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Abstract: Chitosan-based hydrogels are being widely used in biomedical applications due to their
eco-friendly, biodegradable, and biocompatible properties, and their ability to mimic the extracellular
matrix of many tissues. However, the application of chitosan hydrogels has been limited due to their
inherent mechanical weakness. Halloysite nanotubes (HNTs) are naturally occurring aluminosilicate
clay minerals and are widely used as a bulk filler to improve the performance characteristics of
many polymeric materials. HNTs have also been shown to be a viable nanocontainer able to provide
the sustained release of antibiotics, chemicals, and growth factors. This study’s objective was
to develop a stable drug delivery chitosan/HNT nanocomposite hydrogel that is biocompatible,
biodegradable, and provides sustained drug release. In this study, chitosan/HNTs hydrogels
containing undoped or gentamicin-doped HNTs were combined in different wt./wt. ratios and
cross-linked with tripolyphosphate. The effects of chitosan and HNTs concentration and combination
ratios on the hydrogel surface morphology, degradability, and mechanical properties, as well as
its drug release capability, were analyzed. The results clearly showed that the addition of HNTs
improved chitosan mechanical properties, but only within a narrow range. The nanocomposite
hydrogels provided a sustained pattern of drug release and inhibited bacterial growth, and the
live/dead assay showed excellent cytocompatibility.

Keywords: chitosan; composite; drug delivery; HNTs; hydrogel; gentamicin; nanocomposites;
sustained release

1. Introduction

Oral ingestion and intravascular injection of antibiotics have a lengthy application history and
are primarily used in the control of infection post-surgical infection. However, there is a high risk of
negative side effects [1,2]. These side effects are principally due systemic administration through the
blood vascular system and not directly to the target tissue [3]. In many cases, frequent administration
of antibiotics is required to achieve the dosage levels needed to eliminate the infection, and this regimen
has the potential to severely impact unaffected tissues resulting in additional medical issues for the
patient, such as gastric, hematological, neurological, dermatological, allergic and other disorders [3].
An implantable drug delivery system that can provide a defined drug load directly to the affected
tissue is one strategy to resolve this problem. Key design considerations in building such a drug
delivery system include biocompatibility, biodegradability, mechanical stability, and the ability to
provide sustained drug release. In this study, chitosan and halloysite were used to construct and test
composite hydrogels that differed in percent concentration of these materials.
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Chitosan is a naturally derived hydrogel, usually produced by alkaline deacetylation and is
biodegraded by human enzymes [4]. Chitosan has been proven to be non-toxic, possesses a lack
of immunogenicity, possesses the ability to sequester bioactive factors, and has the capability of
assembling a tissue-specific extracellular matrix (ECM) [4–6]. It also exhibits some antibacterial
properties [7]. This antimicrobial ability makes chitosan a suitable candidate for implant coatings,
wound dressing, and drug delivery applications, but chitosan has a major flaw which is its inherent
mechanical weakness [8–10]. Many approaches, such as the addition of various polymers, [11,12]
carbon nanotubes, [13,14] or clay nanoparticles [15,16], have been studied as a means to improve
chitosan’s mechanical properties, and these additives increased the roughness of the scaffold which
enhaced cell attachment, proliferation and differentiation [17–19].

Halloysite nanotubes (HNTs) are naturally occurring nanotubes composed of silica and alumina, [20]
and exhibits a high degree of cytocompatibility hemocompatibility, and biocompatibility [21–23]. They are
1D nanomaterials with a unique hollow tubular morphology which has an external diameter of 50-200 nm,
lumenal diameter of 5-30 nm and a length of 0.5-2 µm [20]. The electrokinetic behavior of HNT at pH 7 is
defined by the negative surface potential of SiO2, with a small contribution from the positively-charged
Al2O3 inner surface [24–26]. As a polymer filler, HNTs have been shown to significantly improve
the material properties of polymers and resins such as alginate, [19] calcium phosphate cement, [27]
epoxy, [28] nylon, [29] poly(methyl methacrylate), [30] and rubber [31]. The unique hollow tubular
structure enables HNTs to be used as drug carriers. The HNT lumen can serve as a reservoir for the
loading and release of a diverse set of biologically active molecules, including small molecules, enzymes,
nucleic acids, and proteins [32–36]. Moreover, the loading capacity of HNTs can be further enlarged by
chemical etching, thus increasing its cargo-carrying capacity [37].

Chitosan (CS) combined with different types of nanoparticles have been extensively studied [38].
Recent studies have shown that these nanocomposites are biocompatible, antimicrobial, and
mucoadhesive and can be fabricated into various forms including coatings, [39] films, [40] hydrogels, [19]
and membranes [41]. Furthermore, CS, with the addition of HNTs, has also been shown to significantly
increase strength, tensile modulus, hardness, and toughness [17,42]. However, these studies only
reported on the effects that HNT addition had on polymer mechanical properties, however, the influence
of chitosan and HNT concentration and the corresponding impact of different percent combination of
these materials on the mechanical properties and cellular behaviors has yet to be established.

In this study, chitosan was chosen to be cell growth scaffold due to its polycationic property and
antibiotic potential [7,10]. The drug-carrying capacity of HNTs was employed as additives to improve
chitosan hydrogel mechanical properties. The resultant changes in hydrogel surface structure, tensile
strength, stiffness, and degradability were studied. Gentamicin was selected as a model drug to assess
drug release in CS/HNTs hydrogels of different compositions. Escherichia coli (E. coli) and Staphylococcus
aureus (S. aureus) were used as a means for testing the bacterial growth inhibition capacity of the
different hydrogels and in estimating drug efficacy. Pre-osteoblasts (MC3T3) were selected to study the
potential cytotoxicity of CS/HNTs nanocomposites.

2. Results

2.1. SEM

CS and CS/HNTs hydrogels were dropped into 10% tripolyphosphate (TPP) solution. The ionic
cross-linking happened between the NH3

+ site of chitosan and OH− site on TPP. After 10 minutes
cross-linking process, spherical hydrogel beads were formed with an average diameter of 3.38 ± 0.28 mm.
For SEM analysis of surface and structural features of the hydrogel beads, beads were pretreated by
lyophilization. Due to the pressure changes in the vacuum chamber during lyophilization, some hydrogel
bead formulations collapsed and lost their spherical shape. A low concentration of chitosan (3% CS,
Figure 1A) was barely able to preserve its original spherical shape as the hydrogel walls collapsed.
However, as the chitosan concentration increased, the hydrogel beads structure provided some resistance
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to deformation and collapse of the hydrogel wall structure (Figure 1C,E). In contrast, the increased
addition of HNTs may have enabled the CS/HNT hydrogels to resist deformation and preserve a more
rounded microbead shape. HNTs may have interacted with chitosan to form stronger walls and provide
more support to the hydrogel matrix. Also, the increased addition of HNTs produced a rougher surface
(compare Figure 1D,F).
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Figure 1. SEM images of pure chitosan hydrogel beads with increased chitosan concentration (A,C,E)
and chitosan/ Halloysite nanotubes (HNTs) wt./wt. composites (B,D,F). (A) 3% chitosan (CS), (B) 3%
CS/2% HNTs, (C) 4% CS, (D) 4% CS/2% HNTs, (E) 5% CS, (F) 5% CS/ 2% HNTs.

2.2. Degradation

CS and CS/HNTs hydrogel beads did not exhibit any weight loss when incubated in PBS without
lysozyme (data not shown). When the hydrogel beads were incubated with lysozyme, they degraded
gradually as expected, and their weight ratio decreased, as shown in Figure 2. Among the pure CS
group (Figure 2A), 3% CS degraded fast after the first 3 days, and this speed was significantly faster
than 4% and 5% CS. (one-way ANOVA, p = 2.37 × 10−6) However, after 14 days incubation, there was
no significant difference in the final weight ratios (p = 0.09). These results show that the biodegradation
ability of chitosan does not change with increases in CS concentration. Simultaneously, there was no
significant difference between CS (5%) and CS/HNTs (5%/1%–5%, wt./wt.) (Figure 2B). The addition of
HNTs did not affect CS biodegradability.
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Figure 2. Biodegradability of CS and CS/HNTs in a lysozyme solution (1 mg/mL). (A). The weight
ratio of hydrogel beads consisted of pure chitosan (3%–5%). (B). The weight ratio of hydrogel beads
consisted of 5% CS with different ratios of HNTs (1%–5% wt./wt.).

2.3. Tensile Property

CS and CS/HNTs hydrogels (10 mm × 20 mm × 0.02 mm) were subjected to uniaxial testing using
a CellScale Univert™material testing device at a speed of 10 mm/min (Figure 3A,B). As expected, higher
chitosan concentrations imparted higher tensile stress resistance (σ), which is represented as MPa,
while a lower concentration provided higher elongation (ε) represented as strain (%) in Figure 3A.
The addition of HNTs (2% w/v) enabled higher force loading but reduced elongation (Figure 3A). When
5% chitosan was mixed with HNTs at different ratios (from 1% to 5% w/v), a lower concentration of
HNTs increased the nanocomposites tensile strength and elongation, while this reinforcement decreased
with increasing HNT addition. When the HNTs were increased to 5%, the CS/HNTs nanocomposite
showed even weaker resistance than pure chitosan (Figure 3B).

The Young’s modulus values were calculated according to the stress (σ) and strain (ε) values:
Young’s modulus = stress/strain. Based on three repetitive measurements, the average values and
standard deviation of Young’s modulus were calculated, and the differences were compared and
are presented in Figure 4. Using a one-way ANOVA analysis, there was a significant difference in
Young’s modulus among the different chitosan concentrations (p = 0.00002) supporting the conclusion
that chitosan concentration is a crucial factor affecting Young’s modulus. In addition, HNT addition
significantly improved the tensile strength of CS, (p = 0.038, 3% CS vs. 3% CS/2% HNTs; p = 0.001,
4% CS vs. 4% CS/2% HNTs; p = 0.00006, 5% CS vs. 5% CS/2% HNTs). However, increases in tensile
resistance after HNT addition gradually decreased as the concentration of HNTs increased to 5%, there
was a weakening in hydrogel material properties.
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point of each specimen.  

Figure 3. The stress-strain profile of CS and CS/HNTs. (A) Tensile test of pure chitosan (CS) with
the HNT additive groups (CS/HNTs). In this graph, every CS/HNT compound has a higher stress
value compare to CS group. (3% CS/2% HNTs > 3% CS, 4% CS/2% HNTs > 4% CS, 5% CS/2% HNTs >

5% CS). Simultaneously, a higher concentration of chitosan showed higher stress values (5% > 4% >

3%), however, the strain values displayed a different response (5% < 4% < 3%). (B) 5% CS/1% HNTs
showed a major improvement in elongation, while 5% CS/2% HNTs showed the greatest improvement
in strength. Increasing of number of HNTs gradually decreased its reinforcement ability, until at these
concentrations (CS/HNTs (5% CS/ 5% HNTs), the nanocomposites was weaker and more fragile than
pure CS. The step-wise failure behavior (slippage) at the end of each profile represents the fracture
point of each specimen.
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Figure 4. Young’s Modulus values of CS and CS/HNTs. (A) Different concentration of chitosan (3%–5%)
and their combination with 2% HNTs wt./wt. (B) 5% CS combine with HNTs at different ratio (1%–5%).
The changes are similar to the stress-strain profile. Young’s modulus value increased with HNTs
increasing at low concentration (1%, 2%), as HNTs over 3% in composition Young’s modulus value
decreased significantly.

2.4. Swelling Ratio

Swelling behavior is a consequence of the interaction between a hydrogel and water. The rate
of swelling is determined by several physicochemical parameters which include hydrogel porosity,
the mature of its porous structure, interactions between its polymer chains and the water molecules.
A higher swelling ratio indicates more free volume exists in the hydrogel, and the free volume between
knots are affected by the crosslink density. Thus, swelling ratio is also used to measure crosslink density.
In this study, swelling ratio was calculated using the fractional increase in the weight of the hydrogel.
In Figure 5, after 1, 3, and 5 days incubation, the swelling ratio of low chitosan concentration (3%CS)
is significantly higher than the hydrogel that is composed of high chitosan concentration (3% CS>

4% CS> 5%CS). The addition of HNTs significantly reduced hydrogel swelling ratio (3%CS >3%CS +

2%HNTs, 4%CS > 4%CS + 2%HNTs, 5%CS >5%CS+2%HNTs). Thus, lower concentration of chitosan
had less crosslink density, and the addition of HNTs increased the crosslink density. Furthermore,
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Figure 5. Swelling ratio for each hydrogel. The overall changes are presented in summary figure (A).
The swelling ratio for Day 1, Day 3 and Day 5 (B–D, respectively). The symbol * indicates a significant
difference (p < 0.05, n = 3). Error bar represents standard deviation.

2.5. Drug Release

Gentamicin was selected as a model for drug release. The final drug loading efficiency of gentamicin
loaded into HNTs was 13.96 ± 1.1%. The pattern of gentamicin release from the chitosan/HNT beads
was used to validate what composition would serve optimally as a drug delivery system. As the results
show in Figure 5, gentamicin released from HNTs had a burst release in the first 10 h, while CS/HNTs
provided a more stable and extended drug release profile. According to one-way ANOVA analysis,
there was no significant difference in drug release capability among 3% CS, 4% CS, and 5% CS at first
56 h, but at 104 h, there was a significant difference between them (p = 0.018), which indicates a higher
concentration of chitosan could provide a longer drug release time.

2.6. Bacterial Growth Inhibition Testing

The CS/HNT hydrogels ability to inhibit the growth of the gram-positive bacteria (S. aureus) and
gram-negative bacteria (E. coli) were studied. The optical density (OD) values at 630 nm of each
group were recorded and are presented in Figure 6, with a higher absorption value indicating a higher
concentration of bacteria. The pure bacteria suspensions, E. coli and S. aureus, without any treatment
showed continued growth over a 24-h period and served as the controls. CS/HNTs hydrogels, with
or without the antibiotic (gentamicin), were compared with the controls. Our results indicate that
CS/HNTs hydrogels without gentamicin inhibited the growth of E.coli (Figure 7A). However, inhibition
of bacterial growth was considerably less when tested against S. aureus (Figure 7B). In contrast,
gentamicin-loaded CS/HNTs hydrogels showed significant antibacterial growth resistance against both
bacterial species over an extended time period.
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2.7. Live/Dead Assay

The Live/Dead assay was applied to pre-osteoblast cultures as a means for estimating the cell
viability after exposure to the chitosan and chitosan/HNT composite films. Cell cultures were then
photodocumented and the fluorescently-labeled cells also provided an excellent opportunity to observe
and record cell adhesion and spreading. As the images in Figure 7 show, when compared to control
culture wells, cells cultured on CS/HNTs substrates showed excellent cytocompatibility with little
cytotoxic effect. There are no major differences in observed cellular behavior among control and
hydrogel groups with the exception of the 3% CS and 3% CS/ 2%H groups. Cells cultured on these films
appeared to cluster and form small colonies (Figure 8). This behavior may due to surface features or
physicochemical properties of the films. As is shown in Figure 9, among three different concentrations,
3% chitosan has more wrinkles. This observation is consistent with what we found above: a lower
concentration of chitosan had weaker mechanical properties. When cell culture plates were coated with
different concentrations of chitosan, lower concentrations of chitosan also presented a reduced degree
of stiffness as observed during manual handling of these films. Furthermore, it was more difficult
for the softer material to maintain its scaffold structure. During the crosslinking process, multiple
micro-scale wrinkles were formed in 3% CS and 3% CS / 2% HNT hydrogels. The substrate surface
features and physicochemical properties may have cellular behaviors resulting in the observed cell
clusters (Figure 7).
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Figure 7. Antibacterial test on E.coli (A) and S. aureus (B). The absorbance values at 630 nm for: pure
bacteria suspension (broth + E. coli, broth + S. aureus); CS/HNTs without antibodies (3%+H, 4%+H,
5%+H), CS/HNTs with antibodies (3%+H+G, 4%+H+G, 5%+H+G). Error bar with standard deviation.
(∗ p < 0.05; ∗∗ p < 0.005; ∗∗∗∗ p < 0.00005, n = 3).
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3. Discussion

The goal of this study was to fabricate a nanoclay-enhanced hydrogel for potential use as
a biodegradable drug delivery system. Critical in our design was to produce hydrogel films with
suitable strength enabling a range of application such as topical application or injection. Clay
nanoparticles are present in nature in several different morphologies depending on the nature of their
layered structure. Clay nanoparticles are being actively researched for their potential in a variety of
biomedical applications, in particular, drug delivery. The most well-known of these nanoparticles
include kaolinite, montmorillonite, and halloysite [43,44]. Kaolinite is an abundant and inexpensive
clay mineral and has a long history in drug delivery applications [45]. Kaolinite has been used
in many pharmaceutical applications either as an excipient or an active ingredient because of its
excellent physical, chemical, and surface physicochemical properties [44,45]. Its application within
composite drug delivery systems include antimicrobial [46], anticancer [47], skeletomuscular and
geriatric diseases [45] as well as a bioactive agent for the treatment of some common diseases. Kaolinite
and chitosan nanocomposites have seen significant research activity [48,49].

Montmorillonite clay (MMT) belongs to the smectite group with tetrahedral silica sheets layered
between alumina octahedral sheets at a ratio of 2:1, respectively [50]. It has a large specific surface
area, exhibits good absorbance ability, high cation exchange capacity, adhesiveness, and drug-carrying
capability [49,50]. Drug incorporation into MMT by adsorption into its interlayer-spaced structure within
by replacement of the water molecules, and also on the surface. The most important interactions taking
place between the two components of the hybrid system are ionic [50,51]. Chitosan MTT composites
have developed as drug delivery systems for antimicrobial [52], cancer [53], gastrointestinal [53],
osteoarthritis [54], and wound healing applications [55]. Emerging in 2012 as a potent nanocarrier
and nanocontainer, halloysite is tubular aluminosilicate nanoparticle and has been under intense study
as an agent for the sustained release of antibiotics, chemicals, chemotherapeutic agents, and growth
factors [50,51]. HNTs typically display an inner diameter ranging from 15 to 50 nm, an outer diameter
ranging from 30 to 50 nm, and lengths between 100 and 2000 nm [56–58]. HNTs have been shown to
serve as a nanocontainer with vacuum-trapped drugs, bioactive agents, and other substances, and these
are released in a sustained manner [59–62].

In this study, the effects of chitosan and HNTs concentration and combination ratios of these
materials on the mechanical properties of a hydrogel composite and its drug release capability were
analyzed. Our results suggest that a higher chitosan concentration produced a more uniform bead
shape and drug release capability. Other studies have shown that ionic gelation [63,64] (Al3+, Ca2+,
and Zn2+) or chemical cross-linking [65,66] can also produce strong beads with a more spherical shape.
Lower concentrations of chitosan and HNTs produce beads that were very soft and irregular in shape.

Higher chitosan concentration also created a hydrogel with smaller pore sizes. Hydrogels with
smaller pores were also less deformable than gels with larger sized pores. A similar finding was
reported by Chiu et al., (2013) with poly (ethylene glycol)-co-(l-lactic acid) hydrogels [67]. To verify
this potential explanation, we took the cross-section SEM images for the hydrogel beads. In Figure 10,
both 4% and 5% chitosan and their HNTs composite hydrogels have a lot of small pores. There is no
significant different in pore size between 4% and 5% chitosan and its HNTs composites. However,
3% chitosan and its HNTs composite hydrogels have numerous bubbles instead of pores, and the
bubbles are much bigger than the pores formed in 4% and 5% chitosan hydrogels. Those bubbles
were formed during the drying process. If all the bubbles break, big size of pores would remain. This
observation partly supports our hypothesis.

As expected, the deformability also increased with polymer content, which agrees with the
literature showing increasing crosslink density with increased polymer content [68,69]. The mechanical
properties also diminished rapidly during incubation, suggesting a bulk mechanism of degradation,
which is consistent with our swelling (Figure 5) and pore size observations (Figure 10). The addition of
HNTs to chitosan did not affect pore structure or porosity of the scaffolds, a result also reported by
Liu et al., (2012) [17].
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The objective of the degradation study was to determine whether the HNTs addition inhibited or
increased chitosan degradation. Our research showed there was no significant effect with HNT addition
on degradation, indicating the stability of the chitosan/HNT and the predictability of biodegradation
rates dependent on the final composites. As anticipated, HNT addition did contribute improvement in
chitosan hydrogel tensile properties. In two previous studies, HNT addition to the chitosan matrix
also significantly enhanced compressive strength, compressive modulus, and thermal stability [42,66].
HNTs are widely used as a polymer bulk filler added to significantly improve the mechanical, swelling,
water uptake, thermal, drug-loading efficiency of the composite matrices [17,24,32].

In this study, however, when HNT concentration exceeded an absolute value, hydrogel
deformability decreased sharply. In this study, 2% wt./wt. combined ratio showed the best response
to tensile testing. The results of degradation can also be explained along the same lines. The 2%
wt./wt. HNTs-chitosan hydrogels also showed the slowest rate of degradation. Our observation
of HNT response to deformability may be due to inadequate dispersion of HNTs in the chitosan
matrix. [5] The interfacial binding between HNTs and chitosan is achieved by hydrogen bonding and
electrostatic interactions [17]. A uniform dispersion results in a uniform interfacial-binding matrix,
which is favorable to force conduction. In contrast, too many nanotubes inhibit the dispersion state
and create interfacial gaps, which are easy to break. This phenomenon is clearly presented in Figure 11:
5% chitosan combined with HNTs at different rations (1% to 5%), HNTs clusters were observed by
SEM. The hydrogel films with higher concentration HNTs have bigger and more HNTs clusters. Those
clusters resist the force conduction and may result in gaps, which is represented in the insert picture of
Figure 11-4% HNTs. Instead of reinforcing the biomaterials, exceeded addiction of HNTs weakening
biomaterials original mechanical properties.

In terms of the chitosan/HNT composite’s potential as a drug delivery system, the results of
the drug release profile analysis showed a doped drug could be released in a sustained fashion, and
bacteria growth inhibition tests indicate that the release of gentamicin was able to inhibit bacterial
growth. In summary, the chitosan-HNTs hybrid hydrogel exhibited better mechanical properties as
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compared to pure chitosan hydrogels, and their combination showed a more sustained ability in drug
release. Chitosan and HNTs are eco-friendly and biocompatible materials, [12,13,19,22,23] and with
increases in their mechanical properties, they will have increased use in clinic treatments. For instance,
coating implants and providing a long-term drug delivery to prevent wound infection. Furthermore,
instead of antibiotics HNTs could be loaded with growth factors designed to direct cell migration by
chemotaxis or induce differentiation.Gels 2019, 5, x 13 of 18 
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4. Conclusions

Chitosan-based hydrogels are being used due to biodegradable properties, and ability to that
mimic the extracellular matrix of many tissues. However, the use of chitosan hydrogels has been
limited by their inherent mechanical weakness. In this study, the effects of increased chitosan and
HNT concertation on selected mechanical properties of chitosan/HNT hydrogels, with and without
gentamicin addition. HNTs are widely employed as a bulk filler to improve the performance
characteristics of many polymers. HNTs have also been shown to be a viable nanocontainer able
to provide sustained release of antibiotics, chemicals, and growth factors. The addition of HNTs
to chitosan hydrogels improved the gels’ mechanical properties. Chitosan/HNT gentamicin-doped
hydrogels enabled sustained drug release and were effective in reducing bacterial growth. Our doped
clay/chitosan nanocomposite may overcome the limitations of traditional anti-bacterial hydrogels
by providing a focal drug delivery and sustained release of drugs, singly or in concert, or a suite of
drugs or drug/growth factor combinations. Definitive conclusions from our study must be made with
a degree of caution as the sample numbers in our studies were limited.

5. Experimental Section

5.1. Drug Loading

For drug loading, gentamicin sulfate (GS, Sigma Aldrich, St. Louis, MO, USA) was vacuum-loaded
into HNTs. HNTs (250 mg/mL.) were mixed with a 2 mL GS solution (250 mg/mL). The mixed suspension
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was placed in a vacuum and the suspension was vacuumed overnight. The gentamicin contained in
the supernatant was measured to determine the drug loading efficiency.

Drug loading efficiency = Gentamicin in supernatant/Total amount of gentamicin.

5.2. HNTs-Chitosan Hydrogel Construct

Low molecular weight chitosan (Sigma Aldrich) was dissolved in 4% critic acid solution (Fisher
Scientific, Houston, TX, USA) to form three chitosan concentrations: a 3%, 4% and 5% w/v solution.
Different concentrations of chitosan were combined with HNTs, with the concentration of HNTs
ranging from 1% to 5%. Hydrogels were formed by crosslinking the mixture solution with 10%
tripolyphosphate (TPP) (Sigma Aldrich).

5.3. Scanning Electron Microscopy (SEM) Study

The HNTs-chitosan mixture and pure chitosan solution (200 µL) were dropped into a 10% TPP
solution to produce similar sized droplets. After 10 minutes, the beads had formed, they were then
frozen at −20 ◦C for 24 h and then lyophilized. The structures of hydrogel beads were studied using
SEM (AMRAY SEM, Model: 1830, SEMTech Solutions, North Billerica, MA, USA).

5.4. Degradation Analysis

0.25 mL hydrogels were cross-linked into micro-beads and incubated in PBS at 37 ◦C for 24 h
first. Their initial weight were measured Wd1 after beads air-dried for 30 minutes on filter paper.
Then, the hydrogels were divided in two groups, one group was incubated in PBS, another group
was incubated in 1 mg/mL lysozyme/PBS solution at 37 ◦C. Their weights were measured every 2 to
3 days and recorded as Wdx. This study was continued for 14 days. The remained weight ratio for
each sample was calculated as:

Weight ratio = Wdx/Wd1.

5.5. Tensile Properties

The chitosan-HNTs mixture and pure chitosan solution were poured into the same size mold,
after they had totally dried, a 10% TPP solution was added for cross-linking chitosan. The crosslinked
hydrogels washed with DI water for 3 times, then put on filet paper for air-drying. The prepared films
were cut into similar sizes (10 mm × 20 mm), and the average thickness was 0.02 mm. The tensile
strength (σ) and elongation (ε) of hydrogels was measured by CellScale Unit with 200 N load cell at
a speed of 10mm/min. Young’s modulus (E) were calculated based on the equation of E = σ/ε. At lease
3 tests for each composite.

5.6. Drug Release Study

10 mg of drug-loaded HNTs were mixed with 0.5 mL chitosan solution and cross-linked with 10%
TPP solution for 30 minutes. After rinsed by DI water for 3 times, all the samples were incubated in 2
mL PBS at 37 ◦C. When collecting drug release aliquots of each solution was removed and filled with
fresh PBS. Gentamicin containing samples combined with o-ophthalaldehyde (OPTA) solution and
50% isopropyl at a ratio of 1:1:1 by volume, then measured at 340 nm wavelength.

5.7. Swelling Ratio

Hydrogel beads composed of pure chitosan and chitosan/HNTs composites were prepared as
above. Each hydrogel bead was incubated in 200ul phosphate buffer saline (PBS) at 37 ◦C for 5 days.
At day 1, 3, and 5, the swelling ratio of chitosan and chitosan/HNTs hydrogel composites were then
determined by the following equations. Where, Ws represents the weight of swollen hydrogel after
incubation in PBS, and Wd represents the weight of dried hydrogel after swelling.
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Swelling ratio = (Ws −Wd)/Wd

5.8. Bacterial Inhibition Growth Test

Cross-linked hydrogel beads, consisting of CS/HNTs and drug-loaded CS/HNTs, were placed
in 1 mL Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) suspension and incubated with
nutrient broth (NB) and Mueller Hinton broth respectively at 37 ◦C for 24 h. Pure bacteria suspension
without any treatment set as control, pure broth set as blank. The optical density (OD) of samples were
measured at wavelength of 630 nm at time point of 0, 3, 16, and 24 h. Each sample has three replicates.

5.9. Live/Dead Cytotoxicity Assay

48 well plates were pre-coated with CS or CS/HNTs hydrogel films, then MC3T3 cells (ATCC)
were seeded at a density of 1 × 105/mL. Culture wells without any film coating were used as controls.
All cultures were then incubated at 37 ◦C with 5% CO2 for 24 h. The Live/Dead assay (Life Technologies,
Carlsbad, CA, USA) was applied according to manufacturer’s directions to assess any potential
for cytotoxicity.

5.10. Statistical Analysis

Statistical analysis was conducted by using one-way ANOVA or Student’s t-test. All of the
quantitative experiments were performed in triplicate or repeated three times. Data were expressed as
mean Å+/− the standard error. Significance between experimental groups and/or controls was determined
by one-way analysis of variance. A p-value less than 0.05 was considered statistically significant.
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