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University of Belgrade, Serbia

Reviewed by:

Pascal Carrive,

University of New South Wales,

Australia

Philip J. Millar,

University of Guelph, Canada

*Correspondence:

Harumi Hotta

hhotta@tmig.or.jp

Specialty section:

This article was submitted to

Autonomic Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 21 October 2016

Accepted: 26 December 2016

Published: 10 January 2017

Citation:

Watanabe N and Hotta H (2017) Heart

Rate Changes in Response to

Mechanical Pressure Stimulation of

Skeletal Muscles Are Mediated by

Cardiac Sympathetic Nerve Activity.

Front. Neurosci. 10:614.

doi: 10.3389/fnins.2016.00614

Heart Rate Changes in Response to
Mechanical Pressure Stimulation of
Skeletal Muscles Are Mediated by
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Stimulation of mechanoreceptors in skeletal muscles such as contraction and stretch

elicits reflexive autonomic nervous system changes which impact cardiovascular

control. There are pressure-sensitive mechanoreceptors in skeletal muscles. Mechanical

pressure stimulation of skeletal muscles can induce reflex changes in heart rate

(HR) and blood pressure, although the neural mechanisms underlying this effect are

unclear. We examined the contribution of cardiac autonomic nerves to HR responses

induced by mechanical pressure stimulation (30 s, ∼10 N/cm2) of calf muscles in

isoflurane-anesthetized rats. Animals were artificially ventilated and kept warm using a

heating pad and lamp, and respiration and core body temperature weremaintained within

physiological ranges. Mechanical stimulation was applied using a stimulation probe 6mm

in diameter with a flat surface. Cardiac sympathetic and vagus nerves were blocked

to test the contribution of the autonomic nerves. For sympathetic nerve block, bilateral

stellate ganglia, and cervical sympathetic nerves were surgically sectioned, and for vagus

nerve block, the nerve was bilaterally severed. In addition, mass discharges of cardiac

sympathetic efferent nerve were electrophysiologically recorded. Mechanical stimulation

increased or decreased HR in autonomic nerve-intact rats (range:−56 to+10 bpm), and

the responses were negatively correlated with pre-stimulus HR (r = −0.65, p = 0.001).

Stimulation-induced HR responses were markedly attenuated by blocking the cardiac

sympathetic nerve (range: −9 to +3 bpm, p < 0.0001) but not the vagus nerve (range:

−75 to +30 bpm, p = 0.17). In the experiments with cardiac sympathetic efferent

nerve activity recordings, mechanical stimulation increased, or decreased the frequency

of sympathetic nerve activity in parallel with HR (r = 0.77, p = 0.0004). Furthermore,

the changes in sympathetic nerve activity were negatively correlated with its tonic level

(r = −0.62, p = 0.0066). These results suggest that cardiac sympathetic nerve activity

regulates HR responses to muscle mechanical pressure stimulation and the direction of

HR responses depends on the tonic level of the nerve activity, i.e., bradycardia occurs

when the tonic activity is high and tachycardia occurs when the activity is low.

Keywords: skeletal muscles, mechanical pressure stimulation, somatocardiovascular reflexes, heart rate, cardiac

sympathetic nerve, rats
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INTRODUCTION

Somatosensory stimulation reflexively elicits autonomic
nervous activity changes and affects cardiovascular control
(somatocardiovascular reflexes) in anesthetized animals,
in whom consciousness and emotions that are potentially
influential are eliminated by the administration of anesthesia
(Sato et al., 1997; Watanabe et al., 2015). One characteristic of
somatocardiovascular reflexes is that evoked responses differ
depending on the type of stimulation. For example, a strong
pinch of the skin (Kimura et al., 1995; Sato et al., 1997; Suzuki
et al., 2004) and noxious thermal stimulation (Kaufman et al.,
1977) generally induce tachycardiac and pressor responses. In
contrast, brushing and non-noxious thermal stimulation do
not lead to heart rate (HR) responses or provide only a small
response (Kaufman et al., 1977; Sato et al., 1997). In addition
to the skin stimulation mentioned above, some skeletal muscle
stimulations evoke cardiovascular responses (Sato et al., 1981,
1982; Kannan et al., 1988; Stebbins et al., 1988; Sato et al.,
1997). For example, static muscle contraction and stretch induce
tachycardiac and pressor responses (Coote et al., 1971; Kannan
et al., 1988; Stebbins et al., 1988), whereas vibratory stimulation
does not influence HR and blood pressure (Kannan et al., 1988;
Sato et al., 1997). These cardiovascular responses to skin and
muscle stimulation are mainly attributed to the excitation of
group III and IV afferent fibers (Sato et al., 1997). HR and blood
pressure responses to contraction and stretching of skeletal
muscles are considered important cardiovascular regulatory
mechanisms during exercise (Coote et al., 1971; Murphy et al.,
2011). As the efferent of neural mechanisms, the cardiac, renal,
and adrenal sympathetic nerve activities are enhanced by the
static contraction of the hindlimb muscles (Matsukawa et al.,
1990, 1994; Vissing et al., 1991; Koba et al., 2008).

Some mechanoreceptors in skeletal muscles are distinguished
from muscle contraction- or stretch-sensitive units based on
high sensitivity to pressure stimulation (Paintal, 1960; Mense and
Meyer, 1985). Hence, it is possible that cardiovascular responses
elicited by pressure stimulation differ from those elicited by
muscle contraction. Stebbins et al. (1988) reported that static
contraction of calf muscles in anesthetized cats increased HR
and blood pressure (by 10 bpm and 20 mmHg, respectively),
whereas the constant pressure stimulation applied externally did
not change the HR and only marginally increased the blood
pressure (5–10 mmHg). Uchida et al. (2003) reported that static
pressure to calf muscles (∼5–8 N/cm2) induced a depressor
response in anesthetized rats. In a study by Tallarida et al.
(1981), “squeeze” stimulation applied to the calf muscles caused
tachycardiac and pressor responses in anesthetized rabbits,
although the precise intensity of stimulation was not determined.
Despite studies reporting cardiovascular responses to mechanical
pressure stimulation of skeletal muscles, the neural mechanisms
underlying this effect are undetermined to date.

Abbreviations: CSNA, cardiac sympathetic efferent nerve activity; CVLM,

caudal ventrolateral medulla; 1CSNA, cardiac sympathetic efferent nerve activity

response, 1HR, heart rate response; EEG, electroencephalogram; HR, heart rate;

NTS, nucleus of the solitary tract; RVLM, rostral ventrolateral medulla.

Sustained muscle contraction generally induces a pressor
response, whereas mechanical pressure stimulation of calf
muscles can induce both pressor (Tallarida et al., 1981; Stebbins
et al., 1988) and depressor (Uchida et al., 2003) responses. Even
under controlled experimental conditions, it was reported that
electrical stimulation of muscle afferents (Sato et al., 1981),
bradykinin infusion to hindlimb muscles (Sato et al., 1982), and
acupuncture-like stimulation to hindlimbmuscles (Ohsawa et al.,
1995) could induce tachycardiac and bradycardiac or pressor
and depressor responses. The reasons for these bidirectional
cardiovascular responses have not been studied. It has been
documented that deeper anesthesia is more likely to induce
bradycardiac and depressor responses (Gibbs et al., 1989; Sato
et al., 1997). The depth of anesthesia generally affects the resting
levels of HR and blood pressure.

Therefore, there were two aims of the present study. The
first aim was to elucidate the contribution of cardiac autonomic
nerves to HR responses induced by mechanical pressure
stimulation of skeletal muscles. The second aim was to examine
whether the resting (pre-stimulus) level of HR influences the
direction of HR responses to skeletal muscle mechanical pressure
stimulation. Tomaintain the constant level of anesthesia through
data recordings, we used inhalation anesthesia (isoflurane) in the
present study.

MATERIALS AND METHODS

Animals
Experiments in the present study were performed on Wistar
male rats (4–7 months, n = 18) bred at the Tokyo Metropolitan
Institute of Gerontology. All study protocols were approved by
the animal care and use committee of the Tokyo Metropolitan
Institute of Gerontology and conformed to the Guiding
Principles for the Care and Use of Animals in the Field of
Physiological Sciences.

Rats were anesthetized using isoflurane (Escain, Mylan Inc.,
Canonsburg, PA, USA). Isoflurane was vaporized by gas (O2 30%,
N2 70%) using a vaporizer (Sigma Delta, Penlon Ltd., Abingdon,
UK). The inspiratory concentration of isoflurane was set at 4%
for anesthesia induction and maintained at 2.5–3.0% during
surgery. Throughout data recording, isoflurane was maintained
at 1.2–1.4%, which is sufficient to eliminate the corneal reflex.
In all rats, catheters were implanted into the common carotid
artery to continuously record arterial pressure and into the
jugular vein to administer drugs and supplemental fluids. The
trachea was cannulated and rats were artificially ventilated
(SN-480-7; Shinano Seisakusho, Tokyo, Japan). Respiration was
controlled to maintain end-tidal CO2 at∼3.0% (CapnostreamTM

20P, Covidien, Minneapolis, MN, USA). Rectal temperature was
maintained at 37.0–37.5◦C using an automatically regulated
heating pad and lamp (ATB-1100; Nihon Kohden, Tokyo, Japan).

HR was calculated based on recorded arterial pressure
waveforms with a time constant of 5 s (Spike 2; Cambridge
Electronic Design, Cambridge, England). Mean arterial pressure
was obtained by smoothing arterial pressure waveforms with
a time constant of 5 s (Spike 2). HR and blood pressure were
continuously monitored during experiment, and mechanical
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stimulation (see below) was applied after confirming that HR and
blood pressure were stable for at least 1min. The HR response
(1HR) to stimulation was determined to be themaximumwithin
1 min after termination of mechanical stimulation relative to the
average HR over 1 min before stimulation. The presence of a
response was defined as the 1HR value exceeding by twofold the
spontaneous variability during 1 min of pre-stimulus recording
(i.e., mean value± twice the standard deviation).

Mechanical Stimulation of Muscle and Skin
Mechanical pressure stimulation was applied to the calf muscles
according to previous reports (Graven-Nielsen et al., 2004;
Takahashi et al., 2005; Mizumura and Taguchi, 2016). A
stimulation probe 6 mm in diameter with a flat surface (contact
area, ∼28mm2) was applied perpendicularly to the skin over the
center of the inner calf with a weight of ∼290 g (≈10 N/cm2)
for 30 s. The stimulation intensity was based on previous studies
showing that this pressure level increases the single unit activities
of group III and IV calf muscle afferents (Berberich et al.,
1988; Hoheisel et al., 2005). In a pilot study, we confirmed that
mechanical pressure at 10 N/cm2 induced clearer HR changes
than stimulation at lower intensities (2–5 N/cm2). The fur at the
site of pressure stimulation was trimmed using a conventional
clipper. Noxious mechanical stimulation was applied to the skin
by pinching the hindpaw for 30 s using a surgical clamp (∼3 kg;
Araki et al., 1984).

Autonomic Nerve Block
To identify the nerve pathway that contributes to the HR
response evoked by calf muscle pressure stimulation, the
influence of selective autonomic nerve block was examined. To
block sympathetic nerves innervating the heart, bilateral stellate
ganglia and cervical sympathetic nerves were surgically severed
before the end of surgery in three rats. The second costal bone
was sectioned before the stellate ganglion was crushed. To block
vagus nerves, bilateral vagus nerves were surgically sectioned at
the cervical level in 6 rats. In another rat, vagus efferents were
pharmacologically blocked by intravenous administration of the
blood–brain barrier impermeable muscarinic receptor blocker
atropinemethyl nitrate (2mg/kg; Overton, 1993) purchased from
Sigma-Aldrich (St. Louis, MO, USA). We confirmed that the
dose of atropine was enough to prevent bradycardiac responses
induced by electrical stimulation of vagus efferent nerve (Hotta
et al., 2010b) at the end of the experiment. The vagotomy
was performed before experiment in one rat. In the other rats,
vagus nerves were blocked during experiment, and effects of
mechanical stimuli were examined both before and after blocking
of the vagus nerve.

Cardiac Sympathetic Efferent Nerve
Activity Recording
Cardiac sympathetic efferent nerve activity was recorded in
four rats by methods described in our previous study (Hotta
et al., 2010a). In brief, anesthetized rats were placed in
the supine position and the right second costal bone was
sectioned. The right inferior cardiac sympathetic nerve was
exposed, sectioned as close to the heart as possible, and

isolated from surrounding connective tissue. The dissected
nerve was covered with paraffin oil. The central cut end
of the nerve was placed on platinum–iridium bipolar hook
electrodes and mass discharges were recorded. To prevent noise
contamination due to muscle contraction, rats were immobilized
by intravenous administration of gallamine triethiodide (20
mg/kg). For CSNA recording, the vagus nerves were sectioned
to prevent contamination of vagus nerve activity.

Nerve activity was amplified 1000× (MEG-6100, Nihon
Kohden, Tokyo, Japan), filtered (bandpass filter: 150Hz–3 kHz),
andmonitored visually on an oscilloscope and auditorily through
loudspeakers. The amplified signals were digitized at 20 kHz
(Micro 1401 mkII; Cambridge Electronic Design) and stored on
a personal computer for offline analyses. Spikes of the nerve were
discriminated from background noise based on the amplitude
of signals, and the number of the spikes was counted every 5 s
(Spike 2).

Statistical Analyses
HR and mean arterial pressure values obtained before and
after the onset of stimulation were compared by paired t-test
or Wilcoxon matched-pairs signed rank test depending on the
normality of the data distribution (Prism 6; GraphPad Software
Inc., La Jolla, CA, USA). Difference in variance of pre-stimulus
HR and 1HR under autonomic block conditions were examined
by the F-test. Correlation strength was analyzed by calculating
Spearman’s coefficient. Statistical significance was set at p <

0.05. Data are expressed as mean ± standard deviation unless
otherwise stated.

RESULTS

HR and Blood Pressure Responses to
Mechanical Pressure Stimulation of the
Calf Muscles
Resting HR of anesthetized rats (n = 9) prior to applying
mechanical stimulation ranged from 259 to 459 bpm. Resting
HR is relatively stable, but exhibited periodic step-like changes
to higher or lower levels of HR (Yli-Hankala and Jäntti, 1990).
In these 9 rats, 22 trials of mechanical pressure stimulation were
applied to the calf. HR increased in 9 trials and decreased in
12 trials, with no change in one trial. Overall, HR significantly
decreased in response to calf pressure stimulation (from 356.3 ±
59.1 to 346.8 ± 48.9 bpm, p = 0.049 by paired t-test, range −56
and+10 bpm).

Examples of increasing and decreasing responses are shown in
Figures 1A,B, respectively. In response to pressure stimulation,
HR increased slightly (e.g., maximal 1HR = 10 bpm in
Figure 1A) from relatively low pre-stimulus HR (e.g., 288 bpm
in Figure 1A) or decreased more substantially (e.g., maximal
1HR = −54 bpm in Figure 1B) from a relatively high pre-
stimulus HR (e.g., 415 bpm in Figure 1B). The maximal increase
or decrease was attained within a minute following the cessation
of stimulation. Bradycardiac responses of >40 bpm were evoked
when pre-stimulus HR was >390 bpm and smaller HR responses
were produced when HR was <390 bpm. There was a significant
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FIGURE 1 | Heart rate (HR) changes in response to calf muscle pressure stimulation in nerve intact (A–C), sympathetic nerve blocked (D–F), and vagus

nerve blocked (G–I) conditions. (A,B) Bidirectional changes in heart rate (HR) in response to calf pressure stimulation in anesthetized rats with intact autonomic

innervation of the heart (Nerve intact). (C) Correlation between pre-stimulus HR and HR responses (1HR). Each individual maximal 1HR is plotted as an open circle.

(D–F) Data obtained in rats with sympathetic nerve blocked (Sympathetic n. blocked). (G–I) Data obtained in rats with vagus nerve blocked (Vagus n. blocked).

r = Spearman’s correlation coefficient.
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negative correlation between pre-stimulus HR and 1HR (r =

−0.65, p= 0.001; Figure 1C).
We also applied mechanical pressure stimulation directly to

muscle (three trials in a rat) after carefully removing the overlying
skin. Both increasing (from 342 to 349 bpm) and decreasing
(from 349 to 328 bpm and from 339 to 305 bpm) responses
were observed. The correlation between pre-stimulus HR and
1HR was maintained. Thus, cutaneous afferents are not solely
responsible for these HR responses.

On average, mean arterial pressure decreased in response to
stimulation (from 113.8 ± 38.6 to 103.7 ± 30.9 mmHg, p =

0.033 byWilcoxonmatched-pairs signed rank test, 22 trials). Pre-
stimulus mean arterial pressure level was negatively correlated
with mean arterial pressure changes (r = −0.72, p = 0.0002).
In majority of trials, HR and mean arterial pressure changed
in the same direction (i.e., tachycardiac and pressor responses
in Figure 1A and Supplementary Figure 1A or bradycardiac
and depressor responses in Figure 1B and Supplementary Figure
1B). There was a significant positive correlation between HR
and mean arterial pressure changes (r = 0.83, p < 0.0001,
Supplementary Figure 1C).

Influence of Autonomic Nerve Block on
Pre-stimulus HR and Response to Calf
Pressure Stimulation
In three rats, cardiac sympathetic nerves were blocked and
12 trials of mechanical pressure stimulation were conducted.
Overall, HR did not change in response to mechanical
stimulation (from 340.3 ± 15.5 to 340.3 ± 14.4 bpm, p =

0.97 by paired t-test). Spontaneous fluctuations of HR during
the pre-stimulus period were quite small in this condition
(Figures 1D,E); thus, even very small changes in HR were
distinguishable (e.g., from 357 to 359 bpm in Figure 1D and
from 359 to 350 bpm in Figure 1E). Under sympathetic nerve
block, both the range of pre-stimulus HR (317–360 bpm) and the
1HR (−9 to +3 bpm) were significantly smaller than those in
rats with intact autonomic nerves (both p < 0.0001 by F-test).
There was no significant correlation between pre-stimulus HR
and HR response (r = −0.46, p = 0.13; Figure 1F), implicating
sympathetic nerve in these HR responses to mechanical pressure
stimulation of calf muscle.

In seven rats, the vagus nerve was blocked and 17 trials of
mechanical pressure stimulation to calf muscle were performed.
In this condition, bidirectional HR responses (range: −75 to
+30 bpm; Figures 1G–I) were observed and the range of 1HR
was not different from that in rats with intact autonomic
nerves (p = 0.17 by F-test). A significant negative correlation
between pre-stimulus HR and 1HR remained (r = −0.50, p
= 0.043; Figure 1I), although the range of pre-stimulus HR
(311–431 bpm) was narrower than that in autonomic nerve
intact rats (p = 0.048 by F-test). Bradycardiac responses of
>40 bpm were produced when pre-stimulus HR was >370
bpm. This inverse correlation between pre-stimulus HR and
1HR was also observed in one of the seven rats in whom
the vagus efferent nerve was pharmacologically blocked by
atropine administration rather than transection. Results obtained

from this atropine-treated rat are grouped together with those
obtained from the vagus nerve-severed rats (Figure 1I). When
averaged, HR did not change in response to mechanical
stimulation (from 380.9 ± 36.0 to 369.7 ± 31.2 bpm, p = 0.14
by paired t-test).

Response of Cardiac Efferent Nerve
Activity to Calf Muscle Pressure
Stimulation
The results presented above suggest that HR responses to calf
pressure stimulation aremediated primarily by changes in CSNA.
Hence, we electrophysiologically recorded CSNA and obtained
nerve responses to calf muscle pressure stimulation. In four rats,
CSNA was recorded during 17 trials of mechanical pressure
stimulation. Similar to HR responses, CSNA responses (1CSNA)
were bidirectional, increasing in 10 trials and decreasing in
6 trials with one no response trial. Sample CSNA recordings
with simultaneous HR monitoring from the same rat are
shown in Figures 2A,B. In Figure 2A, CSNA started to increase
immediately after the onset of the calf pressure stimulation
and peaked at 172.2% of pre-stimulation value. In Figure 2B,
CSNA decreased immediately after the onset of stimulation
to 41.9% below pre-stimulus value at 20 s after cessation of
stimulation. In both cases, the direction of the HR change
paralleled that of CSNA, and there was a strong positive
correlation between 1HR and 1CSNA (r = 0.77, p = 0.0004;
Figure 2C).

To identify factors influencing the direction of the CSNA
response to pressure stimulation, the correlations of pre-stimulus
CSNA level with1HR and1CSNA were examined. To pool pre-
stimulus CSNA data from different rats, CSNA was normalized
to the highest frequency value across all trials within each
individual (and set to 1). The normalized pre-stimulus CSNA
was significantly and negatively correlated with both 1HR and
1CSNA responses to calf muscle pressure stimulation (r =

−0.62, p = 0.0062 and r = −0.62, p = 0.0066, respectively;
Figures 3A,B). Thus, mechanical pressure stimulation of skeletal
muscle produces decreased HR and CSNA when tonic CSNA is
high and increased HR and CSNA when tonic CSNA is relatively
low.

Correlation between Pre-stimulus HR and
HR Response to Pinch Stimulation of the
Hindpaw
We then examined whether HR responses to pinch stimulation
were also influenced by the level of pre-stimulus HR. In 6
rats with intact autonomic nerves, 14 trials were performed.
Overall, HR and mean arterial pressure significantly increased
(from 340.3 ± 53.4 to 374.2 ± 50.5 bpm, p = 0.0004, and
from 96.3 ± 37.9 to 125.1 ± 27.3 mmHg, p = 0.0052,
respectively, by Wilcoxon matched-pairs signed rank test).
As shown in Figure 4A, HR increased immediately after
the onset of pinch stimulation and remained above the
pre-stimulus level for more than 3 min after the cessation
of stimulation in most trials. In 13 of 14 trials, HR
increased in response to pinch stimulation (Figures 4A,C).
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FIGURE 2 | Direct association between bidirectional heart rate (HR) and cardiac sympathetic efferent nerve activity (CSNA) changes in response to

calf pressure stimulation. (A,B) Sample records showing increased (A) or decreased (B) CSNA with parallel changes in HR. The histogram illustrates the nerve

discharge rate every 5 s. Raw signals are shown in the upper to lower rows. Insets in (A,B) show enlarged views of nerve activity. (C) Positive correlation between

1CSNA and 1HR. r = Spearman’s correlation coefficient.

FIGURE 3 | Negative correlations between pre-stimulus cardiac sympathetic efferent nerve activity (CSNA) and changes in heart rate (1HR, A) and

sympathetic nerve activity (1CSNA, B) in response to calf muscle pressure stimulation. The highest frequency value of CSNA across all trials was used to

normalize the level of CSNA within each rat and expressed as 1. r = Spearman’s correlation coefficient.

In the other trial, HR increased immediately after the
onset of pinch stimulation and exhibited a larger decrease
following the termination of the stimulation (Figures 4B,C).
Like muscle stimulation, there was a significant negative
correlation between pre-stimulus HR and the 1HR
responses to pinch stimulation (r = −0.75, p = 0.0029;
Figure 4C).

DISCUSSION

The present results demonstrate that (1) calf muscle pressure
stimulation induces tachycardiac or bradycardiac responses by
regulating CSNA because HR responses to pressure stimulation
in cardiac sympathetic nerve blocked condition were marginal
and the direction of the HR change paralleled that of CSNA and
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FIGURE 4 | Heart rate responses (1HR) to hindpaw pinch stimulation. (A,B) HR increase (A) and decrease (B) in response to pinch stimulation. (C) Negative

correlation between individual 1HR values (closed circles) and pre-stimulus HR. r = Spearman’s correlation coefficient.

(2) the direction of the HR change is dependent on the tonic level
of CSNA, i.e., bradycardia occurs when the tonic activity is high
and tachycardia occurs when it is low.

HR Responses to Mechanical Pressure
Stimulation of the Calf Muscle Were
Mediated by Cardiac Sympathetic Nerves
The present observations that HR responses to calf muscle
pressure stimulation were suppressed by cardiac sympathetic
nerve block and strongly correlated with CSNA indicate
that these responses are mediated predominantly by changes
in CSNA. Furthermore, similar results were observed with
direct muscle pressure after skin removal, implicating muscle
mechanoreceptor afferent in this response and precluding a
necessary contribution from cutaneous afferents. Moreover, since
HR and blood pressure usually changed in the same direction, the
HR responses likely originated from sensory inputs from the calf
muscle rather than from a secondary response to blood pressure
changes (i.e., baroreflexes).

In contrast to sympathetic nerve, the contribution of vagus
nerve appeared negligible because there was no significant
influence of vagus nerve transection on the HR response.
Tallarida et al. (1981) reported that pressure stimulation of the
calf muscles increased HR and this tachycardiac response was
blocked by the catecholamine release inhibitor guanethidine
in anesthetized vagotomized rabbits. Although, the influence
of vagotomy was not reported in their study, presence of
the tachycardiac response under vagotomy and blockade by
inhibition of postganglionic sympathetic norepinephrine release
are fundamentally consistent with our results. However, there
remains a possibility that the vagus nerve may contribute
to HR responses in the unanesthetized condition because
cardiac vagus nerve is more susceptible to anesthetics than

sympathetic nerve (Sato et al., 1997). In conscious humans,
mechanical muscle stimulation by stretch is considered to
increase HR through vagal withdrawal (Gladwell et al.,
2005).

Tonic Level of Cardiac Sympathetic Nerve
Activity Determines the Direction of the HR
Response
The directions of changes in HR and blood pressure induced by
muscle stimulation are reported to be affected by experimental
conditions such as the depth of anesthesia (Ohsawa et al.,
1995; Sato et al., 1997). However, the inhaled concentration of
isoflurane was kept constant during data recording in the present
study, indicating bidirectional HR responses (bradycardia or
tachycardia) to the mechanical pressure stimulation were not
due to shifts in anesthesia level. Rather, response direction was
dependent on the pre-stimulus HR, which is a function of
CSNA. Under isoflurane anesthesia, the resting HR periodically
shifted (“step-like changes”) during electroencephalogram (EEG)
signal pattern changes, i.e., HR increases when EEG bursts occur
and decreases when EEG suppression occurs (Yli-Hankala and
Jäntti, 1990). Thus, the resting level of neuronal activity in the
cardiovascular center may also change periodically as manifested
by the resting (pre-stimulus) HR level changes observed in
the present study. However, a fundamental cause of the large
variability in resting HR observed in the present study has
not been determined. The range of the resting HR obtained
in the present study was similar to that obtained in conscious
unstrained rats (Delaunois et al., 2009; Albrecht et al., 2014; Sharp
et al., 2014).

Destruction of the sympathetic inputs to the heart
markedly reduced pre-stimulus HR variation, although
the vagus nerve block had little effect. Thus, sympathetic
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inputs are the primary contributor to HR variation under
these conditions. A substantial influence of sympathetic
nerve block on pre-stimulus HR may be related to the
inhibition of noradrenaline release from the postganglionic
sympathetic terminals by the cardiac vagus nerve (Vanhoutte
and Levy, 1980; Manabe et al., 1991). Thus, eliminating the
tonic activity of cardiac sympathetic nerve may suppress a
modulatory mechanism for resting HR driven by the vagus
nerve.

We assume that the HR responses to the calf pressure
stimulation are a supraspinal reflex (Sato et al., 1997). The
tonic activity of sympathetic nerves innervating cardiovascular
organs is thought to be generated by a core network consisting
of neurons in the rostral ventrolateral medulla (RVLM),
caudal ventrolateral medulla (CVLM), nucleus of the solitary
tract (NTS), hypothalamus, and spinal cord (Campos and
McAllen, 1997; Dampney et al., 2003; Horiuchi et al., 2004;
Guyenet, 2006). Although, the central projections of pressure-
sensitive muscle afferents have not been determined, muscle
afferent information reportedly reaches the RVLM, CVLM, NTS,
and hypothalamus (Terui et al., 1987; Kannan et al., 1988;
Degtyarenko and Kaufman, 2006; McCord and Kaufman, 2010).
Further, electrical stimulation to muscle afferents excited CVLM
neurons and subsequently inhibited RVLM neurons (Ruggeri
et al., 1995). Therefore, the direction of the HR response may
be determined by the balance of excitatory and inhibitory effects
on RVLM neurons. For example, at a relatively high level of
RVLM neuron activity and concomitantly high CSNA, further
enhancement of RVLM neuron activity by muscle afferent input
may be limited due to a ceiling effect. This assumption is
supported by the present result that the tachycardiac response
to pinch stimulation was attenuated when pre-stimulus HR
was relatively high (Figure 4). Hence, inhibition on RVLM
neurons via CVLM neuron excitation can be dominant, leading
to decreases in CSNA and HR. Conversely, when RVLM neuron
activity and CSNA are low, pressure stimulation may be more
likely to increase RVLM excitation, resulting in higher CSNA
and HR.

It has been reported that resting HR level may also influence
the bradycardiac response to acupuncture stimulation. Although,
the afferent types may differ from those activated by mechanical
pressure, there may be common mechanisms. Imai and Kitakoji
(2003) showed that the degree of bradycardia induced by
acupuncture stimulation in healthy volunteers was greater while
sitting than when in the supine position, and sitting is associated
with higher resting HR. On the other hand, an inhibitory
effect of acupuncture-like stimulation on HR was attenuated
by hypercapnia, which increases the tonic level of CSNA
(Uchida et al., 2010). Therefore, HR response to somatosensory
stimulation may differ, depending on the tonic CSNA level and
resting HR.

Types of Somatosensory Stimulation
Elicited by Calf Mechanical Pressure
In the present study, mechanical stimulation was applied to the
calf over the skin. Although, this would also activate cutaneous

mechanoreceptors, HR responses were inducible even when the
skin over the calf was removed. Also, mechanical skin stimulation
(including noxious stimulation) applied around the calf induced
only a small increase in HR (Kimura et al., 1995). In addition,
the pressor response to calf mechanical pressure stimulation
was diminished by severing the sciatic nerve (Stebbins et al.,
1988), which is the main sensory transmission pathway from
calf muscles. A possibility remains that afferents responding
to blood vessel distortion elicited by the pressure stimulation
may contribute to the cardiovascular responses (Cui et al.,
2012).

Based on single unit recordings of group III and IV muscle
afferents, the stimulation intensity used in the present study
(10 N/cm2) could be considered either noxious (Berberich
et al., 1988) or non-noxious (Hoheisel et al., 2005). Taguchi
et al. (2005) stated that it was not possible to classify muscle
afferents into low and high thresholds because the mechanical
threshold of pressure stimulation is continuous. Hence, we are
unable to define the stimulation used in the present study as
noxious or non-noxious stimulation. Clinically, the intensity of
touch-pressure stimulation for diagnosing myalgia of patients
with temporomandibular joint disorders is 1 kg with a finger
(Schiffman et al., 2014), estimated at 1 kg/cm2 (≈10N/cm2).
Also, the pressure pain threshold on the head in healthy
adults is ∼4 kg/cm2 (Antonaci et al., 1998). Taken together,
the stimulation intensity used in the present study may be
non-noxious in animals without injuries. However, caution is
necessary when extrapolating data obtained in humans to rats
because pressure stimulation to deep tissues may be influenced
by the thickness of subcutaneous tissues (Takahashi et al.,
2005).

Physiological Significance
We suggest that these cardiovascular responses to mechanical
pressure stimulation of skeletal muscles may help control
intramuscular pressure through regulation of the blood supply.
In this aspect, the role of pressure sensitive mechanoreceptors
may differ from those of contraction- and stretch-sensitive
mechanoreceptors that increase HR and blood pressure
during exercise because an adequate stimulus for each type
of mechanoreceptors is different. For example, compartment
syndrome is a condition that causes muscle ischemic necrosis
resulting from an excessive increase in intramuscular
pressure. Because 100mmHg is approximately equivalent
to 1.3 N/cm2, force loading on muscle tissues is much
greater under mechanical pressure stimulation used in the
present study. Thus, such a cardiovascular response may
protect muscles from potential damage by limiting blood
perfusion partly due to regulating cardiac output, thereby
preventing muscle edema and subsequently an abnormal
intramuscular pressure. This potential function warrants further
study.

In summary, the present results suggest that pressure
stimulation applied to the calf excites muscle mechanoreceptors,
that activate or inhibit CSNA, resulting in changes to
HR. The direction of HR responses (tachycardia or
bradycardia) to calf stimulation is determined by the
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tonic level of CSNA, suggesting that this mechanical
stimulation-induced cardiovascular reflex participates
in bidirectional feedback regulation of muscle blood
supply.
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