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Dibenzothiophenesulfilimines: A Convenient Approach to
Intermolecular Rhodium-Catalysed C@H Amidation

Patrick W. Antoni+,[a] Alexandra V. Mackenroth+,[a] Florian F. Mulks,[a] Matthias Rudolph,[a]

Genter Helmchen,[a] and A. Stephen K. Hashmi*[a, b]

Abstract: A sulfilimine-based Group 9 transition-metal-cat-
alysed C@H amidation procedure is reported. Dibenzothio-

phene-based sulfilimines were shown to constitute a class
of novel amidation reagents which enable the transfer of

a wide range of N-sulfonyl and N-acyl moieties. It was
demonstrated that sulfilimines, which are easily accessible

from cheap reagents, are safe-to-handle and represent
broadly applicable amidation reagents. The dibenzothio-
phene can be recycled after use. The C@H amidation was

shown to proceed with high selectivity and gave the
mono-amidated products, mostly in good to excellent

yields.

Nitrogen-containing groups constitute key structural motifs in
a great number of natural products and synthetically relevant

structures. The introduction of the nitrogen moiety can be ef-
fected by means of cross-coupling strategies such as the palla-

dium-catalysed Buchwald–Hartwig amination[1] or the copper-
mediated Ullmann-[2] or Chan Lam-type[3] couplings. While this
approach is highly efficient and widely applicable, it necessi-

tates a pre-functionalisation of the substrate and, due to the
generation of stoichiometric amounts of by-products, entails

the disadvantage of a low atom economy.[4]

Direct amination of C@H bonds provides a complementary
strategy for the introduction of nitrogen-possessing moieties, a
strategy not relying on the inherent reactivity of functional
groups but rather enabling a metal-catalysed activation of rela-

tively inert C@H bonds. It is possible to use amines without
pre-functionalisation or amides as amino sources, but this re-

quires the presence of stoichiometric amounts of external oxi-
dants and thus significantly limits the functional group toler-

ance of the procedure. To circumvent this drawback, a number

of pre-activated aminating reagents have been developed,
bearing polarised N–X bonds that can be oxidatively cleaved

by metal catalysts.[5] Commonly employed amination reagents
include for instance imidoiodinanes,[6] hydroxylamines,[7] ami-

dobenziodoxolones[8] or organic azides.[9]

Previous studies have shown that the photolytic cleavage of

the S@N bond in sulfilimines leads to the intermediate genera-

tion of nitrenes that can be trapped by alkenes or phos-
phines.[10] Furthermore, a variety of heterocycles have been

synthesised employing sulfilimine-based reagents as key inter-
mediates in gold-catalysed transformations.[11] Donor-substitut-

ed sulfoximines have lately been shown to serve as methyl ni-
trene precursors in ruthenium-catalysed [2++2++1] cycloaddition

reactions that furnish highly substituted pyrrols in good to ex-

cellent yields.[12] Very recently, it has been shown that sulfili-
mines can serve as nitrene precursors in intramolecular metal-

free, light-mediated C@H amination reactions enabling the
mild and efficient synthesis of carbazoles.[13]

In the light of these studies, we envisioned sulfilimines to be
potent, bench-stable and convenient intermolecular nitrene
transfer reagents in C@H amidation reactions. To evaluate the

steric and electronic properties required to efficiently transfer
the nitrogen moiety, we screened several N-tosyl-substituted
sulfilimines 1 a–1 d and sulfoximines 1 e–1 f as well as the N-
methyl-substituted sulfoximine 1 g highlighted by Yamamoto

et al.[12] The [Cp*RhCl2]2-catalysed C@H amidation of 2-phenyl-
pyridine (2-ppy) was chosen as a model system (Scheme 1).

While all other sulfilimines and sulfoximines showed no con-
version of 2-ppy, only the dibenzothiophene (DBT)-based sulfi-
limine 1 a prove to be a suitable nitrene surrogate for this
transformation. This highlights the intricate interplay of elec-
tronic effects leading to a labile S@N bond while maintaining a

sufficiently high nucleophilicity of the nitrogen towards the
transition-metal centre. Interestingly, this is in accord with

recent reports highlighting the extraordinary electronic struc-
ture of DBT-based reagents as electrophilic alkynyl or aryl trans-
fer reagents.[14]

Then we studied the scope of this catalysis reaction with re-
spect to different metals. We found the general amidation

method to be easily conducted by employing Group 9 transi-
tion-metal catalysts in the oxidation state + III. Cobalt, rhodium
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and iridium were all able to catalyse the amidation of 2-phe-

nylpyridine with N-tosyl dibenzothiophene sulfilimine (DBTNTs

1 a) in the presence of AgSbF6 and a base under relatively mild
conditions (Table 1). Note that while the rhodium-catalysed re-

action resulted in the highest isolated yield of 2 a, it was also
possible to use a high valent cobalt(III) species as a catalyst.

This highlights the versatility of the presented reagent, consid-
ering that the utilisation of the significantly cheaper first-row

transition metal was shown to lead to unsatisfactory results in

some C@H activation procedures.[15]

The scope of C@H activation reactions is often limited with

respect to the directing groups enabling the necessary coordi-
nation geometry for an efficient subsequent activation step.

We amidated a range of different precursors 2 a–f with DBTNTs
to evaluate the performance of our procedure with different

directing groups (Scheme 2). The reactions were carried out at

80 8C over a period of 36 h, employing 4 mol % catalyst loading
of [(Cp*RhCl2)2] , 16 mol % of AgSbF6 and 10 mol % of KOAc.
The given systems performed with fair to excellent yields of
46 % to 98 %. The performance does, however, drop with

weaker directing groups. Isobutyrophenone could only be ami-

dated with a poor yield of 14 % (2 f). As our system was stable
towards harsher conditions, we were able to show for example

2 d that switching to 1,1,2,2-tetrachloroethane (TCE) and heat-
ing to 120 8C can be used to overcome the limitations of poor
directing groups to achieve an excellent yield (93 %). Further-

more, we studied whether the use of DBTNTs as nitrene surro-
gate impairs the activation of more challenging sp2 or even sp3

C@H bonds. In this context, 2 g–j were chosen as representa-
tive examples of different bonding situations. In comparison to

known syntheses of such systems,[16] we observed comparable
or even superior yields in all cases.

The accessibility and ease of handling of the transfer re-
agents is an important factor for useful C@H amidation proto-
cols. The N-tosyl dibenzothiophene sulfilimine can be easily
synthesised by condensation of commercially available chlora-
mine-T with dibenzothiophene, followed by an aqueous work-

up without the necessity of chromatographic purification. We
utilised a simple three-step one-pot procedure to access a

range of differently substituted dibenzothiophene sulfilimines
in good yields from very affordable starting materials. Com-
mercially available dibenzothiophene oxide can be converted

to the sulfilimine with the corresponding amides after activa-
tion of the sulfoxide with trifluoroacetic anhydride (TFAA)

(Scheme 3).[17] The dibenzothiophene oxide can also be easily
prepared from cheap dibenzothiophene by treatment with hy-

Scheme 1. Investigation of sulfil- and sulfoximines as nitrene surrogates in
Rh-catalysed C@H-amidation.

Table 1. Activity of different Group 9 transition-metal catalysts in the C@
H amidation of 2-ppy with DBTNTs 1 a.

Entry Catalyst Solvent [Cat.]
(equiv)

AgSbF6

(equiv)
t
[h]

Yield
[%]

1 [Cp*Co(CO)I2] DCE 0.05 0.10 36 82
2 [Cp*RhCl2]2 DCE 0.04 0.16 36 94
3 [Cp*IrCl2]2 TCE 0.04 0.16 52 43

Scheme 2. Scope of directing groups in the rhodium-catalysed C@H amida-
tion with DBTNTs 1 a. [a] The reaction was performed at 120 8C in TCE.
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drogen peroxide or meta-chloroperbenzoic acid.[18] To further
underline the efficiency of the C@H amidation, we attempted

to re-isolate the only by-product that is formed in the reaction,
dibenzothiophene, and were able to isolate 86 % of the em-

ployed amount after column chromatography of the Rh-cata-
lysed reaction of 2-ppy and DBTNTs.

We then transferred differently substituted nitrene precur-

sors 3 a–e under the conditions used above. Good to excellent
yields were accomplished for the transfer of nitrenes derived

from sulfonic acid amides and benzoic acid amide (72–91 %)
(Scheme 4). Electron poor nitrene precursors were transferred

with the best yields. The tert-butyloxycarbonyl-substituted ni-
trene prove to be challenging and gave the amidated pro-

duct 2 n in a rather low yield of 27 % due to incomplete con-

version of 2-ppy.
In the case of the transfer of a trifluoromethyl amide moiety,

the Rh-based system was shown to be very ineffective and
produced a poor yield of 11 %. However, the applicability of

our developed system towards the use of other Group 9
metals proved to be useful, and we were able to accomplish a

yield of 62 % for the transfer of trifluoroacetamide to give 2 o
employing the respective iridium analogue (Table 2). Cobalt
can, thus, be employed in simple syntheses while rhodium is

successful in a broad range of transfers. Iridium catalysts can
enable the introduction of more challenging amide groups.

In summary, we have developed a convenient and safe
method for the transfer of nitrenes for C@H amidation. The C@
H amidation of several C@H bond targets succeeded in pre-
dominantly good to excellent yields. Rhodium(III) was suitable

for a wide range of substrates. However, in cases where rhodi-

um was shown to give unsatisfactory results, it was demon-
strated that the method could be extended to the two other

Group 9 transition metals, cobalt and iridium, which, in some
cases, gave significantly better results. Especially the applicabil-

ity of the cheap [Cp*Co(CO)I2] further improves the economy
of the method with regard to large-scale applications. The

method was shown to be very convenient due to the reagents

being bench-stable, non-explosive and easy to handle. The
only by-product that is formed, dibenzothiophene, can easily

be recycled. Mechanistic investigations and studies towards a
broader reaction scope are ongoing.
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