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The in silico study and reverse engineering of regulatory networks has gained in

recognition as an insightful tool for the qualitative study of biological mechanisms that

underlie a broad range of complex illness. In the creation of reliable network models,

the integration of prior mechanistic knowledge with experimentally observed behavior is

hampered by the disparate nature and widespread sparsity of such measurements. The

former challenges conventional regression-based parameter fitting while the latter leads

to large sets of highly variable network models that are equally compliant with the data.

In this paper, we propose a bounded Constraint Satisfaction (CS) based model checking

framework for parameter set identification that readily accommodates partial records and

the exponential complexity of this problem. We introduce specific criteria to describe the

biological plausibility of competing multi-valued regulatory networks that satisfy all the

constraints and formulate model identification as a multi-objective optimization problem.

Optimization is directed at maximizing structural parsimony of the regulatory network

by mitigating excessive control action selectivity while also favoring increased state

transition efficiency and robustness of the network’s dynamic response. The framework’s

scalability, computational time and validity is demonstrated on several well-established

and well-studied biological networks.

Keywords: multi-valued discrete logic, constraint satisfaction, regulatory networks, multi-objective, data

compliance, transition efficiency, path robustness

INTRODUCTION

With the rapid advances in broad-spectrum biological assays and corresponding algorithmic
developments in the computational sciences, the in silico analysis of regulatory networks has
become an increasingly valuable tool in creating new insight into the underpinnings of complex
biological phenomena. While conventional continuous domain models offer high temporal and
state resolution these come at the cost of much more strenuous requirements with regard to data
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quantity and quality. Discrete logical modeling of regulatory
networks offers a simple framework for the qualitative
representation of complex dynamic behavior exhibited by
even relatively simple biological networks. Such formalisms can
be classified into two general categories: binary and multi-valued.
Of the many proposed discrete modeling formalisms (see de
Jong, 2002; Saadatpour and Albert, 2016) for an overview),
the Generalized Discrete Framework (GDF) introduced by
Thomas and D’Ari (1990) is one of the richest and most flexible
methods. In this formalism, every biological entity (cell type,
transcript, etc.) may assume an expression level proportional
to the number of control actions it exercises in the regulatory
network. Biologically, this mimics the diverse selective actions
supported through a broad range of varying molecular receptor
affinity. Furthermore, the context-specific nature of biological
network dynamics is captured in the model by a set of tunable
logical operators (K parameters) that provide high flexibility
in response to multiple competing stimuli, each with different
relative biological activity i.e., signal strength. There are many
challenges in reverse engineering regulatory networks from
quantitative (e.g., time sampled measurements) and qualitative
information (e.g., behavior of steady states), these include;

• Sparse, irregularly collected and incompletely surveyed samples:
Often experimental measurements are non-uniformly
sampled and some markers may be very difficult to survey.
Cost and sample availability limitations also lead more often
than not to small sample size.
• Large and complex networks: The size of the network model

parameter search space increases exponentially with respect to
the number of entities and interactions, many of which may
be unknown.
• Multiple competing models: With model complexity typically

greatly exceeding the number of data records, there usually
exist many model parametrizations that equally satisfy the
limited experimental data.

Many of the early efforts (Bernot et al., 2004; Batt et al.,
2011; Klarner et al., 2012b; Monteiro and Chaouiya, 2012)
at parameterization of regulatory networks relied on NuSMV
(Cimatti et al., 2000) to address the combinatorial nature
of this problem. NuSMV relies on Ordered Binary Decision
Diagrams (OBDD) for model checking that is known to have
unpredictable memory allocation (Kurshan, 2018). Therefore,
as soon as the number of entities or nodes in the model
grows, it becomes increasingly difficult to rely on OBDD-based
approaches. Alternatively, Klarner et al. (2012a) proposed a
model identification method for multi-valued regulatory graphs
based on a colored model-checking (Barnat et al., 2012) of
general Linear Temporal Logic (LTL) to handle the combinatorial
complexity of the parameter space. Their approach consists
of first identifying those parameter sets that satisfy a set of
observed experimental data and second ranking them based on
Length Cost and Robustness. However, since the parameter space
of multivalued regulatory networks is super exponential their
approach is likewise limited to models with a small number
of entities or nodes (≈<15 binary nodes). Streck and Siebert

(2015) improved the efficiency of LTL-based model checking
by proposing a more efficient encoding method for biological
time series. Likewise, Corblin et al. (2012) employed Answer
Set Programming (ASP) in order to infer dynamical properties
in incomplete gene regulatory networks from incomplete
expression data. But, it is not clear how scalable their proposed
method is and whether different state transition update schemes
such as synchronous and asynchronous are accommodated in
their framework.

There are already various tools developed for logical analysis
of biological networks, such as Caspo (Guziolowski et al., 2013),
TREMPPI (Streck et al., 2016), GINsim (Chaouiya et al., 2003),
and Bio Model Analyzer (BMA) (Benque et al., 2012). Caspo
employs ASP in order to parameterize the regulatory networks.
However, it is only applicable to Boolean models and only
minimizes the Mean Squared Error (MSE) to experimental
measurements. TREMPPI is able to parameterize multivalued
models, but being based on LTL model checking it does
not scale to larger networks (≈40 binary nodes or more)
(Streck, 2015) and also does not incorporate the derivation
of some features supporting the use of multi-valued models
such as thresholds of action which are very hard to estimate
a priori. GINsim also employs Thomas formalism in order
to study the regulatory networks, but it is not able to learn
the full trajectory dynamics directly from the experimental
measurements. Similarly, BMA also applies model checking
to multi-valued LTL networks (Claessen et al., 2013), making
it accessible to non-programmers through a natural language
and graphical interface (Ahmed et al., 2017), however its
application is focused on recovery of end-point stable states in
a synchronous updating environment. Furthermore, these tools
are generally directed at supporting the manual entry of user-
defined networks which limits the scale of the networks studied.
In this work we attempt to build on the strengths of these
various tools to produce a more integrated flexible environment
that supports asynchronous updating and biological uncertainty,
captures experimentally measured transition states and projects
these onto larger networks where a user’s prior knowledge is
supplemented by the direct incorporation of a much broader
automated text mining of the scientific literature conducted using
Elsevier’s (Amsterdam) MedScan natural language processing
(NLP) engine (Novichkova et al., 2003).

In control theory the quality of a model parametrization is
measured by its goodness-of-fit to data and structural parsimony.
For instance, Akaike Information Criterion (AIC) combines the
log-likelihood of adhering to the data and the model complexity
(e.g., number of coefficients in a model) to assess the quality of a
fit (Box et al., 1994). In logical regulatory models, especially as it
might apply to the State Transition Graph (STG) generated by a
model, goodness-of-fit might be understood as a combination of
minimum number of transitions that is required to reproduce the
time sampled measurement data and how robust that generated
transition might be, while complexity can be interpreted by
the number of interactions (e.g., edges) and thresholds of
action (e.g., edge weights in multi-valued networks). This
paper presents an extension of earlier conceptual work by our
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group (Sedghamiz et al., 2017) and the implementation of
these formalisms into a standalone software tool capable of
performing model checking and ranking regulatory networks:
the Biological Model Checker (Bio-ModelChecker). First, a set
of propositional equations inspired from Garg et al. (2008)
are introduced for asynchronous and synchronous discrete
GDF networks. After defining the logical equations for each
specific time update scheme, the problem is formulated as a
Constraint Satisfaction Problem (CSP). CSP offers a declarative
and efficient way of describing combinatorial problems in terms
of a set of constraints (Barták, 1999). This is particularly
suitable for biological regulatory networks that need to satisfy a
broad range of constraints. We construct bounded propositional
formulas that allow us to efficiently check whether a regulatory
model is able to reproduce a time sampled measurement. It
is common to have several models reproduce a measurement
equally well because the complexity of these networks more
often than not greatly exceeds the number of available data
records. Therefore, we extend the CSP problem into a multi-
objective optimization. Themethod accepts an incomplete model
from either automated natural language processing (NLP) or
manual curation of literature as the first estimate of network
structure and computes the complete set of parameterizations
(topology and dynamics) of the model by maximizing several
biologically inspired criteria namely: efficiency, robustness, and
selectivity. We have implemented our proposed framework in
FlatZinc (Nethercote et al., 2007; Becket, 2008) which is a
standard CSP language readable by many state-of-the-art solvers.
This gave us the ability to validate the proposed framework
on several different solver technologies including Lazy Clause
Generation (LCG) and Satisfiability Modulo Theories (SMT)
(Yordanov et al., 2013; Giacobbe et al., 2017). Therefore, in
this study, we employed three different solvers namely, Chuffed
(Chu et al., 2014), Google Operations Research Tools (OR-Tools)
(Perron, 2011) which employ LCG technology and OptiMathSat
(Sebastiani and Trentin, 2015) that employs SMT. Our proposed
method is validated on several biological regulatory networks
detailed in Table 1.

This work is novel in several respects. Importantly it
introduces a complete framework for the identification of
biologically relevant parameters in a discrete logic regulatory
network (i.e., a parsimonious topology, contextual decision
weights, polarity of interactions, and even the threshold of actions
among entities). Since we use a generalized Thomas framework
it easily supports Boolean logic, multivalued logic, and the
combination of both. The framework formulates the parameter
identification problem as a bounded constraint satisfaction
problem, enabling one to parametrize larger models by reducing
the corresponding bound, something which remains daunting
(NP-hard) in a conventional OBDD-based framework (Bollig and
Wegener, 1996). It then ranks models satisfying these constraints
based on their goodness-of-fit and complexity which in this
discrete logic framework are denoted as path-length, robustness,
number of interactions, and their threshold of action. Beyond
the immediate task of parameter identification, our framework
can also be used for model reduction, identifying the minimum
number of interactions required to reproduce a desired behavior.

Moreover, the whole framework is implemented in a unified
standard constraint programming syntax which enables it to
benefit from the latest state-of-the-art solvers which are well-
supported and frequently updated.

A REGULATORY NETWORK MODEL

In the following sections, first, we briefly review GDF and
rigorously formulate the parametrization problem. Then, we
introduce the multi-valued logical equations for synchronous
and asynchronous update schemes. Next, we introduce the
concepts of Efficiency, the Length Cost, Robustness, and
Selectivity. A biological regulatory graph G = (V,E,W,U,P′) is a
signed, weighted, and directed graph. Where:

• V denotes the entities (e.g., transcripts, proteins, cells, etc. . . )
in the network,
• ρi :V → N1 is the maximum expression level that node vi

may assume over its domain Di. In an unconstrained network
node, ρi is initially set by default to the number of actions
component vi exerts on the network (e.g., out-degrees).
• N1 denotes the complete set of natural numbers excluding 0
• E ⊆ V × V , is the set of interactions (edges) where:

• wij ∈
{

1, . . . , ρ j

}

is the interaction threshold above which the

regulation from node vj to vi is active,
• uij ∈ {−1, 1} is a polarity associated with such an interaction

where an activating (inhibiting) effect is expressed by uij =
1 (uij = − 1),
• pij ∈ {0, 1}, is a bit associated with edge wij indicating that the

existence of this edge is necessary for the network. This vector
of bits ′P is intended to incorporate prior knowledge in the
parameterization process.

State Transition Function and Graph
Each component vi ∈ V under the GDF is described by a set
of logical parameters, Ki : yi → [0, ρi] governing its response
behavior toward the target state yi under combinatorial incoming
actions from other components in the network. Intuitively, it
might be thought of synthesis to decay kinetics of entities
influencing vi (Thomas et al., 1995). The state transition function
(image) explains the temporal evolution of the regulatory
network using the Ki and is defined as Chaouiya et al. (2003),
Devloo et al. (2003);

yi = Ki (Ia) where

Ia : =
{

i ∈ V
∣

∣(i, j) ∈ E ∧ Suij (xj, wij)
} (1)

Suij is a threshold function that determines whether the expression
level xj of node vj is sufficient to exercise a control action response
i.e., activate (or inhibit) a regulatory target xi. Therefore, the
set of all active interactions on a node are in fact each denoted
by a unique Ki(Ia) logical value that collectively define the
image of that node (see Figure 1). Given an instantiation of all
topological (e.g., W, V, U) and dynamical (e.g., K) parameters,
one can study the temporal evolution of regulatory graph G by
iteratively computing the transition function in Equation (1).
This would result in a State Transition Graph (STG) S that

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 March 2019 | Volume 7 | Article 48

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Sedghamiz et al. Leveraging Prior Knowledge of Biology

TABLE 1 | Benchmark problem definition.

Network |V | |E| F |Ŵ | |Û| |P̂| |K̂| M

Synch Asynch

HPA 4 8 14 8 2 8 46,656 10 5

IRMA 6 9 16 0 0 0 ≈604 x 106 50 12

Dcell 114 129 3 0 0 0 95,268 × 10135 5 3

HPG 5 25 16 25 18 25 3160 3 8

Th 23 35 3 0 0 35 2100 2 2

Specification of the five benchmark problems to which an analysis was applied*, where |V| denotes the number of network nodes, |E| the number of regulatory edges, Fthe number of
samples, |Ŵ| the number of activation thresholds supporting multi-level logic, |Û| the size of polarity specifier set, |P̂| the size of the edge confidence set, and |K̂| the size of the logical
parameter space. M is the bounded horizon of reachable states along a trajectory.
*Stress hormone hypothalamic-pituitary-adrenal (HPA) axis (Sedghamiz et al., 2018); synthetic in vivo Reverse-engineering and Modeling Assessment (IRMA) network (Cantone et al.,
2009); the dendritic cell cycle from Garg et al. (2008); the female sex hormone hypothalamic-pituitary-gonadal axis (HPG) (Bennett et al., 2013; Sedghamiz et al., 2017); T-helper cell
differentiation (Garg et al., 2008). Note that the bound for model checking is different under synchronous and asynchronous update schemes.

contains
∏

i∈V (1+ ρi) states. Note that the edges in S (i.e.,
number of edges and reachability of states) directly depends on
the update scheme employed during the simulation. The most
popular update schemes reported in literature are synchronous
and asynchronous (Kauffman, 1969; Thomas and D’Ari, 1990;
Albert and Robeva, 2015).

PARAMETER IDENTIFICATION PROBLEM

The parameter identification problem consists in identifying
from all parameter sets available to the model

∑G, the sub-family

of parameter sets ˆ
∑G

(where ˆ
∑G
⊆

∑G) that would enable
a hypothetically incomplete regulatory network G to generate
a certain behavior (e.g., produce a given attractor and/or a
sequence of partial experimental measurements that might have
to optionally satisfy other additional constraints).

Parameter Space
We define the combinatorial parameter space of size

∣

∣

∣

∑G
∣

∣

∣

associated with regulatory graph G as the product of all unknown
model parameter subspaces for the following;

• Logical values:

|K| =
∏

i∈V

{

(ρi + 1)2
|q(i)|

}

Where
∣

∣q(i)
∣

∣ is the in-degree of component vi [i.e., q(i) is the set

of regulators of vi] and where there are 2|q(i)| parameters required
to capture all possible combinatorial effects on component vi with
each of those parameters assuming a value in [0, ρi ].

• Threshold of action:

|W| =
∏

i∈V

∏

j∈(q(i)
⋂

Ŵ)

ρj

Where wij →
[

1, ρj
]

and where Ŵ ⊆ W denotes the
set of interactions for which the threshold of action is not
known a priori.

• Polarity:

|U | =
∏

i∈V

∏

j∈(q(i)
⋂

Û)

2

Where, uij ∈ {0, 1} and where Û ⊆ U denotes the set of
interactions for which polarity is not known a priori. Note that
in a multi-valued formalism, the polarity of an edge constrains
the logical values involved in that interaction. For instance, a
positive (resp. negative) edge from vj to vi requires that there
exists at least a logical value that increases (respectively decrease)
the expression level of vi once vj is active. Formally:

Suij
(

xj, wij

)

↔ ∃R ⊆ q (i) : Ki(R) < Ki(R ∪ j)

Where R is a subset of q(i) the set of all regulators of node vi.
Intuitively, this criterion requires that the regulators of node vi
should at least be weak activators or inhibitors. However, it is
possible to apply a stricter constraint that requires the regulator
of node vi to be strong modulators (e.g., Suij

(

xj,wij

)

←→ ∀R ⊆
q (i) : Ki (R) < Ki(R

⋃

j) ). In this study, we only require that
the regulator be at least weak regulator but have the possibility
to strengthen this constraint (see Klarner et al., 2012b for a more
detailed list of available constraints).

• Confidence of interaction:

|P| =
∏

i∈V

∏

j∈(q(i)
⋂

P̂)

2

Where pij ∈ {0, 1} and where P is a bit vector with a cardinality
equal to the total number of interactions in the network (E)
and where a true bit in this vector implies that the existence
of an interaction is necessary in order to satisfy a compliant
parameterization. P̂ ⊆ P denotes the subset of interactions that
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FIGURE 1 | An example of HPA axis described in GDF. Each interaction (edge eij ) is assigned a threshold (wij ), polarity [uij where solid (resp. dashed) stands for

positive (resp. negative)] and each node is allowed to assume an expression level equal to its number of actions (outdegrees). Transition dynamics of each node is

represented by a set of Ki (I) values. Ki (∅) defines the basal value of entities (no activation is present). For instance, K2 ({1, 4}) defines how entity v2 behaves when

both its activator v1 and inhibitor v4 are present simultaneously (which is an increase in its expression since K2 ({1, 4}) = 1). Adapted from Figure 1A, Sedghamiz

et al. (2019).

are poorly supported or absent altogether from prior knowledge
and for which a high confidence level could not be assigned by the
user. The vector P is useful for finding the most parsimonious
model (e.g., by minimizing its cardinality) while incorporating
established prior knowledge and exploring the possible role of
new posited interactions.

Consequently, the parameter space of G is super-exponential:

∣

∣

∣

∑G
∣

∣

∣
= |S| × |K| × |W| × |U | × |P|

Where |S| is the size of the state transition graph, |K| the size
of the logical parameter space, |W|, the size of the threshold of
action parameter space, |U| the size of the polarity of action space
and |P| the size of the confidence of action space.

Logical Equations
In the process of regulatory graph generation, sometimes it
is not possible to confidently determine the polarity of the
regulatory action (Û ⊆ U) and the thresholds of action (Ŵ ⊆
W). Furthermore, experiments are often sparsely sampled and
incompletely surveyed (only partially observed). Therefore, our
proposed method combines the partial information from the
incomplete model and measurements in order to constrain the
parameter sets to satisfy both as well as infer the unknown
model parameters (K, Û, Ŵ) and the expected values of
missing experimental measurements. In this section, we formally
introduce equations specific to the logical time update scheme
(synchronous and asynchronous).

Propositional Formula for State Transition

Update Schemes
In order to study the temporal evolution of a biological system,
we first need to formally derive the logical equations under each
updating schedule. In this study, we derive such logical equations
for two well-known synchronous and asynchronous update
schedules. Let xt= {xt1, x

t
2, . . . , x

t
n} be a vector representing the

state of a regulatory network, TRMxN be a trajectory consistingM
transitions xtis the state of the network at time t and N entities.
The logical equation governing such a trajectory depends on

the choice of update scheme is may be defined for the classical
synchronous and asynchronous update schemes as follows:

• Under synchronous update all state variable nodes may update
their current state simultaneously which can be denoted as the

conjunction of transitions T
Synch
i across all elements vi:

TR
Synch
1...M =

∧M−1

t=1

∧N

i=1
T
Synch
i (xt,xt+1) (2)

• Under asynchronous update only one state variable node at a
time is permitted to update from its current state which can

be denoted as the disjunction of transitions T
Asynch
i across all

elements vi:

TR
Asynch
1...M =

∧M−1

t=1

∨N

i=1
T
Asynch
i (xt,xt+1) (3)

Where T
Synch
i and T

Asynch
i represent the transition for node vi

given its image vectorY and current state of the network xt under
synchronous and asynchronous update, respectively. Additional
details regarding the derivation of these propositional formulas
may be found in the Supplementary Material.

Propositional Formula for Bounded Model Checking

of Time Series
In the previous section, we stated that the output of a regulatory
model might be logically formulated as the conjunction of
several states. A time series might be denoted as a matrix
LFxN with F time samples and N entities. We say a model
generates time series L where there exists at least a path in
its STG which passes through all the samples in L sequentially
(e.g., in order from time sample t1 to tF ). This problem
has been traditionally addressed with OBDD based symbolic
model checking (Cimatti et al., 2000) where reachability
analysis is performed on sets of states rather than individual
states. However, the computational requirements and memory
allocation associated with the identification of optimal (minimal
node) OBDD does not scale well with increasing problem size
even using the most efficient ordering techniques (Bollig and
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Wegener, 1996; Singh and Mohan, 2008). As a result, Bounded
Model Checking techniques (Clarke et al., 2001) were introduced
that instead of checking the reachability properties on sets of
states deal with a user-defined bounded number of states that
mitigate the state space explosion. These methods construct a
propositional formula for which satisfiability is checked using
SAT solvers. Given:

• A transition characteristic function defined under the
synchronous (Equation 2) or asynchronous update scheme
(Equation 3).
• A user supplied upper bound M on the number of

transitions and
• Amatrix of time series measurements LFxN that might contain

uncertain or unmeasured entities denoted by⊥.

The unrolled propositional formula for a pair of samples in L
(e.g., consecutive rows lf and lf+1) is defined as follows:

• For the synchronous update scheme:

[[SS]] (lf ,lf+1)M : =

(

∧

i∈Bf ,j
lf ,i ←→ x1i

)

∧

(

∧M−1

t=1

∧N

i=1
T
Synch
i

(

xt , xt+1
)

)

∧

(

∨M

t=2

∧

i∈Bf ,j
lf+1,i ←→ xti

)

(4)

where,

Bf ,j : =
{

j ∈ [1, n]
∣

∣lf ,j 6= ⊥
}

The first term of Equation (4) sets the initial state of the transition
(x1) equal to the first pair of the sampled measurement (lf ) for
those entities which are certain (¬⊥). The second term computes
the set of all reachable states within a bound M. Finally, the
last term states that at least one of the transitions within the
bound (t := [2,M]) should be equal to the second pair of the
measurement (lf+1).

• For the asynchronous update scheme similarly:

[[SS]] (lf ,lf+1)M : =

(

∧

i∈Bf ,j
lf ,i ←→ x1i

)

∧

(

∧M−1

t=1

∨N

i=1
T
Asynch
i

(

xt , xt+1
))

∧

(

∨M

t=2

∧

i∈Bf ,j
lf+1,i ←→ xti

)

(5)

Note that Equations (4) and (5) apply to pairs of measurements
only. For a measurement matrix with more than F > 2 samples,
we construct conjunction of Equations (4) and (5) consecutively.
Therefore, for a measurement matrix LFxN ;

∧F−1

f=1
SS (

lf ,lf+1
)

M (6)

Intuitively, for each pair in L a set of all reachable sets within a
boundM is computed and the whole matrix is reproducible when
all sub-clauses in Equation (6) are satisfiable.

Example: Assume ameasurementmatrix Lwith 3 time-course
samples of the simple generic example depicted in Figure 1which
contains three uncertain measurements:

L =





⊥ 0
1 ⊥
1 ⊥

1 0
2 1
1 2





The corresponding unfolded propositional formula for this
matrix’s row 1 and 2 (e.g., time samples 1 and 2) with a checking
bound of M = 3 under the synchronous update scheme is
defined as;

[[SS]] (l1 ,l2)3 :=

∧

i∈Bf ,j

lf ,i ←→ x1i :

(

¬x12

∧

x13

∧

¬x14

)

∧

T
Synch
1

(

x1, x2
)

:

(

(

x22 ↔
(

x12 + SC1
2

))

∧

(

x23 ↔
(

x13 + SC1
3

))

∧

(

x42 ↔
(

x14 + SC1
4

))

)

∧

T
Synch
2

(

x2, x3
)

:

(

(

x31 ↔
(

x21 + SC2
1

))

∧

(

x33 ↔
(

x23 + SC2
3

))

∧

(

x34 ↔
(

x24 + SC2
4

))

)

∧

M
∨

t=2

∧

i∈Bf ,j

lf+1,i ↔ xti :

((

x21 ∧
(

x23 ↔ 2
)

∧ x24
)

∨
(

x31 ∧
(

x33 ↔ 2
)

∧ x34
))

The propositional formula for row 2 and 3 of L (e.g., SS (l2,l3)3 )
is computed similarly. Taking the conjunction of these two
propositional formulas as shown in Equation (6) would result in
bounded checking of the whole matrix. Note that the existence
of node and cyclic attractors might also be easily checked with
a similar propositional formula where the initial and end state
are identical. This is true for node attractors and transient cycles
under the asynchronous update scheme, and node attractors as
well as cyclic attractors under the synchronous update scheme
(Dubrova and Teslenko, 2011).

Constraint Satisfaction Problem
CSP is a declarative paradigm in which the problems are
described in terms of their constraints (Jaffar and Maher, 1994;
Barták, 1999; Tack, 2009). A constraint satisfaction problem is
stated as:

• A set of V = {v1, . . . , vn} variables; where each variable vi has a
domain Di.
• A set of constraints that restrict the bound of each variable.

A solution to CSP is the assignment of each variable to a
domain that satisfies all of the constraints. CSP has been
previously used successfully in identification of attractors in
large regulatory networks (Devloo et al., 2003). In this work,
we have formulated the model identification task as a CSP and
implemented it in a standard CSP language known as FlatZinc
(Nethercote et al., 2007) that is readable by many state-of-the-
art solvers. An extension of the basic CSP might be solved as
an optimization problem where for each satisfying solution the
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value of an objective(s) is improved (e.g., branch-and-bound;
Clausen, 1999).

Optimization Objective Functions
In control and regression theory, there exists measures such
as Akaike Information Criterion (AIC) that combine goodness-
of-fit (e.g., log-likelihood) and complexity (e.g., number of
coefficients) of the model to score the quality of a fit.
Inspired from the same ideas, in this section, we introduce
several biologically relevant objective functions employed in
our parameterization to rank the constraint satisfying models
(Sedghamiz et al., 2017). We denote our final multi-objective
function as a vector Z which consists of three objectives in
the case of the asynchronous update scheme and two under
synchronous update scheme as detailed below.

Structural Efficiency
Our first assumption is that biology tends to be energy efficient
and parsimonious in structure. In multivalued regulatory graphs,
this is reflected as a minimal number of interactions (|E|) and
aggregate threshold of actions (W). A regulatory network is
energy efficient and parsimonious if it is able to generate a
response behavior with as few control actions as possible. This
is defined as:

z1 : =

{

minimize
∑N

i=1

∑

j∈q(i) pijwij,
Subject to wij ∈

[

1, pj
]

.
(7)

Where P vector is a binary mask (see A Regulatory Network
Model). pij is true iff the existence of edge pij is necessary in the
graph G in order to reproduce a behavior.

Path Length Cost
A sequence of time sampled measurements might be assumed
to represent a trajectory with length F. The shortest possible
walk from the first sample t to t + 1 is denoted by Fmt,t+1 .
Then, the length cost is defined as the smallest number of
transitions (shortest walk) required by a parameterization to
reproduce the time-sampled trajectory in question. For instance,
if a measurement only consists of two samples t1 and t2, then we
find a smallest value of Fm1,2 for which Equation (6) is satisfiable
[specifically see the last clauses in Equations (4) and (5)]. The
length cost for a measurement with F samples is defined as:

z2 : = minimize
∑F−1

t=1

(

Fmt,t+1 − 2
)

(8)

Where F, Fmt,t+1 ∈ {1, . . . ,M} , M ≤ DL are the number of
sampled measurements, the minimum length cost for samples
t and t + 1, and reachability bound, respectively (DL is
the diameter of State Transition Graph (STG). Therefore, the
minimum possible value for z2 is 0 (e.g., the constant 2 in
Equation (8) is used to remove the initial and end state as offsets)
and it grows as the length cost increases (see Figure 2).

Path Robustness
The asynchronous update scheme employed in this study
considers the stochasticity in system behavior that results from
uncertainty in the relative kinetics of the nodes in the network.

As Klarner et al. (2012a) pointed out, variability in the time delays
separating the sequential activation of different nodes manifests
as perturbations to the system dynamics overall. A model is
considered robust if it is insensitive to such changes. This can be
quantified as the number of competing trajectories between time
sample t to t+1.We prioritize the parameter sets that generate
fewer branches between two consecutive measured states since
as the number of paths increase the chance of deviating from
the destination grows as well. We count the total number of
variables that tend to change (Rt, t+1) from state t to t + 1.
Formally, we find a robust parameterization with respect to a set
of measurements with length F by:

z3 : =







minimize
∑F

t=1 Rt, t+1
where Rt, t+1 =

∑N
i=1

(

yti ⊕ xti
)

subject to Rt, t+1 ∈ [0,N]
(9)

Where
⊕

is multivalued XOR operator (e.g., 2
⊕

1 = true; 3
⊕

3= false).
The Robustness idea is illustrated in Figure 3. Note that it is a

function of length cost. We first find aminimum Fmt,t+1 for which
two samples are reachable and then for that Fmt,t+1 minimize the
robustness cost. Note that the minimum value for Rt, t+1 is 0,
where 0 means that the state is steady (e.g., no variable tends
to change). For an example see Figure 3, there are two different
paths with equal length costs (solid and dashed curves) generated
by two parameterizations (instantiation of Ki(I), W, and U).
The solid-line trajectory offers the possibility of an alternate
destination and is hence has a higher robustness cost.

The multi-objective vector Z might be solved by linearly
combining the objectives (e.g.,

∑3
i=1 δizi where δi is a penalizing

integer weight) or in a Pareto front manner which is supported
by some of the solvers (e.g., OptiMathSat; Sebastiani and Trentin,
2015). In this study, we weighted all the objectives equally for the
linear mixture.

BENCHMARKS AND APPLICATIONS

As mentioned in the Introduction, the concepts reported
here have been integrated into a standalone software tool,
the BioMC (https://github.com/hooman650/BioModelChecker),
that accepts the input problem definitions as a JSON file.
The regulatory network structure is described by an adjacency
matrix. This matrix has 5 rows, where the first and second
row indicate the target and source node indices, respectively.
The third and fourth rows indicate threshold of action and
the polarity (e.g., activator/inhibitor), respectively. Finally, the
last row is a binary flag that indicates whether the interaction
should be necessarily preserved during the parameterization.
This adjacency matrix may be defined directly by the user or
may be generated automatically by deploying a text-mining
tool to survey the scientific literature, or both. Currently our
group uses the MedScan natural language processing (NLP)
engine (Novichkova et al., 2003) that supports the Pathway
Studio database (Elsevier, Amsterdam) to extract regulatory
interactions reported in the literature. The output of the pathway
studio is an adjacency list that indicates the target and source
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FIGURE 2 | An example visualizing the length cost (denoted by Fmt,t+1 ) concept. Assuming (xt and xt+1) are two sampled experimental measurements. There are

three sets of parameters that make xt+1 reachable from xt: a direct transition with Fmt,t+1 = 0 and two indirect transitions with Fmt,t+1 = 2 and Fmt,t+1 = 1,

respectively.

FIGURE 3 | An illustration of robustness. Here there are two parameterizations that generate paths with equal length costs (solid and dashed). In order to compute

the robustness, we only count the number of branches for the shortest trajectories. It is clear that while the dashed trajectory is still reachable to sample 2 with a

similar cost length, it has a chance of deviating and missing its destination in transitions [0100] and [0101] (dotted branches).

entities and their nature of interaction (e.g., activator/inhibitor).
BioMC directly imports this list and completes the annotation by
computing the regulatory polarity and the expected confidence
metric for each edge (the last row of the adjacency list).
The BioMC analytical framework is implemented for Windows
64bit and incorporates three solvers. In our implementation,
we employ variable ordering by instructing the solvers to start
with those variables having the most narrow range of discrete

values. In this work, we also compare the results obtained
from solving the objective vector Z by linearly combining its
components with the Pareto approach proposed in Sebastiani
and Trentin (2015). We demonstrate the capabilities of this
framework by applying the latter to the 5 benchmark problems
described in Table 1. Specifically, we show how the framework
can be used to effectively integrate sparsely collected and partially
observed samples with prior knowledge of the network structure
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in order to validate and rationalize the latter and support the
mechanistically informed simulation of the system’s dynamic
behavior at various scales of biology and levels of structural
complexity (i.e., connection density). All the sequential solvers
were tested on an Intel core i7 machine.

Model Validation: The
Hypothalamic-Pituitary-Adrenal (HPA) Axis
The Hypothalamic-Pituitary-Adrenal (HPA) axis represented
in Figure 1 is the most central regulator of immune and
endocrine response to stress and has aptly been called the
“fight or flight” axis. Due to its important regulatory role, it
is no surprise that the HPA axis has been associated with a
number of complex chronic diseases (Silverman and Sternberg,
2012). Perceived stress triggers a cascade of hormone release
starting with corticotrophin-releasing hormone (CRH; node
1) and adrenocorticotropic hormone (ACTH; node 2) by the
hypothalamus and pituitary in the mid-brain and leading to the
release of the broad-acting immune regulator cortisol (node 3)
from the adrenal glands and up-regulates receptor expression
R (node 4). Circulating cortisol then regulates in a negative
feedback to the mid-brain where it slows additional CRH (node
1) release (see also, Figure S2.1). Here we provided 7 time
points simulated for two of the 4 state variables and asked
the model checker to find all missing parameters (interaction
polarities, threshold of actions, and dynamics) defining the 6
regulatory interactions. In addition, we introduced two spurious
interactions to the model in order to see whether the model
checker would be able to flag these (all the bits in confidence
vector P corresponding to all interactions were set as unknown).
In the synchronous case, all the three solvers agreed on a single
solution that accurately aligns with the reference HPA axis model
presented in our earlier work (Sedghamiz et al., 2018, also see
Figure 1). Interestingly, this solution also correctly identified
the 2 spurious interactions as redundant (e.g., interactions from
the glucocorticoid receptor R (node 4) to corticotropin-releasing
hormone CRH (node 1), and CRH (node 1) to cortisol (Cort;
node 3), respectively). The time required to converge to a solution
was very similar for OR-tools and Chuffed.

Model Reduction: The T-Helper Cell
Differentiation Network
In order to illustrate the utility of our approach in the reduction
of models to minimal representations, we analyzed an immune
signaling network describing the differentiation of naïve T helper
(Th) cells to either a Th1 or Th2 phenotype. This network
was composed of 26 molecular and cellular cues (Garg et al.,
2008) linked by 35 regulatory interactions (see, Figure S2.2). We
asked the model checker what would be the smallest network
model in terms of number of interactions capable of reproducing
the same 3 attractors supported by the original model without
changing any polarity of interactions in the network. Note that
node steady states are identical regardless of the state transition
update scheme and that accordingly the running times are
identical for both scenarios. The model-checker identified a
minimal network with 26 interactions (e.g., z1 = 0.74) and

their corresponding logical parameters that exactly reproduced
the 3 attractors reported by the original model (see Figure 4).
The resultant minimal network model was able to reproduce
the documented bi-stability of competition between the master
regulatory Th1/Th2 transcription factors T-bet and GATA3
(Fang and Zhu, 2017) in a more parsimonious form. Where the
initial model contained direct inhibitory connections in both
directions between T-bet and GATA3, we discovered that these
direct interactions were not necessary to support the available
steady states. Instead, selective activation of T-bet or GATA3
in the reduced model is sustained by positive feedback (direct
in the case of T-bet and mediated by IL-4 and STAT6 in the
case of GATA3), with activation of either interrupting the other’s
feedback loop. In order to verify this, we used BoolNet (Mssel
et al., 2010) to identify the attractors of the reduced model and
obtained identical results. Note that here, the only objective was
to minimize the cardinality of the P̂ vector, since the network
is binary (∀

{

i, j
}

∈ V , wij ↔ 1) and since the only criteria
is to reproduce the node steady states (e.g., (X ↔ Y) ⇒

(z2 = 0 ∧ z3 = 0)).

Recovering Dynamics: The IRMA
Gene Network
We also applied the model checker to the synthetic network
regulating the expression of 5 genes in yeast known as the
IRMA network, a well-studied model in the development of
reverse engineering applications (see, Figure S2.3). We asked
the model checker to find the most robust model reproducing
the knockout measurements provided in Cantone et al. (2009)
and translated into discrete data points in Klarner et al.
(2012b). The linear optimizers identified a slightly different
solution (e.g., though the overall objective function value
was lower) than the solution found by the pareto solver.
The former solution has a lower robustness but is more
efficient (e.g., in terms of the number of transitions needed
to reproduce the time series), while the latter is more robust
and slightly less efficient suggesting that a Pareto solution
might prioritize robustness over efficiency. In terms of run
time, Chuffed and OR-tools showed similar performance with
both being at least 7 times faster than the Pareto solver
OptiMathsat. The parameterization under the synchronous
update scheme was unsatisfiable for a bound of up to M =
50. Chuffed was the fastest solver to prove unsatisfiability (e.g.,
only ≈ 5 s) followed by OptiMathSat illustrating the power
of CP solvers in proving unsatisfiability even for large state
transition bounds.

Scalability: The Dendritic Cell Network
In order to show the scalability of our approach to large
state spaces, we applied it to a literature-mined network
known as Dendritic Cell (Dcell) (Garg et al., 2008) that
contains 114 entities connected by 129 interactions (see,
Figure S2.4). We generated a synthetic measurement data
along a 3-point time course to serve in parameterizing this
network. All the techniques listed in Table 2 agreed on a
single optimal solution and again in terms of convergence
time the sequential Chuffed was the fastest. Importantly while
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FIGURE 4 | The T-helper network. Arrow-head and circle-head edges indicate activating and inhibiting interactions, respectively. Dashed edges highlight the

interactions that were marked by the model checker not necessary in order to reproduce the three steady states reported in Garg et al. (2008). Adapted from Figure

5A, Sedghamiz et al. (2019).

this network included the largest number of entities, it was
also the most sparsely connected which further exacerbates
the network identification problem from experimental data.
While regulatory complexity, or the number of regulators at
a given node, is a central driver of complexity in parameter
identification the overall size of the state transition space is
also an important contributor. In this example, regulatory
complexity may be moderate however the state space is sizable
i.e., |S| is of the order of 2114. This would be a challenge for
exact parameterization methods that explore the complete STG
while in this work we show that the bounded parameterization
techniques such as the one proposed are able to easily traverse
such large STG.

Model Discovery: The Female
Hypothalamic-Pituitary-Gonadal
(HPG) Axis
Finally, we applied this framework to the recovery and analysis
of a minimal representation of female sex hormone regulation
by the Hypothalamic-Pituitary-Gonadal (HPG) axis required to
reproduce the basic menstrual cycle as previously reported in
our earlier work (Sedghamiz et al., 2017). Activation of the
HPG axis involves release of Gonadotropin-releasing hormone
(GnRH) by the hypothalamus in the mid-brain, prompting the
pituitary to then release luteinizing hormone (LH), as well as
follicle-stimulating hormone (FSH) into circulation. LH and FSH
flow to the gonads, stimulating the ovaries produce estrogen and
progesterone which in turn prompt a negative feedback to the
hypothalamus down-regulating GnRH release (Viau, 2002). We
started with a fully connected network (5 entities, 25 edges) where
only 5 interactions were known in terms of polarity and where
the characteristics of the remaining interactions were completely
unknown (e.g., polarity, threshold of action, and dynamics) (see
Figure S2.5). In addition, the time course is cyclic with the last
time point returning to the first, making this benchmark network
the most challenging model to identify because of its complex
dynamic behavior (i.e., limit cycle). Under the asynchronous

update scheme none of the solvers found an optimal solution
within the time limit but OR-tools provided the best solutions in
terms of all objectives and the total objective Z.

DISCUSSION

While the significant inroads have been made in the study
of biological networks with platforms like CellNOptR (Terfve
et al., 2012) and Optimusqual (Dorier et al., 2016) these
pioneering tools apply global goal-seeking approaches like
genetic algorithms to reconcile experimental data with prior
knowledge network dynamics based on Boolean logic and
extensions such as constrained fuzzy logic and logic-based ODEs.
In this work, we have proposed an extended framework based
on multi-level logic where we apply bounded model checking
using CSP in order to provide an exhaustive search of the
parameter space while addressing the super-exponential nature
of this problem in a multi-objective setting, both of which
are novel. This work integrates in a modular framework, the
latest techniques developed in the Artificial Intelligence (AI)
community specifically CSP to the biological model identification
problem, making it effortless to employ the latest refinements
to these solvers. In an extension of similar tools available for
studying logical networks such as TREMPPI, Caspo and GINsim,
Bio-ModelChecker directly supports the learning of activation
threshold values for regulatory interactions (edge thresholds)
from experimental data and also accommodates the use of
confidence scores on edges derived from the literature. We show
that by choosing smaller bounds for model checking it is possible
to reverse engineer relatively large biological networks (e.g.,
Dcell with 114 entities) in a reasonably efficient computational
time. A caveat to this increase in scale remains the degree of
regulatory complexity at individual nodes. Indeed, as this method
is based on an exhaustive search of all possible combinations
of active regulators, the number of discrete values that may be
assumed by the logical parameters K increases exponentially with
respect to the number of regulators of a given node (e.g., 2|qi|,
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where
∣

∣qi
∣

∣ is the number of regulators of node vi). Therefore,
regardless of the parameterization technique employed, due to
the formalism definition itself, the number of regulators may be
expected to be a limiting factor, especially as it increases beyond
15. However, as our proposed parameterization technique is
based on constraint satisfaction programming (CSP), we submit
that it is especially well-suited to such complexity and may
nonetheless continue to support complete searches within
reasonable execution times even in networks populated by nodes
with 5 or more concurrent regulators.

In addition to offering an attractive algorithmic compromise
between completeness of search and network complexity, we
introduced here in the formulation of the problem itself several
biologically inspired measures of optimality such as efficiency of
regulatory structure, robustness of response, and path length cost
that may serve in ranking families of feasible models according to
their plausibility. For instance, the reduction of models to their
simplest representation by focusing on the minimization of the
first objective alone translates into identifying the set of most
crucial interactions in a network that are necessary to reproduce
a set of steady states or temporal behavior. With regard to better
understanding the design principles of biological signaling, a
multi-objective view of these problems opens new doors for
further research. Specifically, applying these objective functions
separately to well-studied biological systems would allow us to
further explore how signal transduction efficiency is balanced
against signal robustness and how this trade-off may be weighted
differently according to biological function and level of biology.
In this work we define increased robustness as a reduction in
the branching of dynamic response offered by competing state
transitions. Though some level of kinetic stochasticity remains
a legitimate feature at certain levels of biology, we present the
limit case where no information regarding the relative kinetics of
any state variable is available and the system evolves according
to a completely asynchronous update. This is an extreme case
that almost invariably supports trajectories that are biologically
infeasible. Indeed, in previous work (Sedghamiz et al., 2018)
we have shown that grouping state variables according to
physiological compartment and assigning a priority of update
based on the relative kinetics of these groups greatly reduces
the complexity of the state transition graph and significantly
improves biological fidelity. Nonetheless as stochasticity remains
a basic feature of biology, we submit that this measure of signal
robustness will remain of interest even in well-characterized
systems and that the identification of regulatory characteristics
that accommodate such stochasticity while also imparting an
increasing consistency in behavior will offer new insights into
these systems. Importantly, this framework is the only method
that to our knowledge offers this type of parameterization
in two different updating schemes namely synchronous and
asynchronous. The parameterization of the models under
synchronous update being more computationally efficient, it is
useful to employ this update scheme for initial exploration of
much larger models. Moreover, being able to reverse engineer the
biological models based on two different state transition update
schemesmight allow a better understanding of dependency of the
network on time delays associated with the entities involved.
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