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Glucuronoxylans represent a significant fraction of woody biomass, and its

decomposition is complicated by the presence of lignin–carbohydrate com-

plexes (LCCs). Herein, LCCs from birchwood were used to investigate the

potential coordinated action of a glucuronoyl esterase (TtCE15A) and two a-
glucuronidases (SdeAgu115A and AxyAgu115A). When supplementing a-glu-
curonidase with equimolar quantities of TtCE15A, total MeGlcpA released

after 72 h by SdeAgu115A and AxyAgu115A increased from 52% to 67%,

and 61% to 95%, respectively. Based on the combined TtCE15A and AxyA-

gu115A activities, ~ 34% of MeGlcpA in the extracted birchwood glu-

curonoxylan was occupied as LCCs. Notably, insoluble LCC fractions

reduced soluble a-glucuronidase concentrations by up to 70%, whereas reduc-

tion in soluble TtCE15A was less than 30%, indicating different tendencies

to adsorb onto the LCC substrate.

Keywords: 4-O-methyl D-glucuronic acid; carbohydrate-active enzymes;

enzyme adsorption; glucuronoxylan; hemicellulases; lignin–carbohydrate
complexes

Hemicelluloses typically account for between 25% and

40% of plant cell walls and are characterized by b-
(1?4)-linked carbohydrate backbones that can be sub-

stituted by additional monosaccharides and noncarbo-

hydrate groups. In deciduous species, hemicelluloses

are mainly represented by acetylated glucuronoxylan,

which has a backbone comprised of b-(1?4)-linked

xylopyranose (Xylp) units, decorated with 4-O-methyl-

D-glucuronic acid (MeGlcpA) at a reported frequency

of 1 MeGlcpA for every 8–15 Xylp [1,2], and acetyl

units at C2 and/or C3 positions [3]. Coniferous species

also contain xylans, in this case arabinoglucuronoxy-

lans, where the b-(1 ? 4)-linked Xylp backbone is

decorated with approximately 1 arabinofuranosyl

(Araf) and 2 MeGlcpA substitutions for every 14 Xylp

residues [4], though without acetylation of the back-

bone [5]. Detailed characterization of glucuronoxylan

structures in Arabidopsis thaliana reveals an even pat-

terning of MeGlcpA and acetate groups along the

backbone, which is thought to facilitate xylan

Abbreviations
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association with the hydrophilic surface of cellulose

[6–9] and outward orientation of MeGlcpA substitu-

tions [10,11]. Arabinoglucuronoxylans from spruce

(Picea abies) have been shown to display a combina-

tion of even patterned and clustered MeGlcpA and

Araf substitutions along the xylan backbone [12].

The diversity and recalcitrance of xylan structures

are increased through the formation of covalent link-

ages to lignin. In deciduous and coniferous xylan

sources, lignin–carbohydrate complexes (LCCs) include

ester linkages between MeGlcpA substitutions of xylan

and phenylpropane subunits in lignin [13–17]. For

example, roughly 30% of the MeGlcpA residues in

xylan from beechwood (Fagus crenata) [18,19] have

been estimated to participate in ester-linked LCCs.

Given the complexity of xylan structures and their

association with multiple plant cell wall components,

several enzyme families are required for their full

deconstruction [20]. So far, the combined action of

xylan-active enzymes has mostly been studied to pro-

mote the complete conversion of xylans to fermentable

sugars [21–23]. Enzymes predicted to act on LCCs,

including a-glucuronidases (EC 3.2.1.131) belonging to

glycoside hydrolase (GH) family GH115 (www.cazy.

org) [24,25], and glucuronoyl esterases belonging to

family CE15 [13,26–28], could facilitate xylan recovery

and be used in higher-value applications [24,25,29,30].

Both bacterial and fungal GH115 a-glucuronidases
have been characterized, and apart from BtGH115A

from Bacteroides thetaiotaomicron, which targets ara-

binogalactans [31], all characterized members preferen-

tially release MeGlcpA substitutions in xylans ([23–
25,31–37]; summarized in Table S1). GH115 enzymes

with resolved structures or structure homology models

are reported to adopt a four-domain architecture

[31,32], except for SdeAgu115A from Saccharopha-

gus degradans and AxyAgu115A from Amphibacil-

lus xylanus, which adopt a five-domain architecture

[24,25]. Despite their structural similarity, AxyA-

gu115A shows significantly higher activity at alkaline

pH and comparatively high activity on complex xylans

when compared to SdeAgu115A [25].

Most CE15 glucuronoyl esterases, including

TtCE15A from Teredinibacter turnerae, have been

characterized using model substrates such as D-glu-

curonic acid benzyl ester, D-glucuronic acid allyl ester,

D-glucuronic acid methyl ester, and D-galacturonic acid

methyl ester [26,27,38,39]. It has also been confirmed

that TtCE15A does not exhibit significant acetyl ester-

ase activity [38]. In a few cases, CE15 glucuronoyl

esterases have been tested using LCC preparations.

For example, Arnling B�a�ath et al. [13] reported a

reduction in molecular weight and increase in

carboxylic acid content of LCCs isolated from spruce

and birch (Betula pendula) following treatment with

the glucuronoyl esterase from Acremo-

nium alcalophilum (AaGE1). Similarly, the glucuronoyl

esterase from Cerrena unicolor (CuGE) releases uronic

acid-containing xylooligosaccharides from extracted

birchwood [40,41]. Furthermore, structural characteri-

zation of TtCE15A, OtCE15A, and CuGE showed

enzyme interactions with lignin and carbohydrate com-

ponents of hardwood xylan [38,42–43]. Whereas glu-

curonoyl esterases were already shown to increase the

hydrolytic activity of a commercial enzyme cocktail on

milled corn cob [39] and endo-xylanase activity on

LCCs from birchwood [40], the impact of glucuronoyl

esterases on other accessory enzymes targeting xylan

substitutions has not been reported.

Herein, the deconstruction of LCCs from birchwood

was investigated using the family GH115 a-glu-
curonidases SdeAgu115A and AxyAgu115A, together

with the CE15 glucuronoyl esterase TtCE15A. In addi-

tion to investigating the cooperative action of these

enzymes, the combined a-glucuronidase and glu-

curonoyl esterase treatment could be used to quantify

the fraction of MeGlcpA in birchwood xylan extracts

that participate in ester linkages to lignin.

Materials and methods

Substrates

Beechwood xylan and the K-URONIC Acid Kit were pur-

chased from Megazyme (Bray, Ireland), D-glucuronic acid

methyl ester was purchased from Carbosynth (Berkshire,

UK), and 4-O-methyl-glucuronic acid (MeGlcpA) was pur-

chased from Synthose (Concord, Canada). Organosolv

hardwood lignin was provided as a gift from M. Nejad

(MSU, USA). Hydrothermally extracted LCCs, fraction-

ated into F1 and F2 fractions, were isolated from birch-

wood chips (B. pendula) as described previously [16], and

received as a gift from M. Lawoko (KTH, Sweden). Briefly,

ball-milled acetone-extracted birchwood was subjected to

hydrothermal treatment using deionized water at 80 °C for

4 h; the supernatant component was then fractionated

using a polyaromatic resin (Amberlite XAD4) into F1 and

F2 fractions and lyophilized [44]. Both F1 and F2 fractions

contain acetylated xylan, with Xylp representing > 75% of

total sugar in the fraction [16]. In the F1 fraction, 14% of

Xylp are acetylated at the O-2 position and 22% of Xylp

are acetylated at the O-3 position; in the F2 fraction, 5%

of Xylp are acetylated at the O-2 position and 7% of Xylp

are acetylated at the O-3 position [16]. Arabinose, galac-

tose, glucose, and mannose represent less than 20% of the

total sugar in both LCC fractions, and lignin comprises

4% and 6% of F1 and F2 fractions, respectively [16].
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Whereas the F1 fraction was fully soluble in water, the F2

fraction was used as a stable suspension. Given the com-

plete water solubility of the F1 fraction, it was used for

both enzyme activity assays and enzyme adsorption assays,

whereas the F2 fraction was used only for enzyme adsorp-

tion assays.

Quantification of MeGlcpA in lignin–carbohydrate
complexes recovered from birchwood

A previously detailed methanolysis protocol was followed

to quantify the MeGlcpA content in the F1 LCC fraction

[45]. Briefly, 15 mg of LCCs was dried at 80 °C and then

treated with 1 mL of 2 M hydrochloric acid (in anhydrous

methanol) for 4 h at 100 °C. Samples were subsequently

neutralized using 1 mL of 13.5 M pyridine and dried under

airflow at room temperature. Dried samples were treated

with 1 mL of 2 M trifluoroacetic acid at 121 °C for 1 h,

after which the sample was dried under airflow at room

temperature and suspended in 1 mL of de-ionized water.

The amount of MeGlcpA released was quantified by high-

performance anion-exchange chromatography (HPAEC)

with pulsed amperometric detection (PAD) equipped with a

CarboPac PA1 (2 9 250 mm) analytical column and corre-

sponding guard column (2 9 50 mm) (Dionex, Sunnyvale,

CA, USA). Briefly, 12.5 µL of sample was injected onto

the column and eluted at 0.25 mL�min�1 using a gradient

elution of sodium acetate, specifically 0–0.1 M sodium acet-

ate over 35 min, followed by 0.1–0.2 M sodium acetate over

10 min, then 0.2–0.5 M sodium acetate over 5 min, and

finally 0.5–0 M sodium acetate over 10 min to recondition

the column. MeGlcpA eluted at an approximate retention

time of 25 min. Data were analyzed using CHROMELEON

software (version 7.2; Dionex).

Protein production

Glucuronoyl esterase from T. turnerae (TtCE15A; PDB:

6HSW; 49 kDa) was produced as described by Arnling

B�a�ath et al. [38]. Briefly, TtCE15A, comprising an N-termi-

nal His6 tag, was expressed in Escherichia coli BL21

(kDE3) and purified using a 5-mL HisTrapTM Excel col-

umn. Xylan-active a-glucuronidases from S. degradans

(SdeAgu115A; PDB: 4ZMH; 110 kDa) and A. xylanus

(AxyAgu115A; PDB: 6PNS; GenBank: BAM48432.1,

110 kDa) were produced as described previously [24,25].

Similar to TtCE15A, both SdeAgu115A and AxyAgu115A

comprised His6 tags, were expressed in E. coli BL21

(kDE3), and purified using Ni-NTA resin. Cells were soni-

cated in 50 mM HEPES pH 7.0 binding buffer containing

5% glycerol, 5 mM imidazole, and 300 mM NaCl. The

supernatant was then incubated with Ni-NTA resin for 6 h

at 4 °C on a vertical tube rotator at 8 r.p.m. After applying

the protein sample to a column, the protein was washed

with 50 mM HEPES (pH 7.0) containing 5% glycerol,

5 mM imidazole, and 300 mM NaCl. The protein was eluted

using 50 mM HEPES (pH 7.0) containing 5% glycerol,

250 mM imidazole, and 300 mM NaCl. A Bio-Gel P10 col-

umn was used to exchange the protein into 50 mM HEPES

buffer (pH 7.0).

Enzymatic activity toward LCCs

TtCE15A, AxyAgu115A, and SdeAgu115A were tested

alone and as combinations of both enzyme classes. Single

enzyme reactions comprised 0.5% (w/v) LCCs in 25 mM

Britton–Robinson buffer (pH 7.0) with 1 µM of each

enzyme (i.e., 7.35 µg of TtCE15A, 16.5 µg of AxyA-

gu115A, and 16.5 µg of SdeAgu115A). Reactions contain-

ing both enzyme types were set up in the same way, except

they contained 1 µM TtCE15A plus 1 µM a-glucuronidase,
or 10 µM TtCE15A plus 1 µM a-glucuronidase. The latter

condition was included to investigate whether rapid separa-

tion of carbohydrates and lignin in LCCs is detrimental to

the activity of a-glucuronidases due to the exposed lignin.

In all cases, the final reaction volume was 150 µL. Reac-

tions proceeded for 72 h at 25 °C in an orbital shaker at

700 r.p.m. with reaction aliquots taken at 6 and 24 h. The

samples were then boiled for 6 min to stop further reac-

tions. The earliest time point (6 h) was chosen based on

preliminary assays using AxyAgu115A and SdeAgu115A to

treat LCCs, where release of MeGlcpA was not observed

by HPAEC until 4 h had elapsed [46]. Reaction super-

natants were separated by centrifugation at 20 000 g for

5 min and filtered using 0.22-µm filter. The released

MeGlcpA was then quantified using HPAEC-PAD as

described above. The released lignin was followed by

HPLC-UV at 210 nm (Thermo Scientific, Waltham, MA,

USA, ICS 5000) equipped with an Aminex HPX87H Col-

umn (Bio-Rad, Hercules, CA, USA). For HPLC-UV, the

Aminex column was equilibrated in 5 mM H2SO4 and con-

ditioned to 50 °C before 12.5 µL of sample was injected

onto the column and eluted at a 0.40 mL�min�1 using an

isocratic elution of 5 mM H2SO4. Chromeleon software was

used to analyze the obtained chromatograms.

Protein adsorption to LCCs and residual activity

To investigate adsorption of tested enzymes to F1 and F2

LCC fractions, each LCC fraction was suspended in 25 mM

Britton–Robinson buffer (pH 7.0) to 1% (w/v) and then

incubated with 2 µM TtCE15A, AxyAgu115A, or SdeA-

gu115A. Enzyme binding to organosolv hardwood lignin

and beechwood xylan (2% w/v, pH 7.0) was also evaluated

for comparison. After incubation for 24 h at 25 °C with

shaking at 700 r.p.m., samples were centrifuged (20 000 g)

for 5 min, and the supernatant was filtered through a 0.22-

lm filter. Protein content in filtered supernatants was
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quantified by gel densitometry where protein band intensi-

ties on a 10% polyacrylamide gel were determined using IM-

AGEJ [47] or the Bradford protein assay. Protein in the

precipitate was evaluated using a PerkinElmer Paragon 500

Fourier transform infrared spectrometer in attenuated total

reflectance mode (FTIR-ATR, Waltham, MA, USA). Sam-

ples were analyzed in a frequency range between 650 and

2000 cm�1 and at a resolution of 4 cm�1 with 32 scans.

Spectra were visualized using SPECTRAGRYPH software (ver-

sion 1.2.12, Oberstdorf, Germany).

Results and Discussion

Influence of TtCE15A on a-glucuronidase activity

toward isolated LCCs

The xylan-rich (F1) LCC fraction used in this study

was previously extracted from birchwood and charac-

terized in detail [16]. Similar to the previously reported

7.2 lg MeGlcpA per mg of the F1 LCC fraction [16],

acid methanolysis of the F1 fraction performed herein

confirmed 9.3 lg MeGlcpA per mg of sample and a

MeGlcpA to Xylp mole ratio of approximately 1 : 8.

Treatment of the F1 LCC fraction with either

AxyAgu115A or SdeAgu115A released 20 � 2% and

22.5 � 0.8%, respectively, of total MeGlcpA after 6 h,

and 29 � 2% and 26.9 � 0.1%, respectively, of total

MeGlcpA after 24 h (Fig. 1). After 72 h, the extent of

MeGlcpA released by AxyAgu115A and SdeAgu115A

had increased to 60 � 1% and 51.5 � 0.8%, respec-

tively (Fig. 1). Treatment of the F1 LCC fraction with

TtCE15A did not lead to release MeGlcpA from the

substrate, consistent with all MeGlcpA units in the

sample being bound to xylan. Instead, adding equimo-

lar TtCE15A to reactions containing AxyAgu115A led

to release of 35 � 1%, 68 � 3%, and 94 � 4% of

total MeGlcpA after 6, 24, and 72 h, respectively. This

corresponds to an increase in MeGlcpA release of

approximately 34% after 72 h, compared to treat-

ments with AxyAgu115A alone. Comparing the reac-

tions containing AxyAgu115A with and without

TtCE15A supports the conclusion that 34–40% of

MeGlcpA present in the LCC substrate is linked to lig-

nin, which is in agreement with the reported amount

of xylan that participates in ester linkages in beech-

wood LCCs [18,19]. Similarly, the addition of

TtCE15A increased MeGlcpA release by SdeAgu115A

after 6 and 24 h to 31.6 � 0.2% and 64.0 � 0.8%,

respectively; however, in this case, incubation up to

72 h did not substantially increase these values

(66.5 � 13%) (Fig. 1). TtCE15A was thus able to

boost the action of both a-glucuronidases, though the

effect was less pronounced for SdeAgu115A than for

AxyAgu115A. The comparatively low impact of

TtCE15A on SdeAgu115A performance is consistent

with the generally poorer performance of SdeAgu115A

compared with AxyAgu115A [25]. For instance, the

different impacts of TtCE15A on AxyAgu115A and

SdeAgu115A performance might be attributed to

remaining substitutions on the xylan backbone (e.g.,

acetyl groups), or relative positioning of MeGlcpA

substituents that could influence SdeAgu115A activity.

In addition to underscoring differences in AxyA-

gu115A and SdeAgu115A performance, the current

analyses shed light on the composition of the LCC

substrate. In an earlier study, we showed the beneficial

impact of the acetyl xylan esterase from Flavobac-

terium johnsoniae, FjAcXE, on MeGlcpA release by

AxyAgu115A from (2-O-MeGlcpA)3-O-acetyl-Xylp
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Fig. 1. Release of MeGlcpA from birchwood LCC (fraction F1) [16]

using (A) 1 lM (110 ng�lL�1) AxyAgu115A (white bars) with and

without 1 lM (50 ng�lL�1) TtCE15A (black bars) or 10 lM

(500 ng�lL�1) TtCE15A (gray bars), and (B) 1 lM (110 ng�lL�1)

SdeAgu115A (white bars) with and without 1 lM (50 ng�lL�1)

TtCE15A (black bars) or 10 lM (500 ng�lL�1) TtCE15A (gray bars).

Error bars represent SD (n = 2).
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positions in acetylated 4-O-(methyl)glucuronoxylans

[29]. More recently, we confirmed that AxyAgu115A

was able to release > 98% of MeGlcpA present in

extensively deacetylated xylan from hardwood [46].

The LCCs used in the present study have previously

been analyzed by 2D HSQC NMR, which confirmed

partial acetylation at O-2 and O-3 positions of Xylp

residues [16]. Accordingly, when considering these ear-

lier findings together with the observation herein that

over 94% of available MeGlcpA in the F1 LCC frac-

tion is released by the combined action of TtCE15A

on AxyAgu115A, we can conclude that most acety-

lated Xylp residues in the LCC fraction do not also

carry esterified MeGlcpA.

Influence of AxyAgu115A on TtCE15A activity

toward isolated LCCs

Enzymatic release of carbohydrates from LCCs is

expected to decrease lignin solubility due to increased

hydrophobicity; accordingly, HPLC-UV can be used

to follow changes in the soluble lignin content of the

F1 LCC after treatment with TtCE15, AxyAgu115A,

and the combined enzyme reactions (Fig. 2). Notably,

since SdeAgu115A was less active than AxyAgu115A,

SdeAgu115A was not included in these experiments.

The UV absorbance of reaction supernatants con-

taining the F1 LCC decreased by 60% after treatment

for 6 h with TtCE15A. This value was not significantly

impacted in reactions additionally containing AxyA-

gu115A. These results support the prediction that

xylans do not hinder glucuronoyl esterase access to

target linkages [42,43], and indicate that glucuronoyl

esterases likely act before a-glucuronidases and do not

merely release single MeGlcpA residues linked to lig-

nin that remain after a-glucuronidase action. This

observation is also supported by crystal structures of

GEs with bound MeGlcpA-appended xylo-oligosac-

charide ligands [42,43].

Selective adsorption of a-glucuronidases to LCC-

derived precipitates

Increasing the concentration of TtCE15A tenfold

decreased the extent of MeGlcpA released from F1

LCC in reactions containing AxyAgu115A (Fig. 1)

and led to the formation of an observable precipitate.

FTIR analysis of the precipitate revealed signature

amide I (1650 cm�1) and amide II (1550 cm�1) vibra-

tions [48] (Fig. 3), consistent with the presence of pro-

tein. Notably, characteristic vibrations for xylan and

lignin were not detected in these samples. Given that

the protein precipitate only formed in the presence of

the LCC substrate, it is conceivable that the amended

enzymes adsorbed to the surface of the LCC compo-

nents, thereby masking corresponding xylan and lignin

signals.

To investigate possible preferential binding of the

tested enzymes to the LCCs, TtCE15A, AxyAgu115A,
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Fig. 2. HPLC-UV analysis of sample supernatants prepared from

birchwood LCC (fraction F1) [16] before (dashed black line) and

after 6 h treatment with 1 lM (50 ng�µL�1) TtCE15A (solid black

line), 1 lM (110 ng�µL�1) AxyAgu115A (solid gray line), or 1 lM

(50 ng�µL�1) TtCE15A and 1 lM (110 ng�µL�1) AxyAgu115A (dotted

line).
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Fig. 3. FTIR spectra of birchwood LCC (fraction F1) [16] before

(dashed black line) and after treatment with 10 lM (500 ng�µL�1)

TtCE15A and 1 lM (110 ng�µL�1) AxyAgu115A (solid black line),

or 10 lM (500 ng�µL�1) TtCE15A and 1 lM (110 ng�µL�1)

SdeAgu115A (solid gray line). After enzyme treatment, the

resulting precipitates lack the xylan signal at wavenumber

1040 cm�1 [50] and lignin signals at 1733 and 1270 cm�1 [51], and

gain signals at wavenumber 1550 and 1650 cm�1, indicating

adsorbed protein [48].
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and SdeAgu115A were each tested for adsorption to

F1 and F2 LCC fractions, where the F2 fraction is dis-

tinguished by lower water solubility and higher lignin

content (i.e., 4% lignin in F1 and 6% lignin in F2)

[15]. While the enzymes adsorbed to the F1 LCC frac-

tion to similar extents (23–30% of total protein;

Fig. 4), both a-glucuronidases displayed two times

higher adsorption to the F2 LCC fraction (57–70% of

total protein; Fig. 4). Notably, all tested enzymes

bound organosolv lignin to similar extents (< 15%);

by contrast, the amount of AxyAgu115A and SdeA-

gu115A bound to glucuronoxylan was approximately

three times higher than that measured for TtCE15A

(Fig. 4). The comparatively low adsorption of

TtCE15A to the F2 LCC fraction, as well as organo-

solv lignin and glucuronoxylan, might be attributed to

the necessary functional association of glucuronoyl

esterases with diverse lignin–carbohydrate structures.

Conclusions

This study confirmed the activities of the glucuronoyl

esterase TtCE15A and two a-glucuronidases in disas-

sembly of LCCs isolated from birchwood. In

particular, the release of MeGlcpA by AxyAgu115A

improved significantly in combination with TtCE15A,

and monitoring the reaction after indicated that 34%

of MeGlcpA in the birchwood LCC sample was ester-

linked to lignin. It is conceivable that the release of

xylan from LCCs is responsible for the reduction in

soluble enzyme concentrations in our reactions. Sup-

plementing reactions with known additives that reduce

nonproductive associations with lignin (e.g., addition

of surfactant or BSA) could possibly curtail this effect,

while the addition of xylan-degrading enzymes may

reduce the adsorption of a-glucuronidases to precipi-

tated xylan. The combination of a-glucuronidase and

glucuronoyl esterase activities on LCCs confirmed

through this study sets a precedence of using such

enzyme systems for xylan recovery and substrate char-

acterization, and thus motivates the search for new a-
glucuronidases and glucuronoyl esterases with faster

release of MeGlcpA.
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Table S1. Substrate preference of GH115 a-glu-
curonidases based on relative release of MeGlcpA.

Fig S1. Gel densitometry of reaction supernatant for

evaluating adsorption of enzymes to birchwood LCC

F1 [16].

Fig S2. Gel densitometry of reaction supernatant for

evaluating adsorption of enzymes to beechwood glu-

curonoxylan.
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