stops once � is so high that the total usage of all atoms
is zero. More details about this step are presented in Sup-
plementary Note S-11.

Greedy algorithm for combination selection. Now, the final
q combinations constituting the final dictionary VT will be
selected by iteratively adding the atoms maximizing the fi-
delity f of the rebuilding:

VT = arg maxS f (S) , where f (S) = −‖X − US‖1 + α
∑

U

At each iteration, the best atom �* of the library � is
greedily added to the dictionary Vt, which is initially empty.
For that purpose, at each step t, a two-stages optimization
process is performed which first computes all the sparse ap-
proximations for all remaining candidates U�, t of X using
the current dictionary S = Vt∪{�}, and which then chooses
the �* that minimizes the difference d1 between X and its
approximation U�, tSt, where:

d1(X, X̃) = ‖X − X̃‖1 + α
∑

U

Unlike in step 1 where U*, V* were optimized conjointly,
here the sparse coder will find U* for a given Vt. More
details are presented in Supplementary Note S-III. We
also discuss in this note how the problem of finding S*

= arg maxSf(S) admits a good submodular approximation
and provide a proof sketch for this. This means that the
greedy algorithm described above provides a good solution.

Implementation and availability of the method

As an update of OLOGRAM, the code is written in Python
3, with some performance-critical tasks in Cython and
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Figure 4. Regulatory complexes in murine promoters. Each histogram bar corresponds to OLOGRAM statistics for one combination of regulators. From
top to bottom, the first figure gives its fold change m(� ), the second gives the OLOGRAM P-value (log10), and the third figure details the composition of
each combination. We separate the results for the three different queries.The color of the histogram bars represent the order of the combination (its number
of sets/TRs). The ranking given in the X axis, from 1 to 20, is the ranking of the combination when sorting by true S(� ) (number of base pairs on which
the combination is observed in the true data), not by P-value. In the third figure, each Transcriptional Regulator is colored according to its general role. As
expected, we find that NANOG is more associated with regulators involved in stem cells, IRF1 with interferon response ones, and CTCF with insulators.

C++. To preserve RAM when working with large files, the
shuffles are divided into batches. However, OLOGRAM
must still remember all computed intersections within a
run; hence, we also permit merging different runs as super-
batches if necessary, although fitting is not assessed then.
The demonstration examples take a timescale of minutes to
run, up to hours for very large cases (see Running times sec-
tion) on a 4-core 3.5 Ghz processor.

For the MODL subroutines of dictionary learning and
sparse coding, the Scikit-Learn implementation is used (27).
OLOGRAM-MODL is accessible through the command
line interface of pygtftk (28) which is available on Bioconda.
The GitHub also contains documentation with more infor-
mation. The integration with the pygtftk suite of tools al-
lows easy use in bioinformatics pipelines and easier exten-
sion. A detailed list of its source code files and their roles is
presented in Supplementary Table S5.

The tool will output one set of statistics per combination
of sets of interest in a TSV (Tab Separated Values) format
that can be manually edited. Then, an ologram modl treeify
plugin creates visual representations of the results of a
multiple overlap analysis, used to generate Figure 5. The
MODL algorithm can also be used as a standalone com-
bination mining algorithm through the API.

Data and results

We use two main types of data to produce the results of this
study. Two different types are used: either a set of genomic
intervals as BED files, or a representation of the overlaps
between those sets of intervals as a matrix X where each
row is a combination. The details about the creation and the
detailed sources of this data is presented in Supplementary
Note S-IV.

Artificial datasets are generated with a known ground
truth, so we can use them to demonstrate and quantify the
behavior of our algorithms. Those are used in the results
presented in section Artificial data and comparison to exist-
ing approaches section. For the artificial matrices, they have
a large number of rows to perform a large scale experiment
and ensure the results are not due to random chance, and
the itemsets selected represent biologically interesting cases,
with a diversity of complexes and two overlapping ones.

Conversely, we also use three biological datasets to pro-
duce the results of Biological results section: human and
murine transcription factor binding sites ChIP-Seq data, as
well as human sc-ATAC-seq data. The two first datasets
serve to demonstrate OLOGRAM’s utility in discovering
complexes of regulator, and the third demonstrates how it
can scale to larger problems. When selecting the transcrip-
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Figure 5. FOXA1 Regulatory tree. Example of the structure of the output graph that pictures combination enrichment for FOXA1 in MCF7, with a zoom
on a relevant part. For each combination, the number of base pairs over which it is found in real data (S) is presented, followed by the log2 of the fold
change and corresponding P-value according to a Negative Binomial model. The color gradient is based on the fold change. The combinations displayed
are a selection based on the selection by MODL with some combinations manually added. This figure is created by our ologram modl treeify plugin based
on an edited TSV result file given by the ologram command.

tional regulators to study, we tried to avoid cherry picking
by using a wide variety of TRs, and including many com-
monly studied ones. We present the full list in Supplemen-
tary Data.

The complete workflow used to produce the Results
of this study, along with the full data used, is avail-
able as a Snakefile (Snakemake file, (29)) at https://github.
com/qferre/ologram-modl supp mat. Users can re-use and
adapt the commands presented there for their own work-
flow.

RESULTS

In summary, OLOGRAM-MODL takes an input a set of
genomic regions (usually in BED format) and will deter-
mine for each encountered combination of genomic regions
whether it is enriched, meaning whether it is encountered
more than expected by chance. The MODL algorithm can
be used to restrict the combinations for which this is calcu-
lated to combinations of interest (custom selections are also
possible).

The first goal of the experiments presented in this sec-
tion is to validate our statistical model and our itemset min-
ing algorithm. We do so using artificial data for which the
ground truth is known, and the results can be compared to.
We also compare to existing approaches. In the second part,
we show that OLOGRAM-MODL is not only able to deal
with true biological data but also a fair way to discover rel-
evant complex of genomics regions and get novel insights.

Artificial data and comparison to existing approaches

First, we want to establish that our statistical model is valid
in the context of combination enrichment. We also want
to show that the MODL algorithm can find relevant item-
sets in situations representative of real use cases. To do so,
we benchmark OLOGRAM-MODL against data with a
known ground truth to which the results can be compared.
The datasets used will refer to the data defined in Supple-
mentary Note S-IV, see this note for more details.

A comparison between the functionalities of
OLOGRAM-MODL and of existing available tools is
presented in Supplementary Table S1 and in the rest of this
section. We show that OLOGRAM-MODL is easy-to-use
and brings novel insights compared to existing approaches.

OLOGRAM statistical model. We use the BED files rep-
resenting artificial regions, with an inexact counting. In the
regular artificial data, OLOGRAM correctly identifies the
associations between sets: as a general rule, sets that have
strong overlap with each other are seen as enriched, and vice
versa. Notably, the query was found enriched with its sub-
sets but not with the negative control. Detailed results are
presented in Supplementary Figure S1.

Precision. For the studied n-wise combinations, the S
statistic (number of overlapping base pairs) also indeed fol-
lows a Negative Binomial distribution, which confirms the
assumptions of the statistical model. The findings of the
previous paragraph also apply. Full histograms are pre-
sented in Supplementary Figure S2. The precision of the
P-value estimated through this depends on the quality of
the fitting. This in turn depends on the number of shuffles,
but 100–200 shuffles are usually enough for a good approxi-
mation (6). To that end, the goodness-of-fit is systematically
assessed for each combination.

The precision of the fitting for the tails of the distribu-
tion is presented in Supplementary Figure S7. For pairwise,
the empirical distribution is visibly close to a Negative Bi-
nomial. The precision is very good for high values of P up
to P = 10−5 which is far below usual significance thresh-
olds, and only drops on the far end of the tails of the dis-
tribution. But the underlying distribution has the general
shape of a Beta distribution (see the C subfigure), meaning
the estimated P-values will still be proportional to the real
underlying ones.

Furthermore, our Negative Binomial model is less accu-
rate when there is a small number of regions in the sets (suf-
ficient quality with roughly 1–2 thousand regions per chro-
mosome), and that it is valid only asymptotically. Never-

https://github.com/qferre/ologram-modl_supp_mat
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theless, the Negative Binomial model is still preferable, for
reasons that are expanded upon in the Discussion section.
If there are few expected overlaps, the distribution can be
skewed to the left (as in case C of Supplementary Figure
S2) and be more difficult to fit since there are few nonzero
observations, but the underlying distribution is nevertheless
reasonably well approximated by a Negative Binomial.

Comparison. Compared to MULTOVL, we show in Sup-
plementary Table S2 that there is only a slight difference in
our shuffling statistics, owing to a different shuffling model.
Negative Binomial distributions with the same parameters
closely match MULTOVL’s empirical P-values. On cases
with a high P-value (P > 0.05), meaning only a low reso-
lution is needed, our Negative Binomial model is validated.
On harder cases MULTOVL’s precision plateaus at 1/ns
where ns is the number of shuffles, while OLOGRAM is
more resolutive. Furthermore, MULTOVL gives statistics
by multiplicity (not which sets are open at a given position,
only how many) and not for each combination as OLO-
GRAM does.

Running times. A full run of 1000 shuffles in the large
‘coarse’ artificial dataset took 40 s on a laptop (i7-7820HQ
processor, single thread), against 10 s for MULTOVL. Typ-
ical runtimes are in the order of a few minutes, such as for
the example in Regulatory complexes in murine promot-
ers section. In extreme cases, such as the very large data use
case of Overlap between single-cell ATAC-seq in PBMC
data section with 75+ large files, the runtime was 1.5 h per
4 shuffles, mostly due to the analysis in steps (ii) and (iii) (as
defined in Time scaling section) and not the shuffles them-
selves. In general our running times are of similar orders of
magnitude compared to existing tools. For all these cases,
detailed runtimes, data characteristics and computer speci-
fications are presented in the legends of the Supplementary
Figures.

MODL. OLOGRAM will quantify the enrichment of any
combination encountered, or of a custom selection. But
with k sets, there are up to 2k possible combinations, al-
though in practice far fewer are encountered. To help select
among those, we propose an ancilliary itemset mining algo-
rithm called MODL. In this section, we show that MODL
can help select relevant combinations.

Results and comparison. We compare MODL to other
itemset mining algorithms: apriori and FP-growth are ex-
haustive algorithms that return all the correct itemsets, and
most improvements today are focused on runtime (11). We
also compare to LCM (closed itemset miner) and CL-MAX
(approximate itemset miner). The algorithms’ usefulness in
identifying the underlying combinations used when gener-
ating the artificial overlap matrices (see Data and results
section) is compared. We compare the status of each com-
bination in MODL (selected or not, and candidate rank) to
the rankings and selections given by the other algorithms.
Even when applying 12% uniform noise, MODL still re-
turns the correct combinations.

Results are presented in Supplementary Table S3. The top
three combinations found by MODL are indeed the three

complexes defined when generating the data: AB, ABCD
and EF. Other algorithms give them a lower ranking, be-
cause if the rule ABC is true the rules AB and ABC are
equally true.

Itemset miners in general are vulnerable to noise. Approx-
imate itemset miners (such MODL purports to be) are pro-
posed as a solution (25). Indeed, when using a clustering-
based approximate itemset miner (CL-MAX, (30)), results
that are close to MODL’s. However, CL-MAX is more vul-
nerable to a poor choice of hyperparameters.

We also compare OLOGRAM with GINOM on their
demonstration data. There is a link between the fold
changes in OLOGRAM and in GINOM, as shown in Sup-
plementary Table S4. The combinations selected by the
two approaches differ somewhat since MODL is not based
on enrichment, but MODL’s selection is still relevant, and
there are commonalities between the two. MODL behaves
as would be expected of a frequent itemset mining algo-
rithm, in that it seeks to rebuild the original data matrix and
does not select sets alone but with their co-localized sets (i.e.
not selecting set 5 alone).

To perform a relevant comparison, we also ran a super-
vised version of MODL to perform variable selection for a
Naive Bayes classifier predicting the presence of the query
regions. Variable selection in Naive Bayes is known to be
submodular (31), and as such this constitutes a good use
case of MODL. Results are closer to GINOM (stronger em-
phasis on sets 4 and 5). This is subject to refinement and
parameter selection but serves as a proof-of-concept for a
supervised MODL (the API for this is explained in the doc-
umentation).

MODL, when unsupervised, has a bias towards the most
abundant combinations in the data, instead of those with
highest support. As it is designed to mine for complexes, it
also tends to return too broad potential correlation groups
(cf. Library creation through sparse dictionary learning sec-
tion) or simply noise patterns. This loss of granularity is a
known necessary drawback of Approximate Itemset Min-
ing approaches (25), but the normalization of the atoms by
their squared sum helps correct this problem (cf. Greedy al-
gorithm for combination selection section), and we discuss
further ways to correct this in Supplementary Note S-III.

Scaling. To produce these results, MODL’s time cost re-
mains reasonable in most use cases, a few minutes at most
on a laptop for the typical cases: a few files of tens of thou-
sands of regions. Details of MODL scaling and time cost
are presented in Supplementary Figure S3. It can become
large due to the large number of factorizations performed:
MODL scales in O(k) with the number of sets and O(q2) in
the number of queried combinations (atoms).

For reference, we also compare the elementary opera-
tion of MODL (one instance of dictionary learning, DL)
with apriori and FP-growth. Unlike them, dictionary learn-
ing scales linearly with the number of sets. DL also scales
linearly in the number of queried atoms, while tree-based
algorithm scale exponentially with support until they reach
a plateau. Run time on DL also increases with the entropy
(amount of information) present in the data, as the stopping
is convergence-based. Details are presented in Supplemen-
tary Figure S4. While DL may be more expensive for low
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k and several thousand intersections (i.e. transactions) that
are the typical use cases for OLOGRAM, time costs remain
in the order of seconds for all (32).

Biological results

Having demonstrated that OLOGRAM-MODL’s behav-
ior matches our expectations, we now apply the tool to a
variety of biological problems to demonstrate that it can
present relevant insights in different use cases, while remain-
ing easy to use. Nevertheless, the rigorous validation of our
approach rests on the results obtained with artificial data,
where the ground truth is known. This section on biological
data should rather be seen as illustrative of the possibilities
of the approach when applied to biological problems.

Regulatory complexes in murine promoters. We begin with
a fundamental use case for OLOGRAM: the analysis of
regulatory complexes. We perform a search in murine pro-
moters, by looking for the transcriptional regulators (TRs)
among our selected TRs that are associated with three dif-
ferent query TRs: CTCF, NANOG and IRF1. The shuffling
is restricted to estimated murine promoters (see Data and
results section). MODL is not used here yet. In each case,
each query TR is run against all other selected TRs, without
cherry-picking. The colors and classification are only used
to interpret the results a posteriori.

We would expect that CTCF (33) would be involved in
combinations with factors found in insulators (RAD21,
SMC) as well as other factors due to its plurality of roles.
IRF1 (34) should be associated with factors involved in in-
terferon response (IRF9, STAT). Finally, NANOG (35) is
expected to be associated to stem cell developmental factors
(KLF4, POU5F1). Other associations should nevertheless
be present since those TRs are known to have multiple roles.
Noise and imprecisions could also introduce spurious asso-
ciations.

Results are presented in Figure 4. When ordering the
combinations by true S(� ), meaning their number of base
pairs in the true non-shuffled data, we find the expected
complexes first, especially for NANOG. In particular, when
comparing combination of the same order (number of sets),
those we expected have consistently higher fold changes and
more significant P-values in OLOGRAM (see Computing
the combination enrichment section). This example shows
OLOGRAM can be used to robustly identify biologically
meaningful combinations.

FOXA1 and its regulatory complex in MCF7. In this anal-
ysis, we now showcase how the MODL algorithm can help
identify new biological complexes. We also show a proposed
tree (or more accurately, directed acyclic graph) representa-
tion of the combinations, meant to facilitate interpretation.

The combinations of TRs associated with the transcrip-
tional activator FOXA1 are studied here, in the MCF7
breast cancer cell line. FOXA1 is known to interact with
chromatin as a pioneer factor. In many types of breast can-
cer, such as MCF7, it is also known to act as a pioneer fac-
tor to the regulator ER� (ESR1, (36)). Conversely, it is a
downstream target of the regulator GATA3 in breast cells
(37).

We compare FOXA1 (as the query) against a selection
of TRs drawn from the most common in MCF7 as well as
some expected TR interaction partners. As the regions con-
sidered (TR binding sites) cover a small proportion of the
genome, the shuffling is restricted to a subgenome of inter-
est to ensure the longer combinations still have a reasonable
chance of occurring under (H0). This subgenome is made of
estimated pseudo-Cis-Regulatory-Modules, defined as the
merged regions for all considered TRs.

An illustrative selection of combinations is presented in
Figure 5. The expected correlators of ESR1 and GATA3
are indeed found enriched. MAX and MYC, known to
form a complex (38), are as expected found more enriched
together than separately. The graph representation high-
lights that same-length combinations containing ESR1 and
GATA3 but without either EP300 or JUN have lower fold
changes. This suggests that they are all an important part
of a FOXA1 regulatory complex. The graph also highlights
the role of ESR1 through downward closure: for example,
the combination FOXA1 + GATA3 + MAX is observed on
4 million base pairs, but 3.5 million of these observations are
in fact FOXA1 + ESR1 + GATA3 + MAX.

MODL (with k = 8 and q = 20) selected relevant shorter
combinations first, although they are not the most enriched.
Its selection without manual additions is presented Sup-
plementary Figure S5. EP300 and JUN are less prominent
in the selection as they are comparatively rarer, but indeed
found as part of their regulatory complexes (large propor-
tion of their total S). Conversely, the frequent MAX and
MYC are more represented. MODL tends to select closed
itemsets (for instance, EP300 was not selected alone), but
this is admittedly not always true.

In conclusion, this analysis highlights the regulatory
complexes formed by the interactions between FOXA1 and
others regulators. Rather than saying ESR1 is associated to
FOXA1, it would be more correct to say it is part of a regu-
latory complex to which FOXA1 also belongs. This deserves
further study as such associations are, to our knowledge, not
explored in the literature. This illustrates how OLOGRAM-
MODL can be applied meaningfully to certain biological
problems.

Overlap between single-cell ATAC-seq in PBMC data.
OLOGRAM-MODL is also applicable to more systematic
studies. In this section, we demonstrate that OLOGRAM
can be applied with a larger number of region sets (n >
70). To do so, we consider 75 randomly selected cell sam-
ples from single cell ATAC-seq PBMC data. We want to
see if the ATAC-seq sites, denoting chromatin accessibility,
are similar between cells of the same type. This study was
performed by merging different runs in order to reduce the
RAM cost at any single time, since we were working with
many large files.

We consider the enrichment for each possible combina-
tion � of cells depending on its heterogeneity. For example,
in the combination A + B + C, if all its member sets are are
sc-ATAC-seq sites from CD4 cells the combination is con-
sidered homogeneous. Let D and E be ATAC-seq sites for
respectively a CD14 and pre-B cells. Those cells are very dif-
ferent and have been grouped in different superclusters. As
such, the combination A + D + E is called ‘heterogeneous’
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since it concerns the overlaps of open genomic sites from
very different cells.

We compare combinations one order at a time, and re-
sults are presented in Supplementary Figure S6. We find
that homogeneous combinations are more enriched. In-
deed, it stands to reason that the open genomic sites of cells
from very different types (different superclusters) would be
less similar than the sites of cells of similar type (same su-
percluster). However, the difference is relatively small due
to high individual variations in the data.

DISCUSSION

The OLOGRAM-MODL approach consists of two steps.
We combine an optional itemset mining algorithm to find
interesting combinations, with a statistical model to deter-
mine the enrichment of the relevant combinations, assert-
ing whether this combination occurs in the real data across
more base pairs that would be expected by chance.

The integration with the pygtftk toolkit facilitates com-
plex queries in bioinformatic worfklows. As a command line
tool whose dependencies can be handled by conda, it is con-
venient to run on clusters with reproducible workflow man-
agers such as Snakemake. Thanks to the use of a Monte
Carlo approach and to C++ optimization, OLOGRAM-
MODL can even be run on a laptop.

Statistical model. The precision of the P-value given by
OLOGRAM depends on the quality of the Negative Bino-
mial fitting, but should be accurate enough in most cases
(see OLOGRAM statistical model section). Inaccuracies
come mostly from how precisely the variance and mean are
estimated, and from how precisely the model approximates
the true underlying distribution. As a result, a P-value of
1E-200 in OLOGRAM does not mean the P-value has been
estimated to a precision of 200 significant digits.

The Negative Binomial model is only asymptotically true,
but in practice it is a good enough approximation for the un-
derlying Beta Binomial. Above P > 0.001, far below usual
significance levels, the fitting is good enough that there is
no significant difference in the P-values, hence small false
positive risks. In any case, the order of P-values remain un-
changed: if a combination 1 has a lower true P-value than
combination 2, its estimated Neg. Binom. P-value will be
lower too, since a Negative Binomial is a special case of a
Beta Binomial.

Regardless, fitting directly a Beta Binomial is less desir-
able since its density function calculation relies on computa-
tionally expensive numerical approximation, and we cannot
fit the ‘n’ parameter (theoretical maximum). Nevertheless,
OLOGRAM also gives the P-value for S as fitted through
a Beta distribution. The Beta is a good approximation for a
Beta Binomial (39) since n is usually very large (>10 000).
However, Beta distributions are harder to fit, since unavoid-
able small errors in the estimation of the skewness and kur-
tosis will propagate (40). With our usual number of shuffles
(hundreds) it is very imprecise (see Supplementary Figure
S8) and is only preferable with thousands or more of shuf-
fles. Maximum Likelihood Estimates are not used since they
are less robust in general, and even a small difference could
result in very different P-values. In conclusion, although the

Negative Binomial model is approximate, we find it to be
preferable in practice.

With a large number of region sets, and/or with regions
covering a small proportion of the genome (such as Tran-
scriptional Regulator binding sites), longer combinations
(and children of enriched combinations) will have small ex-
pected overlaps and as such higher enrichment, as seen in
Results. Those combinations may not be the most represen-
tative configurations taken by the region sets, and one must
be very cautious when comparing P-values between combi-
nations of different orders (recall that the order of a com-
bination is the number of region sets it concerns). Helping
select among those is also part of MODL’s purpose. In any
case, this is why we (by default) emphasize frequent com-
binations in the displayed results by sorting them by their
S(� ) in the true data.

Necessary elements in regulatory clusters, as well as mas-
ter regulators (41), are emphasized through a tree-based
representation (Results section) and transitive counting.
This representation highlights, for each combination, the
increase in enrichment brought by adding a given set to the
combination. We expect this to be useful in studying Cis-
Regulatory Elements as n-wise clusters of regulators and
moving away from only considering pairwise associations.
Furthermore, we also recommend to restrict the shuffling
to a smaller sub-genome of interest (as also recommended
by (9)), for example only to enhancers or promoters, or to
the merged regions of selected candidate set. No more than
around 20 sets at once should be considered, keeping in
mind that biologically relevant complexes of TFs are usu-
ally made of a maximum of 5–6 factors.

Finally, the fitting could be inaccurate for many other un-
foreseen reasons. Indeed, our model rests upon certain as-
sumptions (i.e. exchangeable variables, sufficient nb. of re-
gions, etc.). The null hypothesis can be rejected if any of
these assumptions is not verified, or merely because the ap-
proximation holds only asymptomtically. The fitting test is
the key: if, when performing the shuffles, it is found that the
distribution of S(� ) under our shuffling model does not fol-
low a Negative Binomial, it will be said. Then, if the hypoth-
esis is rejected (low P-value) but the fitting was good, it can
be assumed that the sets are not independent. Admittedly,
the fitting test does not deeply fit the tails of the distribution,
but it shows if the general shape is close enough. As such,
OLOGRAM also gives empirical P-values (on the empiri-
cal distribution of S in the shuffles) if you do wish instead to
sample deeply. But as can be seen in Supplementary Figures
S2 and S7, the match is usually good. Regardless, a Negative
Binomial distribution is a natural choice to model counts
of observations with more variance than a simple Poisson
distribution. This was an intuitive result at first, that was
revealed to be practically applicable and theoretically justi-
fiable.

Itemset mining. The MODL itemset mining algorithm can
be used to focus on elementary combinations of interest. It
leverages matrix factorization techniques for their robust-
ness to noise, which is a widespread problem in biologi-
cal assays. This also means that, compared to usual itemset
miners, MODL is focused on learning biological complexes
as coherent units, and not simply association rules. This be-
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havior is more relevant for a biological analysis, where iden-
tifying only a portion of a regulatory complex would not be
as useful. This entails learning compromise combinations
(see Supplementary Table S3), as such the queried number
of sets should be kept close to the actual expected number.

Note that no matter which combinations are identified
by MODL, the enrichment results do not change. MODL’s
time cost remains reasonable in most use cases. It also scales
better at high k, compared to methods such as the stepwise
selection of models used in GINOM that may need to ex-
plore a parameter space that has 2k combinations. It is also
more focused on denoising compared to usual itemset min-
ers, although our pre-processing will nevertheless increases
the sensibility to noise by emphasizing rarer combinations:
its use is a compromise between denoising and not ignoring
the rarest combinations.

MODL remains exploratory and a first contribution
open for future research, and we expose the intersection ma-
trix to let the user run their own mining algorithms. Cus-
tom selection of combinations is possible, even without us-
ing MODL. Indeed, MODL can also be used to perform a
pre-selection as a starting point for a manual custom based
on the biological problematic (e.g. all combinations con-
taining the particular regulator that you are studying, or
a systematic study of all combinations of a given order).
MODL may need fine tuning of parameters, but we dis-
cuss in Supplementary Notes S-11 and S-III ways around
this. Approximate itemset miners are comparatively rarer.
We hope MODL can be a contribution to the field thanks
to its advantages.

Perspectives

OLOGRAM-MODL is applicable to any problem that can
be reduced to quantifying the significance of overlaps be-
tween n sets of position intervals. Besides epigenetic marks
binding sites, associations between sets of regions such as
‘promoters of housekeeping genes’ or ‘Binding sites for the
regulator X in the experimental condition Y’ can also be in-
tegrated. This is especially important in our ‘big data’ and
multi-omics era, as combinations can also be combinations
of datasets.

The core idea of MODL, selecting itemsets according to
how well they rebuild the ensemble of all itemsets, is prece-
dented (42). The MODL algorithm can be applied to any
submodular problem, as the API supports custom error
functions. For example, since variable selection in Naive
Bayes classifiers is indeed submodular (31), MODL could
select combinations that help such a classifier predict the
query, as we demonstrate in Results and comparison sec-
tion. While this is not yet implemented as a core feature, a
guided manual example is available in the documentation
which can be readily reused on different files. Other custom
losses can also be used.

Since the overlaps are considered in terms of S(� ) (over-
lapping base pairs), it is also possible to do a proximity
analysis by extending the regions by different values and
comparing the significance of enrichment of each. It would
be interesting to extend OLOGRAM-MODL to intra-set
overlaps, which could be used to model a signal through
quasi-Lebesgue integration by converting it into blocks of

reads into overlapping regions. Concatenating flags on suc-
cessive lines could be a way to include temporality. Re-
gions of contact between genomic elements could be repre-
sented as sets and their enrichment quantified. The imple-
mentation includes notes to facilitate such improvements,
and others such as integrating custom shuffles for the user,
or remembering regions IDs when shuffling. Indeed, as for
pygtftk itself, OLOGRAM-MODL was designed to be evo-
lutive and collaborative.

CONCLUSION

Since human genomic cis-regulation is performed through
combinations/complexes of regulators, robustly identifying
the statistically enriched ones is an important step in any
bioinformatic analysis. The major contribution of this work
is the design and implementation of an algorithm to do so,
that both mines and evaluates the enrichment for combina-
tions of more than two sets of genomic regions.

OLOGRAM-MODL was designed to leverage itemset
mining together with a statistical model analysis, and get
the strengths of both. A novel optional itemset mining al-
gorithm designed to be resistant to noise and mine for bio-
logical complexes, not simply association rules, is proposed.
Then, a statistical framework evaluates the enrichment of
the combinations using a Negative Binomial model, which
is more resolutive than empirical P-values while still being
immediately understandable. It returns a parsable graphi-
cal representation which helps the identification of master
regulators, by supporting inexact combinations.

Our approach is validated on artificial data, and shown
to be useful in identifying previously neglected regulators
associated to FOXA1 and in identidying expected biologi-
cal complexes in murine promoters. It is implemented as an
easy-to-use tool for the scientific community in the pygtftk
suite, which makes it easy to use in bioinformatic pipelines.
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