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Abstract
Purpose The navigation of endovascular guidewires is a dexterous task where physicians and patients can benefit from
automation. Machine learning-based controllers are promising to help master this task. However, human-generated training
data are scarce and resource-intensive to generate. We investigate if a neural network-based controller trained without human-
generated data can learn human-like behaviors.
Methods We trained and evaluated a neural network-based controller via deep reinforcement learning in a finite element
simulation to navigate the venous system of a porcine liver without human-generated data. The behavior is compared to
manual expert navigation, and real-world transferability is evaluated.
Results The controller achieves a success rate of 100% in simulation. The controller applies a wiggling behavior, where the
guidewire tip is continuously rotated alternately clockwise and counterclockwise like the human expert applies. In the ex vivo
porcine liver, the success rate drops to 30%, because either the wrong branch is probed, or the guidewire becomes entangled.
Conclusion In this work, we prove that a learning-based controller is capable of learning human-like guidewire navigation
behavior without human-generated data, therefore, mitigating the requirement to produce resource-intensive human-generated
training data. Limitations are the restriction to one vessel geometry, the neglected safeness of navigation, and the reduced
transferability to the real world.
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Introduction

On a global scale, the main cause of death is cardiovascu-
lar diseases (31.5%), in particular, ischemic heart (14.8%)
and cerebrovascular (11.7%) diseases [1]. Endovascular,
catheter-based interventions are the gold standard for treat-
ment of numerous cardiovascular diseases [2]. In these
interventions, a combination of a guidewire and catheter is
navigated froman insertion point to the region of interest. The
devices are inserted into the artery, typically in the groin or
at the wrist, and manually navigated by twisting and pushing
under image guidance with intraoperative fluoroscopy. The
angled tip of the guidewire allows probing the desired branch
at bifurcations. Typically, a bifurcation is mastered by rotat-
ing the guidewire, such that the angled tip enters the targeted
vessel, and the remainder of the guidewire follows. When
the guidewire sits firmly in the targeted vessel, the catheter
is pushed over it. Additionally, the guidewire tip geometry
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can be modified by altering the overlap of guidewire and
catheter. When advancing the guidewire through a vessel
certain movement pattern can ease the navigation process,
e.g., constantly wiggling the guidewire clockwise and coun-
terclockwise can prevent the guidewire from entangling if the
vessel meanders or smaller side vessels are present. After a
successful navigation, the subsequent treatment through the
catheter may be performed.

Improvements in treatment quality and speed can have
a high impact on patients’ lives. Automation of catheter
navigation has the potential to reduce radiation exposure of
physicians when they must no longer stand near the patient.
Even though radiation exposure can be reduced with mea-
sures of best practice, further reduction of radiation exposure
is a sensible goal for the health of physicians [3, 4]. Fur-
thermore, rural areas have reduced access to endovascular
treatments compared to urban areas. A reliable autonomous
system takes over the basic surgery and dexterity tasks, and
the physician can focus on diagnosis and decision making,
thus further enabling telesurgery and mitigating the supply
gap [5, 6].

Endovascular robotics already transitioned from research
to the industry in the form of telemanipulated manipula-
tors, e.g., with the discontinued Magellan System (Hansen
Medical, USA) or the currently available Corpath System
(Corindus, USA) [7]. Among others, themain advantages are
reduced radiation for the physicians [8] or telemedicinewith-
out direct patient visibility [9]. The Corpath System already
incorporates automation of somemovement patterns utilized
by physicians inmanual operations, e.g., the “wiggle” pattern
[10], but no fully automated navigation is possible.

Current efforts to automate catheter and guidewire nav-
igation can be divided into three categories: magnetically
actuated, active, and passive catheters.

Control of a magnetic catheter tip in a closed-loop
approach for eye surgery has been presented in [11]. The
same principle is adapted to endovascular catheters in [12].
A recent development regarding autonomous magnetically
actuated catheter navigation is the Advanced Robotics for
Magnetic Manipulation System [13] that successfully posi-
tioned a magnetic catheter in a gelatinous phantom of a
human torsowith an embedded aorta usingultrasound images
as feedback.

Fagogenis et al. [14] demonstrate autonomous navigation
of a catheter with an active tip inside an in-vivo beating heart.
Research regarding steerable catheters improves the feasi-
bility and use cases of these devices, e.g., Gopesh et al. [15]
fabricated and animal tested a steerable microcatheter for the
endovascular treatment of cerebral disorders.

Passive catheters and guidewires are used much more fre-
quently than the active or magnetic ones because there are a
larger number of variants, they are less expensive and can

be significantly smaller due to their simpler design. Fur-
thermore, utilizing commercially available passive catheters
enables faster clinical applicability as the invasive devices are
already certified. Rafii-Tari et al. [16] propose an approach to
learn optimummotion trajectories fromexpert demonstration
and present their system in a phantom using electromagnetic
tracking as feedback. Tercero et al. [17] demonstrate a system
that navigates a catheter by following a pre-computed soft-
ware map of movement commands. This software map may
be adapted to a patient based on pre-interventional images.

Artificial intelligence embedded into robotics exhibits a
high potential to improve the quality of surgical procedures.
Diseases may be treated either through surgeons cooperating
with intelligent robots or, in the future, by fully or semi-
autonomous robotic systems [6, 18]. Therefore, approaches
for automated navigation of passive guidewires or catheters
emerge,whichutilize deep learning.Chi et al. [19] investigate
learning catheterization of the brachycephalic artery using
expert demonstration with a generative adversarial imitation
learning agent. Subsequently, a proximal policy optimization
agent learns to catheterize the left common carotid artery.
Both agents are trained in a type-1 aortic arch and evaluated
in the type-1 and a type-2 aortic arch phantom using elec-
tromagnetic tracking as feedback. Zhao et al. [20] propose a
convolutional neural network to estimate suitable manipula-
tion actions. Additionally, an operating force mode estimator
is trained to ensure safe operation. The estimated most suit-
able action is only executed if the operating force is normal. If
the force becomes abnormal, predefined avoiding actions are
executed. The neural networks are trained using demonstra-
tion data from expert surgeons. The controller is evaluated in
a phantom with a gray-scale camera simulating X-ray imag-
ing.

The combination of endovascular robotics and artificial
intelligence has the potential to greatly advance autonomous
navigation of endovascular catheters. The aforementioned
approaches utilize human-generated data. However, avail-
ability of large-scale, high-quality, and correctly labeled data
is limited and resource-intensive to generate. A controller
trained from scratch without the necessity of data created by
humans would circumvent the need for resource-intense data
generation.

This work investigates the training of a neural network-
based controller for endovascular navigationwithout human-
generated data. The controller design builds upon prior
work [21]. We investigate whether the controller can learn
behaviors comparable to manual navigation. For this pur-
pose, the controller learns the autonomous navigation of a
guidewire from the insertion point to arbitrary targets within
a vessel system. Exemplary the venous system of a porcine
liver is utilized, as the porcine and human vessel system is
similar, and pigs are often used for endovascular animal tri-
als. The controller is trained and evaluated in a finite element
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Fig. 1 X-Rayof an ex-vivo porcine liverwith contrast agent, a guidewire
inserted in the venahepatica dextra, possible target points including their
navigation paths and the tracking points used as feedback

simulation of one ex-vivo porcine liver specimen. For qual-
itative comparison, the same navigation is performed by a
medical expert in a phantom modeled after the same speci-
men. The resulting successfully trained controller shows that
the wiggle movement pattern has been learned as an optimal
behavior without previous human demonstration. The main
scope of this work is the investigation of the learned behavior
patterns and maneuvers of the controller. The transferabil-
ity of the simulation-trained controller to the real world is
evaluated by performing autonomous navigation in the same
ex vivo porcine liver specimen.

Methods andmaterials

Endovascular navigation task

This work aims to autonomously navigate an endovascular
guidewire through the veins of a porcine liver. The same spec-
imen is utilized for in silico training and evaluation, manual
phantom navigation, and ex vivo transferability testing. The
guidewire is inserted in the vena cava inferior and enters the
liver coming from the direction of the heart. The anatomy
and nomenclature of the liver veins, the insertion point and
possible targets with their navigation paths are illustrated
in Fig. 1. The vena cava inferior separates into three main
liver veins, i.e., vena hepatica dextra, vena hepatica interme-
dia, and vena hepatica sinistra. All three main hepatic veins
bifurcate in several large and small side branches depend-
ing on the individual’s specific geometry. Here, we consider
all larger branches, which are reachable by manual naviga-
tion. Smaller side branches are neglected due to mechanical
limitations of the guidewire dexterity.

Fig. 2 The structure of the actor and critic neural networks of the con-
troller

The guidewire (Terumo Radifocus GuideWireM, angled,
Stiff Type, 0.035′′ Diameter, 3 cm flexible tip) is manipulated
at its base outside the liver. During the navigation procedure,
the guidewire position is used as feedback in the form of
discrete tracking points, as illustrated in Fig. 1.

A navigation task starts at the vena cava inferior shortly
before the trifurcation to the hepatic veins. The navigation
target is a pre-selected point on the centerline of any branch.
A navigation task is considered successful if the guidewire
tip reaches the selected target within 40 s. In a manual pre-
liminary experiment, 20 s was determined to be sufficient
time for a navigation task which was doubled to allow explo-
ration during training. The target is considered reached if the
distance between the guidewire tip and the target is less than
15 mm.

The control task is characterized by a partially observable
Markov decision process [22]. TheMarkov property requires
that a single input state can describe the complete state of
the given problem. However, the guidewire control is only
partially observable as the two-dimensional X-ray images
used as feedback during navigation provide the position of
the guidewire in the image plane. The depth is only estimated
fromknowledge of the vessel anatomy. Information about the
absolute rotation of the guidewire tip is not perceivable from
the image as two images of the guidewire tip rotated at a
specific angle upwards or downwards are ambiguous.

Controller architecture and training procedure

The controller is a neural network, trained using Deep
Deterministic Policy Gradients [23] with Hindsight Expe-
rience Replay [24]. Actor and a critic both have three fully
connected layers of 256 Neurons, as illustrated in Fig. 2.
The observation is defined as the current and the last two
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guidewire positions, the target position and the last two
actions leading to the current state, thus creating a mem-
ory to make the rotation of the guidewire tip observable. By
observing the movement direction of the tip, it can be esti-
mated if it is turned upwards or downwards. The guidewire
position is given as the tracking coordinates of five points on
the guidewire described as (x, z)i i � {1, 2, 3, 4, 5} relative
to the insertion point where all points are spaced evenly and
1 mm apart and (x, z)1 is coincident with the guidewire tip.
The target position is given as the target coordinates (x, z)
of the current target. The action is given as the guidewire
rotation and translation speed.

For all coordinate-based inputs, only the x and z coordi-
nates are considered, representing the image plane. They are
normalized between− 1 and 1 with (0, 0) indicating the geo-
metric center of the porcine liver and − 1 and 1 being the
lowest and largest coordinate on the liver, respectively. The
action output of the actor network is the guidewire rotation
and translation speed. Rotation and translation speeds are
continuous values between − 6.28 rad/s to 6.28 rad/s and −
10 mm/s to 10 mm/s, respectively.

Hindsight Experience Replay provides best results with
sparse rewards, reducing the required task-specific knowl-
edge to set up the reinforcement learning environment, i.e.,
it is only necessary to detect whether the target is reached.
Thus, the agent receives − 1 reward for every step and an
additional + 1 reward for reaching the target. One step is
defined as applying an action to the environment, receiving
the observation, and subsequently calculating the next action.
The episode is considered finished if the target is reached
or 40 s have passed. One episode is defined as performing
one navigation task. The control frequency is 7.5 Hz. For
training and evaluation, targets are selected randomly on the
branch centerlines and an episode always starts at the inser-
tion point. The necessary insertion depth, depending on the
distance between insertion point and target, has no influence
on the maximum duration.

Every 750 training episodes, the performance is mea-
sured for 150 consecutive evaluation episodes. Performance
is defined as the percentage of evaluation episodes where the
controller successfully reaches the target. During training
episodes, stochastic noise is added to the action calculation
for exploration, but not during evaluation episodes. Training
and evaluation are performed with 15 digital agents in par-
allel. Each agent periodically performs 50 training and 10
evaluation episodes.

Training and evaluation environment

Training of the controller is solely performed in the
simulation environment. The controller is evaluated in
the same simulation environment. To examine real world

transferability, the controller is additionally tested on a test-
bench in the ex vivo porcine liver used as basis for the
simulation.

The simulation is modeled within the SOFA
framework [25] using the BeamAdapter plugin [26].
Phantom walls are assumed rigid and the lumen empty.
Friction between wall and guidewire as well as guidewire
stiffness has been iteratively tuned to mimic guidewire
behavior in the testbench. The simulation receives guidewire
rotation and translation speed as input and the output is the
guidewire position as coordinate points evenly spaced at
1 mm starting from the guidewire tip. The tracking position
is received with a delay, which can be described by a normal
distribution with a mean delay of 0.13 s and variance of
0.01 s. This mimics the processing delay of the testbench
tracking system. A rendering of the simulation model can
be seen in Fig. 3a.

To transfer the geometry of the porcine liver into the
simulation environment, a CT scan (Artis Zeego, Siemens
Healthineers) with contrast agent (potassium iodide) is
performed. The veins are segmented in the CT image semi-
autonomously [27]. The resulting segmentation is smoothed
and transformed into a surface mesh.

The phantom testbench can be seen in Fig. 3b. The phan-
tom consists of a rigid structure with lumens in the shape of
the extracted vessel geometry, manufactured by stereolithog-
raphy. A medical expert manually navigates the guidewire
using continuous fluoroscopy (Artis Pheno, Siemens Health-
ineers) as feedback for comparison to the autonomous
controller.

The ex vivo testbench is presented in Fig. 3c. The porcine
liver is obtained from a local abattoir and prepared for
guidewire navigation. A custom tube connector attached to
the vena cava inferior allows guidewire insertion and the
attachment of the constant flow pump. All other openings
are closed by stitching or gluing.

The liver is placed inside a water-filled specimen con-
tainer. A constant flow pumps water into the vena cava
inferior to ensure that the veins are inflated. A customized
guidewire manipulator translates and rotates the guidewire at
its base. It allows for continuous rotation and a translation of
up to 300 mm. The guidewire manipulator receives control
commands by the trained controllers.

During the navigation task, continuous fluoroscopy (Artis
Zeego, Siemens Healthineers) with a framerate of 7.5 images
per second allows tracking of the guidewire. A tracking
system evaluates each fluoroscopy image to extract the
guidewire position.A recurrent convolutional neural network
is utilized to segment the guidewire from the real-time flu-
oroscopy images, and a backprojection reconstructs the 3D
shape of the guidewire. The output of the tracking system
is the guidewire position as coordinate points evenly spaced
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Fig. 3 a Simulation model, b Phantom testbench and c Ex-vivo testbench for guidewire navigation

Fig. 4 Success rate during the simulation training of the controller

and 1 mm apart from each other starting from the guidewire
tip with a tracking error of approximately 1.3 mm.

Results

Evaluation results during training of the controller are
graphed in Fig. 4. As shown in the figure, the controller
steadily improves. A success rate of 100%, meaning 150 out
of 150 evaluation episodes with randomly sampled targets
have been successful, is reached for the first time after 13.5
× 106 training steps but continues to fluctuate between 90
and 100% for further evaluation steps.

Figure 5 and Online Resource 1 illustrate the trajectory
of the guidewire tip from the insertion point to the target by
autonomous controller in silico and by a medical expert in
the phantom. The autonomous controller maneuvers directly
to the target, while the guidewire is continuously rotated
alternately clockwise and counterclockwise, resulting in a
wiggling behavior of the guidewire. In comparison, the med-
ical expert utilizes the wiggle motion only where necessary,
e.g., navigation in the vena hepatica intermedia shows very
little rotation, while navigation in the vena hepatica dextra

utilizes the wiggle motion frequently. Duration of the nav-
igation procedure is similar. For the vena hepatica sinistra,
intermedia and dextra, the autonomous and the manual nav-
igation takes 14 s and 12 s, 17 s and 16 s, and 18 s and 17 s,
respectively.

The controller, solely trained in the simulation, was eval-
uated in the ex vivo porcine liver specimen used to extract
the vessel geometry for the simulation and phantom. 10 tar-
gets are specified in each of the three main liver veins: left
(sinistra), center (intermedia) and right (dextra). The result-
ing number of successful navigation (success), failure due
to probing the wrong branch (wrong branch) and failure due
to entanglement of the guidewire tip while advancing the
guidewire in the correct branch (entanglement) are presented
in Table 1. The controller achieves a success rate of 30%, the
failure rate of probing the wrong branch is 33.3%, and the
failure rate of entanglement is 36.6%. Success rate and failure
types vary between the branches.

Discussion and conclusion

The navigation of guidewires in endovascular interventions is
a dexterous task, and physicians and patients can benefit from
automation. Machine learning-based controllers are promis-
ing to help master this task. However, training data provided
by human operators are scarce and resource-intensive to gen-
erate. As it reduces the need for high-quality human-labeled
data, learning with self-generated data is desirable. In this
work,we have shown that a learning-based controller is capa-
ble of learning human-like guidewire navigation behavior
without the usage of human-generated data. Even if no or
limited data are available, a learning-based controller can
perform high-quality guidewire navigation. Therefore, miti-
gating the requirement to use human-generated training data
when training a reinforcement learning-based controller.

We have trained a neural network-based controller to navi-
gate the venous systemof a porcine liver from scratchwithout
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Fig. 5 Trajectories of the guidewire tip for the navigation in the vena hepatica a sinistra, b intermedia and c dextra. Autonomous in-silico navigation
is shown in the top row and manual phantom navigation in the bottom row

Table 1 Evaluation results of the
controller on the testbench
stating the amount of successful
navigation attempts and failures
due to wrong branch navigation
and entanglement

Branch Sinistra Intermedia Dextra Sum

Success 1 4 4 9

Wrong branch 6 0 4 10

Entanglement 3 6 2 11

human demonstration. The controller was trained and evalu-
ated in a simulation environment, compared tomanual expert
navigation in a phantom, and transferability to real-world
applications was tested by applying the controller to the
ex vivo porcine liver, which was the model for the simu-
lation.

Concluding from the simulation results one may deduce
that the controller design is capable of learning to navigate an
endovascular guidewire through liver veins for a static setup.
The controller manages to navigate to the target in 100% of
the attempts. The reason for the fluctuation of success rate at
the end of training is presumably due to the controller being
updated further leading toworsening of the performance. The
applied high learning rate allows fast learning at the begin-
ning but can lead to suboptimal updates when the resulting
neural network controller is close to its optimum. A solution
may be utilizing an adjustable learning rate, which decreases
during training. The controller proves to have learned the
behavior of wiggling the guidewire alternately clockwise
and counterclockwise, like the maneuver a physician applies

in this situation. Interestingly, the maneuver was learned by
the controller without being provided training data recorded
from a physician that would indicate or teach this motion pat-
tern. This shows that learning-based controllers are capable
of learning motion patterns, which are inherently successful.

When transferred to the testbench with an ex vivo liver,
the success rate of the controller drops to 30% of 30 given
navigation tasks. Navigation failures by probing the wrong
branch are most likely caused by registration inaccuracies,
as registration for soft, deformable tissue without any visible
landmarks remains a difficult task. The controller is not able
to detect the failure from the guidewire position feedback.
From the entanglement failures, it can be deduced that the
controller does not learn general detection of entanglements
and subsequent reaction to them.

There are limitations if one wants to transfer the results
into clinical practice. In this study, only one vessel geometry
was used, and the controller learns themovements to navigate
this specific geometry instead of generalized guidewire nav-
igation. In real-world scenarios, each patient has a unique
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vessel geometry and training a specific controller for each
patient is impractical. A controller with a neural network
structure and observations as presented is presumably not
able to adapt to general geometries. Instead, either the geom-
etry can be given as observation or neural network elements
that can recognize the geometry during navigation need to be
added, e.g., recurrent layers. We currently investigate gener-
alization across different patient geometries with promising
initial results. Additionally, the safeness of the guidewire
navigation regarding wall contacts and applied forces is not
considered in this study. Instead, only the navigation behav-
ior to robustly reach the target is evaluated, as the sparse
reward of the training process only values reaching the tar-
get. For a clinical transition, an analysis if the behavior is safe
for the patient is necessary. Applicability of this simulation-
trained controller in the real world is limited. Inaccuracies of
the guidewire stiffness, the segmented vessel geometry, the
interaction between guidewire and vessel walls, and shape
variations of the ex vivo vessels, which are not considered
in the simulation, lead to a significantly reduced real-world
performance. By incorporating variations of the dynamics
and observations, a controller may be trained more generally
and should increase its real-world performance.

In view of future research fields, the reduced real-world
performance indicates the importanceof evaluation in the real
world when developing endovascular robots and stresses the
simulation-to-real gap. The utilization of phantoms can be
an intermediate step to ease the transition. Furthermore, the
guidewire becoming entangled represents a common prob-
lem, which should be a matter of future investigation. The
controller should be able to detect entanglements and react
appropriately. It could be beneficial to use the fluoroscopy
image as controller input instead of guidewire tracking points
to detect entanglements. Another area of research should be
navigating a two-instrument system, by including a catheter.
With the catheter, the shape and stiffness of the guidewire
tip can be modulated, like a concentric tube robot. This
additional degree of freedom may improve the navigation
capabilities of the controller.
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