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Abstract

INTRODUCTION: Alzheimer’s disease (AD), the most prevalent neurodegenerative

disorder globally, has emerged as a significant health concern. Recently it has been

revealed that extracellular vesicles (EVs) play a critical role in AD pathogenesis and

progression. Their stability and presence in various biofluids, such as blood, offer a

minimally invasive window for monitoring AD-related changes.

METHODS:We analyzed plasma EV-derivedmessenger RNA (mRNA) from 82 human

subjects, including individuals with AD, mild cognitive impairment (MCI), and healthy

controls. With next-generation sequencing, we profiled differentially expressed genes

(DEGs), identifying those associated with AD.

RESULTS:BasedonDEGs identified in both theMCI andADgroups, a diagnosticmodel

was established based on machine learning, demonstrating an average diagnostic

accuracy of over 98% and showed a strong correlation with different AD stages.

DISCUSSION: mRNA derived from plasma EVs shows significant promise as a non-

invasive biomarker for the early detection and continuousmonitoring of AD.

KEYWORDS

AD diagnostics, Alzheimer’s disease, extracellular vesicles, mRNA, non-invasive biomarker, RNA
sequencing

Highlights

∙ The study conducted next-generation sequencing (NGS) of mRNA derived from

human plasma extracellular vesicles (EVs) to assess Alzheimer’s disease (AD).

∙ Profiling of plasma EV-derived mRNA shows a significantly enriched AD pathway,

indicating its potential for AD-related studies.

∙ The AD-prediction model achieved a receiver-operating characteristic area under

the curve (ROC-AUC) of more than 0.98, with strong correlation to the established

Clinical Dementia Rating (CDR).
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1 BACKGROUND

Early diagnosis of Alzheimer’s disease (AD) is crucial for timely inter-

vention and symptomatic treatment to prevent irreversible brain

damage.1–3 Integrative diagnostic approaches combine cognitive and

functional assessments, biomarker identification, and neuroimaging.4

However, the high costs of positron emission tomography (PET) imag-

ing limit its use, especially in under-resourced areas. Cerebrospinal

fluid (CSF), despite being an optimal source for AD biomarkers, is dif-

ficult to use frequently due to the invasiveness of lumbar puncture.5

Therefore, researchers are exploring non-invasive AD biomarkers in

alternative body fluids, particularly blood.

Extracellular vesicles (EVs) have been recently recognized as sig-

nificant contributors to AD pathology.6 These membrane-bound nano

vesicles encapsulate a range of cellular components including nucleic

acids, proteins, and lipids, which reflect their originating cells.7 In AD,

EVs are known to carry hallmark biomolecules associated with the

disease, indicating their potential role in spreading pathology within

the brain.8 Furthermore, these vesicles are implicated in the modu-

lation of neuroinflammation, a key component of AD’s pathological

progression.9 Beyond their role in diseasemechanisms, EVs are gaining

attentionaspotential diagnostic tools.10,11 Their stability andpresence

in various biofluids, such as blood, offer a minimally invasive window

into AD-related changes. Compared to free circulating nucleic acids in

plasma, nucleic acids within EVs are usually more stable and can be

released into bodily fluids by cells early in disease progression.12,13

Therefore, analyzing the content of EVs could provide insights into the

early stages and progression of AD, thereby highlighting their value in

diagnosis.

Messenger RNA (mRNA) in EVsmay play a crucial role in ADpathol-

ogy. mRNA, carrying genetic information for protein synthesis, can

be transferred to recipient cells via EVs, altering cellular behavior.14

EV secretion occurs in both normal and pathological conditions, with

recent cancer research highlighting the role of EV-carried mRNAs

in tumor progression and the tumor microenvironment.15 Similarly,

mRNA in AD offers insights into gene expression patterns, though

research on EV-derived mRNA in AD is limited. Sproviero et al. pro-

filed mRNA in EVs from neurodegenerative disease patients but found

no deregulated mRNAs in AD.16 Luo et al. profiled long RNA in

EVs from AD brain tissues, revealing differentially expressed genes

linked to transcriptional changes in AD.17 Given these insights, profil-

ing EV-derived mRNA may provide novel diagnostic and therapeutic

approaches for AD.

This study aims to further our understanding of AD and improve

its early diagnostic capabilities through the comprehensive profiling

of mRNA from plasma EVs, which were released by various cells and

tissues. Considering that AD is a systemic disorder linked to a broad

range of metabolic processes, EVs from various sources, including the

central nervous system (CNS) and other non-CNS systems such as

the immune, cardiovascular, and endocrine systems, could all exhibit

significant changes in mRNA profiles as the disease progresses.

Leveraging next-generation sequencing (NGS), we analyzed mRNA

libraries derived from EVs in 82 plasma samples. By comparing the

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

through traditional sources (e.g., PubMed). It has been

revealed that extracellular vesicles (EVs) play an impor-

tant role in Alzheimer’s disease (AD) pathogenesis and

progression. The identification of plasma EV biomarkers

holds promise for the development of non-invasive tests

for early AD diagnosis. Although the discovery of RNA

biomarkers is accelerating, the primary emphasis contin-

ues to be on micro-RNA (miRNA). Studies on messenger

RNA (mRNA) biomarkers remain limited. A thorough

investigation into mRNA biomarkers could contribute to

the advancements in early AD diagnosis.

2. Interpretation: Through profiling of plasma EV-derived

mRNA, our studies result in an AD prediction model

with a receiver-operating characteristic area under

the curve (ROC-AUC) of more than 0.98, based on a

biomarker panel consisting of eight AD-related differen-

tially expressed genes (DEGs): INSR, ERN1, HSD17B10,

PPIF, CHRM1, AKT2, IDE, and ATP2A2.

3. Future directions: Future studies could focus on analyz-

ing clinical samples from larger andmore diverse cohorts,

as well as conducting longitudinal studies and compar-

ingAD sampleswith those fromother neurodegenerative

conditions.

gene-expression profiles from both AD and mild cognitive impairment

(MCI) caseswith those fromhealthy controls, we identified a collection

of gene biomarker candidates. These candidates underwent rigorous

functional and correlation analyses, resulting in the establishment of

a classification model based on a support vector machine (SVM) algo-

rithm, showing high accuracy and strong correlation with the Clinical

Dementia Rating (CDR) scale.

2 METHODS

2.1 Clinical specimens

We analyzed a total of 82 ethylenediaminetetraacetic acid (EDTA)–

treated plasma specimens, including 25 samples from healthy con-

trols, 13 from individuals with MCI, and 44 from patients diagnosed

with AD. These specimens were from three independent patient

cohorts: Washington University in St. Louis (Knight Alzheimer Disease

Research Center), Indiana University (National Centralized Reposi-

tory for Alzheimer’s Disease and Related Dementias), and Precision-

Med. The study was approved by the institutional review boards

of all participating institutions, with written informed consent pro-

vided by all participants involved in the study. The demographics and
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clinicopathological characteristics of these participants are detailed in

Tables S1 andS2.ADdiagnoseswerebasedoneither clinical evaluation

(NCRADand PrecisionMed) or a combination of clinical evaluation and

PETbiomarker (ADRC). TheControl andMCI groups had amean age of

67, compared to 74 in the AD group. CDR scale scores were available

for all samples,withmean scores of 0.65 for theMCI group and1.58 for

the AD group. Upon receipt from the organizations, the samples were

storedat−80◦C.BeforeEV isolation, the sampleswere thawedat room

temperature for 5 min and then kept on ice. Each sample underwent a

maximum of three freeze–thaw cycles.

2.2 EV isolation, library preparation, and RNA
sequencing

For isolating EVs, 350 µL of each plasma sample was first diluted with

1 × PBS (phosphate-buffered saline) to a final volume of 15 mL. The

diluted plasma was then passed through a 0.22 µm syringe filter to

remove large particles and aggregates. The isolation of EVs was con-

ducted using the EXODUS platform, which utilized 25 mm diameter

exosome isolation devices (EIDs) according to the previously published

method.18 Previous studies have optimized and characterized EXO-

DUS method for plasma EV isolation.19,20 Once isolated, the EVs were

resuspended in400µLofPBS. From this suspension, a 100µL aliquot of
sample was further diluted 4 times with PBS for nanoparticle tracking

analysis (NTA) using NanoSight (Malvern Panalytical, LM14), equipped

with 488 nm laser and a highly sensitive sCMOS camera. The diluted

sample was introduced directly through a syringe to the instrument.

The concentration and size distribution of EVs were quantified and

generated automatically by NanoSight NTA 3.4 (Detection threshold:

3, number of captures: 5, and capture duration: 60 s). Typical results

are shown in Figure S1.

Another 300 µL of EVs in PBS were then mixed with an equal vol-

umeofDynabeadsM-270Streptavidinbeads (ThermoFisher Scientific,

65305), conjugated previously with a biotinylated oligonucleotide that

included a polymerase chain reaction (PCR) handle and a Poly(dT)

sequence. These beads were suspended in a lysis buffer containing

0.4%Sarkosyl to facilitate the captureofmRNAfrom lysedEVs. Follow-

ing this, solid-phase reverse transcription was performed using Max-

imaHMinus Reverse Transcriptase (ThermoFisher Scientific, EP0752).

The complementaryDNA (cDNA) synthesized on the beads underwent

amplification throughSMARTPCR, usingKapaHiFiHotstart Readymix

(Roche, KK2601), and the resulting DNA was subsequently purified

usingAMPureXPbeads (BeckmanCoulter, A63881). ThepurifiedDNA

was further subject to a second roundof PCRandpurification. ThePCR

products then underwent tagmentation using a Nextera XT Library

PreparationKit (Illumina, FC-131-1096). For fragmentedmRNAwithin

EVs, NEBNext Small RNA Library Prep Set (New England BioLabs,

E7330L) was employed for library preparation according to manufac-

turer’s instructions. Quality control of theNGS library preparationwas

accessed via a TapeStation 4200 with High Sensitivity D1000 Screen-

Tape (Agilent) as shown in Figure S1. Libraries that did not contain 1 ng

of DNA in 5 µL were excluded. Finally, RNA sequencing was performed

on an Illumina NovaSeq 6000 platform with at least 20 M of reads for

each library.

2.3 Data analysis

The data analysis procedure was detailed in the Supplementary

Information. Briefly, sequencing data were trimmed and aligned to

the Ensembl reference genome using the STAR aligner. Reads were

annotated using the biomaRt package. Differential gene expression

analysis was performed with DESeq2 and sva, using criteria of log2

fold change > |0.5| and adjusted p-value < 0.05. Functional profil-

ing was done with g:Profiler. A diagnostic classifier was developed

using a linear SVM model with nested cross-validation. Correlation

analysis and clustering were performed using the WGCNA package,

with statistical differences assessed using the Wilcoxon and Kruskal-

Wallis tests. Various plots were created using GraphBio, BoxPlotR,

and SRPlot.

3 RESULTS

3.1 Transcriptome and pathway analysis

As shown in Figure 1A, we isolated and purified plasma EVs from

82 individuals (see Table S1 for details). We then extracted mRNA

from these EV samples for sequencing, identifying 19,495 genes,

including15,664protein-coding genes (80.34%), 2391 longnon-coding

RNAs (12.26%), and 1440 genes of other biotypes (7.38%). The data

set, rich in protein-coding genes, forms the basis of our study. Vol-

cano plots of the MCI group (Figure 1B) showed 1097 significantly

expressed protein-coding genes compared to the Control group, with

897 upregulated and 200 downregulated. In the AD group (Figure 1C),

1701 protein-coding genes were significantly differentially expressed

compared to the Control group, with 1421 upregulated and 280 down-

regulated. Pathway analysis revealed significant enrichment in the AD

pathway,with theMCIgroup showingap-adjustedvalueof1.36e-7and

27 AD-related genes, and the AD group showing a p-adjusted value of

1.25e-13 and 44AD-related genes. Heatmaps in Figure 1D,E displayed

distinct expression patterns of these AD-related genes in MCI and AD

cases compared to Control samples.

We compared Gene Ontology (GO) annotations for AD-related

DEGs in the MCI and AD groups (Figure 1F-G), focusing on the top

10 significant annotations. In the Biological Processes category, MCI

DEGs are involved in the Wingless/Integrated (Wnt) signaling path-

way and cellular response to oxygen-containing compounds, whereas

AD DEGs focus on energy metabolism pathways. In the Cellular Com-

ponents domain, MCI DEGs are associated with protein complexes

and organelle membranes, whereas AD DEGs are linked to cellu-

lar structures like organelle membranes and catalytic complexes. In

the Molecular Functions category, MCI genes are involved in binding
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F IGURE 1 Analysis of mRNA from plasma-derived EVs highlighting key AD-related genes in theMCI and AD groups. (A) Illustration of
sample-preparation workflow. (B,C) Volcano plots showing differentially expressed protein-coding genes in theMCI and AD groups compared to
the Control group (p-adjusted< 0.05 and log2 fold change> |0.5|). The labeled genes are AD related. (D,E) Heatmaps display expression patterns
of the AD-related DEGs in theMCI and AD groups compared to the Control group. Gene clustering in the heatmaps was based on hierarchical
clustering using the Euclidean distancemetric. (F,G) GO annotations for the AD-related DEGs in theMCI and AD groups. (H, I) KEGG pathway
enrichment analysis for AD-related DEGs inMCI and AD groups. AD, Alzheimer’s Disease; DEGs, differentially expressed genes; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;MCI, Mild Cognitive Impairment.

activities, whereas AD genes focus on enzymatic functions, reflecting a

shift in molecular characteristics fromMCI to AD.

We subsequently conducted a Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis of AD-related DEGs in both MCI

and AD groups (Figure 1H,I), revealing similarities and distinctions.

Both groups shared pathways related to AD, neurodegeneration, and

other neurologically linked diseases. Notably, the AD pathway showed

higher enrichment scores in theADgroup (57.69) compared to theMCI

group (34.50), indicating a progressive gene-expression shift. MCI was

linked to pathways such as mammalian target of rapamycin (mTOR)

signaling and pluripotency of stem cells, whereas AD was associated

with metabolic and systemic processes, such as diabetic cardiomyopa-

thy and oxidative phosphorylation. The AD group consistently showed

higher gene counts within shared pathways, indicating greater genetic

complexity.

3.2 Identification of potential AD biomarkers

In the study to identify biomarkers for AD, we focused on a subset

of DEGs shared by the MCI and AD groups (Figure 2A), which made

up 22.5% of the total AD-related gene pool. This indicates a notable

genetic overlap between MCI and AD, suggesting that these genes

are potentially critical in AD progression. The expression patterns

of these genes, analyzed through variance stabilizing transformation

(VST)RelatedDementias showeddistinct trends: 10geneswereupreg-

ulated and 3 were downregulated in theMCI and AD stages compared

to the Control group. These trends were quantified statistically as

shown in Figure 2B. Generally, the upregulated genes showed higher

median VST values in diseased states, whereas downregulated genes

had lower median VST values, indicating a reduction in expression as

the disease advances. An exception was PSMA2, which did not exhibit
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F IGURE 2 Integrative analysis of 13 shared DEGs. (A) Venn diagram showing the overlap of differentially expressed AD-related genes
between theMCI and AD groups. (B) Box plot showing variations in gene expression across the 13 shared AD genes through different disease
stages: Control, MCI, and AD (*p< 0.05, **p< 0.005, ****p< 0.00005, ******p< 0.0000005). (C) Enrichment bubble plot illustrating the GO
annotations for the 13 genes. (D) Enrichment bubble plot illustrating the KEGG pathways enriched by the 13 genes. (E) Summary of pathway
enrichment listing the number of genes involved in each pathway. (F) Sankey diagrammapping the 13 genes to their associated biological
processes. (G) Chord plot showing the relationships between the 13 genes and their linked KEGG pathways.

a clear upregulation or downregulation trend when MCI and AD were

compared with the Control group. The statistical significance of these

differential expressions was marked with asterisks above the boxplots

(Figure 2B).

3.3 Functional enrichment and pathway analysis
of common genes

We further analyzed GO annotations for 13 AD-related DEGs shared

between the MCI and AD groups (Figure 2C). Significant enrichments

were found in cellular metabolism processes, with five genes involved

in energy derivation and seven genes in oxidative stress responses.

In the Cellular Components domain, protein-containing complexes,

including the catalytic and protein kinase complexes, were prominent.

For Molecular Functions, insulin-binding and nucleotide-binding func-

tions were significant. The Sankey diagram highlighted the connection

of these genes to critical biological processes (Figure 2F), such as

energy derivation through oxidation of organic compounds and reg-

ulation of precursor metabolites, with notable genes such as AKT2,

PPIF, and INSR indicating disruptions in metabolic and oxidative stress

pathways in AD.

The KEGG pathway analysis of 13 AD-related DEGs (Figure 2D,E)

highlighted the AD pathway as the most significant, with all 13 genes

involved. This pathway as illustrated in Figure S2, had a high enrich-

ment score and low p-adjusted value, emphasizing a common genetic
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F IGURE 3 Biomarker selection through correlation analysis and clustering. (A) Bi-weight correlationmatrix showing genes with strong
correlations. Color intensity represents the correlation strength with darker hues indicating stronger correlations. (B) Heatmapwith a
dendrogram constructed using Euclidean distance, showing gene expression similarities among the 13 AD genes. (C–E) Scatter plots showing the
median expression distributions of the Control and AD/MCI groups across three selected gene sets.

basis from MCI to AD. Other significant pathways included those

related to multiple neurodegenerative diseases, such as spinocerebel-

lar ataxia and Huntington’s disease, and metabolic diseases such as

diabetic cardiomyopathy. The analysis also identified signaling path-

ways crucial for vascular and neuronal functions and aging. A chord

diagram (Figure2G) showed theextensive interactionsof genes suchas

ATP2A2, NDUFV1, PSMA2, and SEM1 with various pathways, suggest-

ing their broad impact on neurodegenerative and metabolic diseases.

Genes such as AKT2, PPIF, INSR, ATG13, and ERN1 demonstrated

connections to pathways involving metabolic regulation, aging, and

neurodegeneration, highlighting their roles in these processes.

3.4 Biomarker selection through correlation
analysis and clustering

We refined the 13 AD-related DEGs using biweight midcorrelation

analysis (Figure 3A), identifying gene pairs with a correlation coeffi-

cient above |0.65|, suchasATP2A2and SEM1. This helpedmaintaindata

set integrity and avoid redundancy. A comprehensive clustering analy-

sis usingEuclideandistanceproducedaheatmap (Figure3B), clustering

genes based on their expression patterns across AD, MCI, and Control

groups. Closely related gene pairs identified in the dendrogram were

marked for potential exclusion to ensure a unique, non-overlapping set

for further validation.

Following the analysis, we derived three potential biomarker panels

for further examination, each characterized by scatterplots of median

expression values for the Control group and a combined group of

MCI and AD. Panel 1 includes all 13 genes (Figure 3C). Panel 2, with

eight genes, was created by removing one gene from each redun-

dant pair (Figure 3D). An alternative to Panel 2, also with eight genes,

selected the alternate genes from the redundant pairs (Figure S3A).

Panel 3 selected one gene from the downregulated branch and three

from the upregulated branch of the dendrogram (Figure 3E). The

scatterplots showed similar gene expression ranges, ensuring compre-

hensive biomarker coverage and minimal redundancy for subsequent

validation.

3.5 Development and characterization of AD
prediction model

For each biomarker panel, we developed an AD prediction model

by training a linear SVM classifier with the data set. A nested
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F IGURE 4 Model characterization for AD evaluation. (A–C) Training and testing of an SVM classificationmodel for each biomarker panel with
the performance characterized through ROC curves, highlighting the AUC and 95% confidence interval. Inset figures present the distribution of
AUC values over 500 iterations, illustrating themodel’s performance consistency. (D–F) Comparison of AD scores for each sample as generated by
the predictionmodels, differentiating between AD/MCI and control groups. The significance of differences was characterized using theWilcoxon
test. (G–I) Evaluation of correlation between AD scores and CDR scale values. Statistical differences among groups were assessed using the
Kruskal-Wallis test. AUC: area under the curve

cross-validation (5-fold inner and outer cross-validation) was first

employed to determine the optimal hyperparameters for the SVM

model. Subsequently, both the AD/MCI and control groups were

divided randomly into a training set (80%) and a testing set (20%) each

time for 500 trials of model training and testing, in order to charac-

terize model performance in terms of ROC-AUC value. Figure 4A-C

illustrate the mean ROC curves for each biomarker panel. The shading

of the curves indicates the standard deviations (SDs) across the 500

training and testing iterations, reflecting the consistency of the mod-

els’ performance. Additionally, the distribution of AUC values (inset

of Figure 4A-C) provides insights into the variation of the models’

prediction outcomes over these iterations.

The first biomarker panel (Figure 4A), incorporating all 13 genes,

showed outstanding training performance with an AUC of 1.00. This

high accuracy continued in testing, achieving a mean AUC of 0.9983

with a tight 95% confidence interval (CI) of 0.9978–0.9989, indicating

strong predictive reliability. The second biomarker panel (Figure 4B),

refined to eight biomarkers, recorded a mean training AUC of 0.9992
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and a testing mean AUC of 0.9864, with a 95% CI of 0.9845 to

0.9882, suggesting a slight reduction in classification capability but

still retaining high diagnostic precision. An alternative version of this

panel (Figure S3B) had slightly lower AUCs in both training and testing.

The final biomarker panel (Figure 4C), with only four genes, exhibited

a training AUC of 0.9611. Although lower than the other panels, it

still demonstrated strong differentiation capacity. The testing phase

for this panel yielded a mean AUC of 0.9397 with a wider 95% CI of

0.9349–0.9444, indicating greater variability in predictive accuracy.

The AD classifier for eachmarker panel was developed by averaging

weights and bias terms from the linear SVMmodel over 500 iterations.

This produced an AD score for each sample, compared between the

AD/MCI and Control groups (Figures 4D–F and S3C). As the number

of genes in the panels decreased from 13 to 4, the overlap in interquar-

tile ranges (IQRs) between the groups increased, confirmed by a higher

p-value from the Wilcoxon test. Despite this, the model maintained

significant discriminative ability with four gene markers (Figure 4F),

shown by a p-value of 3.2e-11. Although the AD group has a higher

average age, the model can distinguish between the MCI and Control

groups (Figure S4) independent of age, with both groups having aver-

age ages between 67 and 68 years (Table S2). The AD and MCI groups

also have significant differences using 13 and 8 genemarkers, showing

themodel’s potential to distinguish between early and late AD stages.

The predictionmodel effectively distinguished between theControl

and AD/MCI groups and correlated strongly with the CDR scale score.

Samples were subdivided by CDR scale values to compare AD scores

(Figures 4G-I and S3D). Median AD scores increased significantly from

the Control group (CDR 0) to the AD/MCI group (CDR 0.5–3), with

a gradual decrease as CDR scale values increased from 0.5 to 3. This

trendwas consistent across the three biomarker panels.

4 DISCUSSION

In this study,mRNAextracted fromplasmaEVsof82 subjects, including

AD patients, MCI individuals who later progressed to AD, and healthy

controls,was analyzedusingNGS (Figure1). The increase inDEGs from

MCI to AD suggests disease progression. KEGG analysis confirmed

the clinical significance of these genes as potential AD biomarkers by

showing enrichment in the AD pathway. Shared pathways related to

neurodegeneration betweenMCI and AD groups indicate a consistent

pathology, supporting the view thatMCI is an early stage of AD, crucial

for early diagnosis and monitoring. GO analysis revealed distinct bio-

logical activities and molecular functions for the MCI and AD groups,

with Wnt signaling prevalent in MCI and metabolic pathways empha-

sized in AD. These results suggest a progression in cellular complexity

and potential changes in cellular dynamics fromMCI to AD, consistent

with the view of AD as a systemic disease.

The identification of shared AD-related DEGs as potential biomark-

ers offers new opportunities for early detection and monitoring of AD

(Figure 2). The 22.5% gene overlap between the MCI and AD groups

underscores their potential in understanding the disease. Functional

enrichment and pathway analyses reveal key themes of disrupted cel-

lular metabolism and oxidative stress. The involvement of protein

complexes and disruptions in insulin- and nucleotide-binding signaling

pathways suggests significant contributions to AD pathology. KEGG

pathwayanalysis highlights thegenetic basis ofADandsuggests its sys-

temic impact, whereas gene-pathway interactions emphasize the roles

of specific genes in both neurodegenerative and metabolic disorders,

suggesting the complexity of AD.

The ROC analysis of the AD-prediction model demonstrates out-

standing performance in both training and testing, indicating the

biomarkers’ effectiveness in distinguishing patients with AD from

healthy individuals (Figure 3). The first biomarker panel, including

all 13 shared genes, shows the highest accuracy (AUC >0.99), but

the similarity in gene expression suggests potential overfitting. The

second biomarker panel, with eight genes, maintains an impressive

AUC greater than 0.98, making it more suitable for practical use.

Although the third panel with four genes is simpler, it offers less

genetic scope and accuracy. Therefore, the second panel, including

INSR, ERN1,HSD17B10,PPIF,CHRM1,AKT2, IDE, andATP2A2, balances

genetic comprehensiveness and expression clarity, thereby optimizing

predictive accuracy andminimizing overfitting risks.

The analysis of AD scores derived from the prediction model pro-

vides an insightful perspective on AD progression in relation to CDR

scale evaluations (Figure 4). The model shows a significant increase in

AD scores from CDR scale score of 0 to 0.5, highlighting its sensitiv-

ity to early AD stages, likely reflecting early neuropathological changes

associated with MCI. This may involve the regulation of specific genes

as a compensatory mechanism or response to initial neuronal stress.

Conversely, the model shows a gradual decline in AD scores from

CDR 0.5 to 3, indicating a reduction in gene regulation as AD sever-

ity increases, although the trend is not significant. This could be due to

neuronal cell loss and diminished activity in surviving neurons.

In summary, this study analyzed mRNA from plasma EVs in 82

AD samples and healthy controls using NGS, revealing detailed gene-

expression profiles and genetic progression from MCI to AD. Func-

tional enrichment and pathway analyses highlighted disruptions in

metabolic processes and oxidative stress in neurodegenerative dis-

eases. The research identified potential AD biomarkers and differenti-

ated the molecular functions unique toMCI and AD. The ROC analysis

of the AD prediction model showed high accuracy and strong correla-

tion with CDR evaluation, suggesting mRNA profiling from plasma EVs

as a promising tool for early detection andmonitoring of AD.

The study has several limitations. First, the statistical power was

approximately 0.54 with a significant level of 0.05, whereas clini-

cal research prefers a power of 0.80 or higher, typically requiring

larger sample sizes.21,22 Second, the participants were drawn from

three different cohorts, leading to unavoidable pre-analytical varia-

tions that could also bias the results. Third, there was potential RNA

contamination fromplasma,whichmay not have been completely elim-

inated during purification. To further validate the reliability of the

identified markers and optimize the prediction model, future studies

should focus on analyzing more clinical samples from larger and more

diverse cohorts with different ethnicities, genetic backgrounds, and

environmental exposures.
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