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The insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate
the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors,
thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling
pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical
pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been
identified in solid tumor and hematologic neoplasm models. Insulin receptor substrate-1 (IRS1) and insulin
receptor substrate-2 (IRS2) are the best-characterized IRS proteins in hematologic-related processes. IRS2 binds
to important cellular receptors involved in normal hematopoiesis (EPOR, MPL and IGF1R). Moreover, the identi-
fication of IRS1/ABL1 and IRS2/JAK2V617F interactions and their functional consequences has opened a new frontier
for investigating the roles of the IRS protein family in malignant hematopoiesis. Insulin receptor substrate-4 (IRS4) is
absent in normal hematopoietic tissues but may be expressed under abnormal conditions. Moreover, insulin receptor
substrate-5 (DOK4) and insulin receptor substrate-6 (DOK5) are linked to lymphocyte regulation. An improved under-
standing of the signaling pathways mediated by IRS proteins in hematopoiesis-related processes, along with the
increased development of agonists and antagonists of these signaling axes, may generate new therapeutic
approaches for hematological diseases. The scope of this review is to recapitulate and review the evidence
for the functions of IRS proteins in normal and malignant hematopoiesis.

KEYWORDS: Insulin Receptor Substrate; Adaptor Protein; Signal Transduction; Hematopoiesis; Leukemia;
Myeloproliferative Neoplasms.

’ INTRODUCTION

The insulin receptor substrate (IRS) proteins are a family of
cytoplasmic proteins composed of six members (IRS1-6) that
act as adaptor proteins (1-6). IRS proteins integrate and coordi-
nate multiple cellular processes by transducing signals
from the extracellular to the intracellular environment via
transmembrane receptors (1) and are the major molecules
that mediate the response to insulin and insulin-like growth
factor 1 (IGF1) stimulation (2,7). IRS proteins regulate numer-
ous processes such as growth, metabolism, survival and pro-
liferation, and they respond to various stimuli, including
steroids, cytokines, hormones and integrins [reviewed in
(8) and (9)].

IRS1 was the first member of the IRS protein family to be
identified and cloned (10). IRS2 was identified in Irs1-knockout
mice as a phosphoprotein that responds to insulin stimu-
lation (11). In humans, IRS3 is a pseudogene (12). The expres-
sion of IRS4 is restricted to the brain, kidney, thymus and
liver (5). IRS5 and IRS6, also called docking protein-4 (DOK4)
and docking protein-5 (DOK5), respectively, have high
homology with other members of the IRS protein family in
their N-terminal regions (6,13). The structures of the human IRS
proteins are shown in Figure 1.
IRS proteins do not have kinase or other intrinsic enzy-

matic activity; however, they contribute to the organization
of signaling complexes as adaptor proteins (2). IRS proteins
have high levels of homology in the N-terminal regions,
which contain two conserved domains that participate in
receptor recruitment: the pleckstrin homology (PH) domain
and the phosphotyrosine binding (PTB) domain. The PH domain
participates in protein-protein interactions and facilitates
recruitment by receptors and phospholipid proteins located in
the plasma membrane (14-16). The PTB domain contains
the tyrosine residues that interact with NPXY motifs on
activated receptors (17,18). The activation of IRS proteins
occurs after the phosphorylation of tyrosine residues in
the C-terminal region, which contains more than twenty
tyrosine sites. When phosphorylated, IRS proteins canDOI: 10.6061/clinics/2018/e566s
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bind to various Src homology (SH2) domain-containing
proteins, including PI3K, GRB2, SHP2, resulting in the
activation of multiple signaling pathways, especially the
PI3K/AKT/mTOR and MAPK pathways (19-23).
PI3K-mediated signaling plays a critical role in many

cellular biological events, including mitogenesis, motility,
metabolism and survival (24). The C-terminal region of the IRS
proteins contains several YMXM motifs, which bind to the
SH2 domain of the PI3K p85 subunit when phosphorylated,
with the consequent activation of AKT (25). PI3K was origi-
nally identified as a dimer composed of a catalytic subunit
(p110) and a regulatory subunit (p85). The binding of phos-
phorylated proteins to the SH2 domain of the PI3K p85
subunit activates the associated catalytic domain. PI3K
catalyzes the phosphorylation of phosphoinositides at the
3-position of the inositol ring, producing phosphatidyli-
nositol 3,4,5-triphosphate (PI(3,4,5)P3), which in turn
activates intracellular substrates such as AKT (26). The
antiapoptotic effect of AKT is associated with the phos-
phorylation of its substrates, including BAD, caspase 9,
NF-kB and the family of forkhead transcription factors (27).
BAD phosphorylation prevents its interaction with BCL2
and BCL-XL, allowing its antiapoptotic action on the mito-
chondrial pathway (28).
IRS proteins also bind to GRB2, leading to the activation

of the MAPK cascade, which includes the ERK protein. The
activation of the MAPK cascade is critical for cell differentia-
tion and proliferation. In addition, IRS proteins may bind
to other adapter proteins such as NCK, CRK, or the FYN
kinase, also resulting in the activation of the MAPK cascade
(20,29,30) (Figure 2).
Although IRS proteins have long been considered to

exemplify typical cytosolic proteins, IRS1 may, under certain
circumstances, be translocated to the nucleus, although the

exact mechanism that promotes such translocation is not fully
understood (31). Prisco et al. (32) noted that IRS1 contains
native nuclear localization signals (NLSs), which may
explain the translocation of IRS1 to the nucleus after IGF1/
IGF1R activation (33). In addition, the presence of nuclear
IRS1 in cells expressing human JC virus T-antigen, SV40
T-antigen, integrins, estrogen receptor a (ERa) and estrogen
receptor b (ERb) indicates that IRS1 can be translocated via
association with other NLS-equipped proteins (31,32,34-36).
However, the role of nuclear IRS proteins is still undetermined.

Deregulation of the IRS protein has been implicated in
human diseases, especially diabetes and cancer [reviewed
in (8,9) and (37)]. Herein, we review and recapitulate the
evidence for the roles of IRS proteins in normal and
malignant hematopoiesis, exploring the clinical, biological
and functional descriptions of the involvement of this protein
family in the field of hematology.

IRS signaling in normal hematopoiesis
Hematopoiesis is strictly regulated by cytokines and growth

factors (38). Both IRS1 and IRS2 are expressed in a wide
spectrum of cells and tissues (39). Unpublished data from
our research group indicate that in human CD34+ bone
marrow cells, IRS2 is the predominant transcript, whereas in
human CD3+ lymphocytes, IRS1 is highly expressed. Irs2
expression is predominant in murine hematopoietic cells (3,39).

Machado-Neto et al. (40) reported increased levels of IRS2
mRNA, protein and phosphorylation in models of lineage-
differentiated cell lines, including erythroid-, granulocytic-
and megakaryocytic-differentiated cells (40). In CD34+ cells
from normal donors, IRS2 expression was increased upon
erythroid differentiation (40). In granulocytic-differentiated
HL-60 cells induced by dimethylsulfoxide, IGF1 induced an

Figure 1 - Schematic of human IRS protein structures. The pleckstrin homology (PH) domain, phosphotyrosine binding (PTB) domain
and kinase regulatory loop binding (KRLB) domain are shown in the figure. Amino acid (aa) positions are indicated.
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increase in IRS2 but not IRS1 protein expression and tyrosine
phosphorylation as well as in PI3K recruitment (41). The
genes encoding IRS2 and IGF1R were more highly expressed
in plasma cells than in B cells, indicating that the IGF1R/
IRS2 signaling pathway plays an important role in plasma
cell differentiation and function (42). These data highlight the
involvement of IRS2 in hematopoietic cell differentiation.
IRS2 can be activated via three relevant transmembrane

receptors involved in hematopoiesis: IGF1R, EPOR, and
TPOR (MPL) (41,43,44). The role of IGFI and its receptor in
the regulation of hematopoietic cell development has been
studied widely. Most such studies are related to the ability
of IGF1 to stimulate myelopoiesis and erythropoiesis (45,46).
However, in adult organisms, IGF1 does not seem to be
required for normal or malignant hematopoietic cell devel-
opment (47). Another study demonstrated that although
neither IGF1 nor insulin is required during early erythropoi-
esis, both play a role in the final stages of erythroid matu-
ration via the phosphorylation of IRS2 (48).
Erythropoietin (EPO) is the major regulator of erythropoi-

esis (49). Upon EPO binding, the erythropoietin receptor
(EPOR) undergoes conformational changes and associates
with JAK2 (50-52). JAK2 can activate its associated signaling
pathways via two distinct mechanisms: (I) an EPOR tyrosine
phosphorylation-independent mechanism involving ERK1/2
stimulation (53); and (II) via the phosphorylation of numer-
ous tyrosine residues in the cytoplasmic tail of the EPOR that
act as docking sites for SH2 domain-containing proteins
(52,54,55). IRS2 but not IRS1 is expressed in several murine
and human EPO-sensitive cell lines, including cells with
erythroid and megakaryocytic features.

In UT-7 cells stimulated with EPO, IRS2 is rapidly phos-
phorylated on tyrosine residues. Following EPO-induced
tyrosine phosphorylation, IRS2 associates with two proteins:
PI3K and PI-3,4,5-trisphosphate 5-phosphatase (SHIP). Further-
more, phosphorylated IRS2 remains constitutively associated
with the EPOR (43). Sathyanarayana et al. (55) demon-
strated that IRS2 is regulated by EPO at the transcriptional
level in primary murine erythroblasts. Furthermore, using
phosphoproteomic analysis to evaluate the potential adaptor
proteins involved in EPOR/JAK2 signaling, Verma et al. (56)
observed that IRS2 was phosphorylated on tyrosine residues
653, 675, 742 and 823 in response to EPO.
Thrombopoietin (TPO) is the pivotal signal that regulates

platelet production; TPO binds to the MPL receptor on hema-
topoietic stem cells and megakaryocytes (57). The TPO-mediated
association between the MPL receptor and IRS2 was described
by Miyakawa et al. (44), who reported that TPO activates
the PI3K pathway in BaF3/MPL cells via a complex com-
prising the p85 subunit of PI3K, phosphorylated SHP2 and
GAB2 or a complex comprising the p85 subunit of PI3K
and IRS2 (44).
IRS proteins can also be activated by the interleukins (ILs)

involved in hematopoiesis. In lymphoid cell lines, T cells and
NK human lymphocytes, IRS1 and IRS2 are phosphorylated
on tyrosine sites upon stimulation by IL2, IL4, IL7 and
IL15 (58). IL9 promotes the tyrosine phosphorylation of IRS1
by JAK tyrosine kinases in a murine T cell line (TS1) (59).
Although most studies linking IRS proteins and hemato-
poiesis focus on IRS1 and IRS2, the expression of IRS5 and
IRS6 in human T cells was reported, and IRS5 was identified
as a negative regulator of T lymphocyte activation (60,61).

Figure 2 - Canonical IRS signaling. IRS proteins are recruited via their PH/PTB domains and are phosphorylated on tyrosine residues
by upstream tyrosine kinase receptors. Tyrosine phosphorylation of IRS proteins triggers the activation of PI3K/AKT/mTOR and MAPK
signaling, thus regulating many biological processes, including cell proliferation, protein synthesis, survival and gene expression, in
specific human tissues. IRS proteins may also be activated by cytokine and hormone receptors (e.g., IL4, leptin, and angiotensin), which
further induce JAK2 stimulation and IRS/JAK2 interaction, leading to the activation of STAT, PI3K/AKT/mTOR and MAPK signaling.
Abbreviations: P, phosphorylation; PY, tyrosine phosphorylation. This figure was generated using Servier Medical Art (http://www.
servier.com/Powerpoint-image-bank).
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Using 32D cells, a cell line that neither expresses endogenous
IRS1 nor responds to IL4 or insulin, Wang et al. (62) demon-
strated that IRS1 is required for insulin- and IL4-stimulated
mitogenesis in hematopoietic cells. In 32D cells, the expres-
sion of IRS1 via transfection restored sensitivity to IL4 and
insulin and induced proliferation (62). A subsequent study
by the same research group showed different results; the
stimulation of overexpressed IGF1R by IGF1 and IL4 induced
hematopoietic cell proliferation independent of IRS expres-
sion and activation (63). IRS4 was also identified to participate
in insulin and IL4 signaling in 32D cells (64). In hemato-
poietic cells, the type I interferon receptor can activate IRS
signaling (65); interferon-a (IFN-a) binding induces the rapid
tyrosine phosphorylation of IRS1 and IRS2, leading to the
association of phosphorylated IRS proteins with PI3K (65-67).

IRS signaling in myeloid neoplasms

Chronic myeloid leukemia. Traina et al. (68) were the
first to demonstrate the involvement of the IRS1 protein in
BCR-ABL1 signal transduction in chronic myeloid leukemia
(CML). In the K562 cell line, a BCR-ABL1-positive cell line
derived from a patient with CML in blast crisis, the IRS1
protein was constitutively phosphorylated and associated
with BCR-ABL1, and IRS1 phosphorylation was inhibited by
imatinib treatment. Traina et al. also described the associa-
tion between IRS1 and PI3K and the IRS1-associated PI3K
activity in K562 cells. The associations between these proteins
were inhibited by imatinib treatment, suggesting that PI3K
activation by BCR-ABL1 involves binding to the phosphory-
lated IRS1 protein and depends on the tyrosine kinase acti-
vity of BCR-ABL1. In K562 cells treated with imatinib and
immunoprecipitated with an anti-GRB2 antibody, the GRB2-
associated phosphorylation of both BCR-ABL1 and IRS1 was
significantly reduced, suggesting the formation of a BCR-
ABL1/IRS1/GRB2/PI3K complex (68).

The functional involvement of IRS1 in the BCR-ABL1
signaling pathway was later demonstrated using lentivirus-
mediated IRS1 silencing with short hairpin RNA (shRNA) in
K562 cells (69). IRS1 inhibition reduced cell proliferation and
clonal growth by arresting the cell cycle in the G0/G1 phase.
IRS1 inhibition also decreased AKT, P70S6K and ERK phos-
phorylation, indicating the downregulation of the PI3K/
AKT/mTOR and MAPK pathways. The inhibition of IRS1
did not modulate apoptosis; BCL2, BAX and BAD; protein
expression; or BCR-ABL1 and CRKL phosphorylation. IRS1
silencing was not synergistic with imatinib treatment (69).

Zhao et al. (70) identified IRS1 and IRS2 as inhibitory targets
of miR-570 and verified that miR-570 is downregulated in
CML clinical samples and in the K562 and LAMA-84 CML
cell lines. This study revealed that the overexpression of
miR-570 suppressed cell proliferation, increased apoptosis,
and reduced glucose metabolism, whereas the inhibition
of miR-570 increased cell proliferation, reduced apoptosis,
and increased glucose metabolism. Corroborating the find-
ings by Machado-Neto et al. (69), Zhao et al. (70) verified
that in K562 cells, IRS1 or IRS2 silencing via small inter-
fering RNA (siRNA) reduced cell viability and increased
sensitivity to nutrient deprivation.

Myeloproliferative neoplasms. Previous studies have
described the involvement of IRS1 and IRS2 in the JAK2
signaling pathway in nonhematologic cells. IRS1 was found

to be associated with and phosphorylated by JAK2 in
COS-1 cells overexpressing both IRS1 and JAK2 (59). JAK2
coimmunoprecipitated with IRS2 in rat aortic smooth muscle
cells and in vivo models following angiotensin II stimula-
tion (71-74) and in rat livers following leptin stimulation (75).
Considering the previous findings in nonhematologic tissues,
our research group identified a constitutive protein associa-
tion between IRS2 and JAK2 in myeloproliferative neoplasm
(MPN) models, which present constitutive JAK2 activation
due to a V617F mutation. In the HEL JAK2V617F cell line, but
not in U937 JAK2 wild-type leukemia cell lines, IRS2 was
constitutively phosphorylated and associated with JAK2.
In HEL cells, lentivirus-mediated IRS2 silencing decreased
STAT5 phosphorylation, reduced cell viability and increased
apoptosis. NT157, a pharmacological inhibitor of IGF1R/
IRS1-2, reduced cell viability in JAK2V617F primary MPN
samples but not in JAK2 wild-type samples (76). A recent
study using targeted next-generation sequencing identified
IRS2 mutations in 2 of 16 (12.5%) patients with triple-
negative MPN, one with polycythemia vera and the other
with essential thrombocythemia (77).

Acute myeloid leukemia. In acute myeloid leukemia
(AML), somatic mutations, aberrant gene/protein expression
levels and activating autocrine loops may promote growth
factor and cytokine signaling activation as well as clonal
expansion (78). The activation of several prosurvival path-
ways in AML is an essential element in the optimization of
molecular targeted therapies, such as those targeting proteins
involved in the protein kinase C, STAT, MAPK, PI3K/AKT/
mTOR pathways (79). IGF1 signaling is implicated in self-
renewal/pluripotency in hematopoietic stem cell contexts
and supports cell growth/survival via the activation of down-
stream pathways in both normal and neoplastic settings (80).
In the hematopoietic context, the role of the insulin and
insulin-like growth factor axis in AML treatment refractori-
ness has been studied, but the specific functions of the IRS
proteins are underexplored.

Accumulating evidence demonstrates the role of IGF1R
signaling via the PI3K/AKT/mTOR cascade in AML. IGF1
and other cytokines have been described as important for
AML cell growth (81), and the activation of the IGF1R signal-
ing pathway has been detected in cells from AML patients
and contributes to the survival and proliferation of these cells
(82,83). An association between increased activation of the
IGF1R axis and resistance to cytarabine has been reported in
leukemia. Blocking the IGF1R in a cytarabine-resistant cell
line inhibited cell growth and led to apoptosis (84), sug-
gesting that IGF1R and its downstream signaling pathways
may provide valuable novel targets to overcome chemother-
apeutic resistance in AML.

Bertacchini et al. (85) demonstrated that pharmacological
inhibitors of PI3K (LY294002) and AKT (AKTi 1/2) induced
apoptosis but could not abrogate the phosphorylation of
AKT at serine 473 and threonine 308 in a group of primary
AML samples. Indeed, 70% of the AML samples tested
showed an increase in AKT phosphorylation after long-term
exposure to inhibitors; this increase was related to an upregu-
lation of IRS1 expression and IR, IGF1R and PDGFR
phosphorylation. Taken together, these results confirm that
in AML primary cells, IRS1 participates in a mechanism of
resistance to PI3K signaling inhibition. Moreover, 75% of
the AML primary cells resistant to AKT inhibitors presented
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high IGF1R/IRS1 phosphorylation, and the combination of
AKT inhibitors and the IGF1R inhibitor linsitinib poten-
tiated PI3K/AKT/mTOR inhibition (85). Thus, combination
therapy could be an effective strategy for breaking the
adaptive circuits formed in leukemia cells that render these
cells resistant to therapy. Consistent with this hypothesis,
Tamburini et al. (83) noted that mTORC1 inhibition by
RAD001 increased AKT activation in primary AML cells as
a consequence of IRS2 upregulation via autocrine activation
of IGF1/IGF1R signaling. Collectively, these results provide
evidence that IGF1R signaling mediated by IRS1 and IRS2 is
involved in chemotherapeutic resistance in AML.

Genetic lesions that affect TP53, such as mutations and
aneuploidy, are recognized as markers of a very dismal
prognosis for AML patients (86). Recently, Quintás-Cardama
et al. (87) demonstrated that the p53 pathway is frequently
disrupted in AML, not just via TP53 mutations/deletions but
also via a molecular background permissive to the transfor-
mation capability of p53. Via a proteomic approach, increased
IRS1 phosphorylation at serine 1101 was identified as a bio-
logical marker of p53 pathway deregulation (87).

Myelodysplastic syndrome. Our research group reported
that IRS2 expression was lower in bone marrow samples
from patients with myelodysplastic syndrome (MDS) than
in bone marrow samples from healthy donors (40). These
findings agree with those of a previous study that used a
microarray analysis to show that the level of IRS2 is lower
in bone marrow mononuclear cells from MDS patients
than in cells from healthy donors (88). IRS2 expression was
lower in MDS patients with X5% bone marrow blasts than
in MDS patients with o5% bone marrow blasts, and IRS2
downregulation was associated with an increased severity
of cytopenia (40). These findings suggest that IRS2 defi-
ciency may be related to ineffective hematopoiesis.

IRS signaling in lymphoid neoplasms

Acute lymphoblastic leukemia. Fernandes et al. (89)
recently identified high levels of IRS1 protein expression in
acute lymphoblastic leukemia (ALL) cell lines and observed
that IRS1 and b-catenin were colocalized in the nucleus and
cytoplasm of all the lymphoid leukemia cell lines studied.
In the cytoplasm of normal peripheral blood mononuclear
cells, both proteins were only weakly detected, suggesting a
lower activation of the IRS1/b-catenin axis in healthy donors
than in patients with ALL. Fernandes et al. (89) also reported
high IRS1 and b-catenin mRNA expression in a cohort of
forty-five adult patients with ALL compared to normal
hematopoietic cells from thirteen healthy donors, indicat-
ing that the IRS1/b-catenin signaling pathway probably
contributes to the pathophysiology of ALL. In mouse embryo
fibroblasts, Chen et al. (90) previously described IRS1, via
IGF1R signaling, as a protein responsible for the nuclear
translocation and activation of b-catenin.

In the childhood ALL cell lines CCRF-CEM (T cell acute
lymphoblastic leukemia, T-ALL), NALM6 (B cell acute
lymphoblastic leukemia, B-ALL) and REH (B-ALL), Leclerc
et al. (91) demonstrated that AMPK activation induced growth
inhibition and apoptosis via the downregulation of mTOR
phosphorylation on serine 2448. Moreover, the IGF1R/IRS1
axis was important in determining the pro- or antiapoptotic

response to AMPK activators, since AMPK activation induced
a compensatory survival response. This mechanism was medi-
ated in part by the AMPK-induced phosphorylation of
IRS1 on serine 794, which in turn activated downstream
oncogenic pathways (91). Therefore, selected combination
therapies using IRS1 inhibitors could be a potential strategy
for ALL therapy.

In a study using primary cells from adult patients with
B-ALL, Juric et al. (92) identified, via computational analysis
of the data obtained by a microarray analysis, a lower expres-
sion of IRS1 in BCR-ABL1-positive ALL than in BCR-ABL1-
negative ALL. In BCR-ABL1-positive ALL, IRS1 expression
negatively correlated with survival, independent of age and
leukocyte count at diagnosis (92).

The multitarget tyrosine kinase inhibitor GZD824 exhib-
ited an antitumor effect in pre-B-ALL by inhibiting both the
SRC kinase and PI3K/AKT/mTOR pathways, and ALL cells
with lower IRS1 expression were more sensitive to GZD824
treatment than those with higher IRS1 expression. Therefore,
IRS1 expression could be used as a biomarker to predict
GZD824 efficacy in pre-B-ALL (93).

T-ALL cases involving IRS4 have rarely been reported
since Karrman et al. (94) first reported, in 2009, the t(X;7)
(q22;q34) translocation in a patient with childhood T-ALL.
These researchers identified IRS4 as the translocated gene
and observed IRS4 overexpression (94). Another case appear-
ing years later and reported by Kang et al. (95) presented a
simultaneous translocation of the TCR a/d loci (14q11) with
different partner loci (Xq22 and 12p13), and fluorescent in
situ hybridization suggested the involvement of the IRS4
gene. In 2011, Karrman et al. (96), intrigued by the rare
cases of T-ALL involving IRS4, identified IRS4 mutations
in 2 of 21 (9.5%) patients with T-ALL. IRS4 is believed to
exert mitogenic and proliferative effects more similar to
the effects of IRS1 than to those of IRS2 (8,94).

Chronic lymphocytic leukemia. High IGF1R expression
was identified in primary chronic lymphocytic leukemia (CLL)
cells, suggesting the contribution of the IGF1R/IRS signaling
pathway to disease pathology. Treatment with IGF1R inhi-
bitors (AG1024, PPP) and IGF1R/IR inhibitor (OSI-906)
reduced the viability and induced apoptosis in CLL cells
in vitro, independent of the presence of protective stromal
cells, and reduced tumor burden in vivo. Pharmacological or
siRNA inhibition of the IGF1R was associated with a signi-
ficant reduction in IRS1, PI3K, AKT and ERK phosphoryla-
tion. These data indicate that in CLL cells, IGF1R signaling
activates the PI3K/AKT and MAPK pathways via IRS1 (97).

Multiple myeloma. Li and colleagues (98) demonstrated
that IGF1R and downstream signaling pathways play an impor-
tant role in the development of a broad spectrum of plasma
cell tumors via constitutive IRS2 tyrosine phosphorylation
and PI3K recruitment. In human multiple myeloma cell lines,
IGF1 induced proliferation and antiapoptotic effects via
IRS1-dependent PI3K/AKT and MAPK activation, even in
IL6-independent cell lines, indicating that the IGF1R/IRS1
axis plays an important role in the development and progres-
sion of this disease (99).

Shi et al. (100) observed that low concentrations of mTOR
inhibitors stimulated the PI3K/AKT cascade in multiple mye-
loma. These drugs, in addition to preventing the phosphorylation
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of the downstream mTOR targets p70S6K and 4EBP1 and
subsequent G1 arrest, prevent IRS1 serine phosphorylation
(at an inhibitory site). Therefore, the prevention of IRS
serine phosphorylation enhanced the activity of IGF1R/
IRS1 signaling pathways and downstream targets, such as
PI3K/AKT/mTOR, independent of PTEN mutational status
(100). This mechanism can be particularly detrimental in
multiple myeloma, because IGF1R/IRS1-induced AKT acti-
vation is a protumoral stimulus in multiple myeloma cells
(99,101). Thus, additional studies will be necessary to deci-
pher the best strategy for combining mTOR inhibitors with
other therapeutic agents in multiple myeloma (100).

Hairy cell leukemia. Recently, Durham et al. (102) identi-
fied, by next generation sequencing and copy number analysis,
a novel gain-of-function mutation in IRS1 that contributed
to clinical resistance to vemurafenib (BRAFV600E inhibitor) in
1 of 53 (2%) patients with classical hairy cell leukemia. More-
over, these researchers observed that mutated IRS1 activated
PI3K/AKT signaling and phosphorylated ERK1/2, leading to
the cytokine-independent growth of Ba/F3 cells in vitro (102).

Perspectives
Studies using IRS protein (mainly IRS1, IRS2 and IRS4)

knockout animals reveal that these animals are born alive but
are smaller and present type II diabetes, reflecting the parti-
cipation of IRS proteins in metabolic homeostasis (103-105).
In oncology, IRS1 and IRS2 knockout mice as well as IRS1-
and IRS2-overexpressing murine models were used to eluci-
date the function of these proteins in solid tumors, providing
evidence of distinct and nonredundant functions for both
proteins in cancer development and progression (106-108).
However, despite the potential importance of IRS proteins in
the signal transduction of hematopoietic-related growth
factors and cytokines, as discussed herein, the function of
this protein family in normal and malignant hematopoiesis

remains poorly understood. Recently, a great effort has been
undertaken to develop and identify compounds capable of
inhibiting signaling mediated by the IR/IRS and IGF1R/IRS
axes. Reuveni et al. (109) identified that NT157, a compound
that binds to IGF1R and induces a conformational change
leading to the dissociation of IRS1/2 from the receptor and to
the degradation of IRS1/2 by the proteasome, presented anti-
neoplastic effects in solid tumors (109-113). The cancer cell
panel in the initial study included K562 (CML) and Karpas
(lymphoma) cell lines; thus, the results suggested that NT157
may exert antileukemic effects (109). Similarly, GZD824, a
multikinase inhibitor, downregulated IRS1 signaling and
reduced cell viability and tumor burden both in vitro and
in mice xenotransplanted with primary B-ALL cells (93).
The participation of IRS1 and IRS2 in oncogenic pathways
(namely, the BCR-ABL1 (68,69), JAK2V167F (76) and IRS1/
b-catenin (89) pathways) described by our research group corro-
borates the participation of these proteins in the malignant
phenotype of leukemias and suggests that these protein targets
are druggable (Figure 3). Thus, a better understanding of the
signaling pathway mediated by IRS proteins in hematopoietic-
related processes, along with the increasing development of
agonists and antagonists of this signaling axis, may generate
new therapeutic approaches for hematological diseases.

In conclusion, the importance of IGF1R, EPOR and MPL
signaling in cellular processes related to hematopoiesis has
been recently consolidated; however, the mechanisms of intra-
cellular regulation are continuously investigated. In this sense,
the study of the participation of IRS proteins in hematopoietic
processes still requires elucidation. The IRS proteins, particu-
larly IRS1 and IRS2, play a relevant role in the signal transduc-
tion of membrane receptors and the neoplastic phenotype
induced by oncogenes. A summary of IRS signaling pathway
alterations in hematological neoplasms is presented in Table 1.
Future studies on the involvement of IRS proteins are neces-
sary to open new avenues and augment the understanding of
the complex signaling mediating normal hematopoiesis and
malignant transformation.

Figure 3 - Noncanonical IRS1 signaling in hematological neoplasms. (A) IRS1 binds to and is activated by BCR-ABL1, inducing the activation
of the PI3K/AKT/mTOR and MAPK signaling pathways, which contribute to cell proliferation. (B) IRS2 associates with JAK2 harboring the
activating V617F mutation, which participates in STAT5 activation and cell survival. (C) Upon IGF1/IGF1R activation, IRS1 interacts with
b-catenin, translocates to the nucleus and induces MYC expression in acute lymphoblastic leukemia cell lines. This figure was generated
using Servier Medical Art (http://www.servier.com/Powerpoint-image-bank).

6

IRS proteins in hematopoiesis
Machado-Neto JA et al.

CLINICS 2018;73(suppl 1):e566s

http://www.servier.com/Powerpoint-image-bank


Ta
b
le

1
-
A
lt
e
ra
ti
o
n
s
in

th
e
in
su
li
n
re
ce
p
to
r
su
b
st
ra
te

(I
R
S)

si
g
n
a
li
n
g
p
a
th
w
a
y
in

h
e
m
a
to
lo
g
ic
a
l
n
e
o
p
la
sm

s.

H
e
m
a
to
lo
g
ic

n
e
o
p
la
sm

S
a
m
p
le
/c
e
ll
li
n
e

N
o
te
s

M
a
in

a
p
p
ro
a
ch

e
s

P
u
b
li
ca
ti
o
n

C
h
ro
n
ic

m
ye

lo
id

le
u
k
e
m
ia

K
5
6
2

IR
S1

is
co

n
st
it
u
ti
ve

ly
p
h
o
sp
h
o
ry
la
te
d
o
n
ty
ro
si
n
e
re
si
d
u
e
s
a
n
d

a
ss
o
ci
a
te
s
w
it
h
B
C
R
-A

B
L1

.
IP
,
W

B
Tr
a
in
a
e
t
a
l.
(6
8
)

C
h
ro
n
ic

m
ye

lo
id

le
u
k
e
m
ia

K
5
6
2

IR
S1

si
le
n
ci
n
g
re
d
u
ce
s
ce
ll
p
ro
li
fe
ra
ti
o
n
a
n
d
cl
o
n
o
g
e
n
ic
it
y
a
n
d

in
h
ib
it
s
m
T
O
R
/A
k
t
a
n
d
M
A
P
K

a
ct
iv
a
ti
o
n
.

sh
R
N
A
-l
e
n
ti
vi
ra
l
d
e
li
ve

ry
M
a
ch

a
d
o
-N

e
to

e
t
a
l.
(6
9
)

C
h
ro
n
ic

m
ye

lo
id

le
u
k
e
m
ia

K
5
6
2
a
n
d
LA

M
A
-8
4

IR
S1

a
n
d
IR
S2

si
le
n
ci
n
g
re
d
u
ce
s
ce
ll
vi
a
b
il
it
y
a
n
d
m
e
ta
b
o
li
sm

.
si
R
N
A

a
n
d
tr
a
n
sf
e
ct
io
n

Z
h
a
o
e
t
a
l.
(7
0
)

P
h
il
a
d
e
lp
h
ia
-n
e
g
a
ti
ve

m
ye

lo
p
ro
li
fe
ra
ti
ve

n
e
o
p
la
sm

H
E
L,

U
9
3
7
a
n
d
p
ri
m
a
ry

sa
m
p
le
s

IR
S2

is
a
ss
o
ci
a
te
d
w
it
h
th
e
JA

K
2
V
6
1
7
F
m
u
ta
ti
o
n
a
n
d
in
d
u
ce
s

su
rv
iv
a
l
in

JA
K
2
V
6
1
7
F
-p
o
si
ti
ve

ce
ll
s.
N
T
1
5
7
re
d
u
ce
s
th
e
vi
a
b
il
it
y

o
f
p
ri
m
a
ry

ce
ll
s
fr
o
m

M
P
N

p
a
ti
e
n
ts
.

IP
,
W

B
a
n
d

sh
R
N
A
-l
e
n
ti
vi
ra
l
d
e
li
ve

ry
d
e
M
e
lo

C
a
m
p
o
s
e
t
a
l.
(7
6
)

A
cu

te
m
ye

lo
id

le
u
k
e
m
ia

P
ri
m
a
ry

sa
m
p
le
s

IR
S1

m
e
d
ia
te
s
re
si
st
a
n
ce

to
P
I3
K

si
g
n
a
li
n
g
in
h
ib
it
io
n
.

W
B

B
e
rt
a
cc
h
in
i
e
t
a
l.
(8
5
)

A
cu

te
m
ye

lo
id

le
u
k
e
m
ia

P
ri
m
a
ry

sa
m
p
le
s

IR
S2

is
u
p
re
g
u
la
te
d
b
y
a
u
to
cr
in
e
a
ct
iv
a
ti
o
n
o
f
IG
F1

/I
G
F1

R
si
g
n
a
li
n
g
u
p
o
n
A
k
t/
m
T
O
R
in
h
ib
it
o
r
tr
e
a
tm

e
n
t.

W
B

Ta
m
b
u
ri
n
i
e
t
a
l.
(8
3
)

A
cu

te
m
ye

lo
id

le
u
k
e
m
ia

P
ri
m
a
ry

sa
m
p
le
s

IR
S1

p
h
o
sp
h
o
ry
la
ti
o
n
o
n
se
ri
n
e
1
1
0
1
is
a
b
io
lo
g
ic
a
l
m
a
rk
e
r

o
f
p
5
3
p
a
th
w
a
y
d
e
re
g
u
la
ti
o
n
.

P
ro
te
o
m
ic
s
a
n
d
n
e
tw

o
rk

a
n
a
ly
se
s

Q
u
in
tá
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’ ABBREVIATIONS

AKT, AKT serine/threonine kinase; AML, acute myeloid
leukemia; AMPK, AMP-activated protein kinase; ALL, acute
lymphoblastic leukemia; B-ALL, B cell acute lymphoblastic
leukemia; BAD, BCL2-associated death promoter; BAX, Bcl-
2-associated X protein; BCL2, B cell lymphoma 2; BCL-XL,
B cell lymphoma-extra large; BCR-ABL1, breakpoint cluster
region-Abelson 1; BRAF, B-Raf proto-oncogene, serine/threonine
kinase; CD, cluster of differentiation; CLL, chronic lympho-
cytic leukemia; CML, chronic myeloid leukemia; CRK, CRK
proto-oncogene, adaptor protein; CRKL, CRK-like proto-
oncogene, adaptor protein; DOK, docking protein; EPO,
erythropoietin; EPOR, erythropoietin receptor; ERa, estro-
gen receptor a; ERb, estrogen receptor b; ERK, extracel-
lular signal-regulated kinase; FYN, FYN proto-oncogene,
Src family tyrosine kinase; GAB2, GRB2-associated-binding
protein 2; GRB2, growth factor receptor-bound protein 2;
IFN-a, interferon-a; IGF1, insulin-like growth factor 1; IGF1R,
insulin-like growth factor 1 receptor; IL, interleukin; IR,
insulin receptor; IRS, insulin receptor substrate; JAK2,
Janus kinase 2; MAPK, mitogen-activated protein kinase;
MDS, myelodysplastic syndrome; miR, Micro RNA; MPL,
MPL proto-oncogene, thrombopoietin receptor; MPN, myelo-
proliferative neoplasms; mTOR, mammalian target of rapamycin;
NCK, noncatalytic region of tyrosine kinase adaptor protein;
NF-kB, nuclear factor-kappa B; NLS, nuclear localization
signal; PDGFR, platelet-derived growth factor receptor;
PH, pleckstrin homology; PI3K, phosphatidylinositol-4,5-
bisphosphate 3-kinase; pre-B-ALL, B cell precursor acute
lymphoblastic leukemia; PTB, phosphotyrosine binding;
PTEN, phosphatase and tensin homolog; SH2, Src homo-
logy; SHIP, SH2-containing inositol phosphatase; SHP2,
Src homology 2 domain-containing protein-tyrosine phos-
phatase 2; shRNA; short hairpin RNA; siRNA, small inter-
fering RNA; SRC, SRC proto-oncogene, nonreceptor tyrosine
kinase; STAT, signal transducer and activator of transcrip-
tion; T-ALL, T cell acute lymphoblastic leukemia; TP53,
tumor protein p53; TPO, thrombopoietin; TPOR, thrombo-
poietin receptor
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