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Termites are among the few animals that themselves can digest the most

abundant organic polymer, cellulose, into glucose. In mice and Drosophila,

glucose can activate genes via the transcription factor carbohydrate-responsive

element-binding protein (ChREBP) to induce glucose utilization and de novo

lipogenesis. Here, we identify a termite orthologue of ChREBP and its down-

stream lipogenic targets, including acetyl-CoA carboxylase and fatty acid

synthase. We show that all of these genes, including ChREBP, are upregulated

in mature queens compared with kings, sterile workers and soldiers in eight

different termite species. ChREBP is expressed in several tissues, including

ovaries and fat bodies, and increases in expression in totipotent workers

during their differentiation into neotenic mature queens. We further show

that ChREBP is regulated by a carbohydrate diet in termite queens. Suppres-

sion of the lipogenic pathway by a pharmacological agent in queens elicits the

same behavioural alterations in sterile workers as observed in queenless colo-

nies, supporting that the ChREBP pathway partakes in the biosynthesis of

semiochemicals that convey the signal of the presence of a fertile queen.

Our results highlight ChREBP as a likely key factor for the regulation and

signalling of queen fertility.
1. Introduction
Glucose is the most widely used sugar in animals, serving in energy production

and in the provision of macromolecular precursors, and glucose is a signalling

molecule in the liver and fat tissues [1]. The basic helix–loop–helix transcrip-

tion factor paralogues, ChREBP (carbohydrate-responsive element-binding

protein, also called Mondo B) and Mondo A, respond to glucose signalling in

mammals [2–8]. For glucose-induced transcriptional responses, ChREBP and

Mondo A bind to the carbohydrate-response elements at the promoter regions

of glycolytic and lipogenic genes, including liver pyruvate kinase (L-PK), fatty-

acid synthase (FAS) and acetyl-CoA carboxylase (ACC) [2,5,7,9]. In mammals,

ChREBP and Mondo A play tissue-specific roles: ChREBP functions in the

liver, adipose tissue, intestines and pancreatic beta cells [10–14], while Mondo
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A is predominantly expressed in the skeletal muscle [15].

ChREBP-deficient mice have impaired activation of glucose-

induced target genes as well as a number of dysregulated

metabolic phenotypes, including elevated plasma glucose

and liver glycogen levels and reduced adiposity [14]. More-

over, these mice survive poorly on high-sugar diets [14].

The Drosophila genome encodes only one orthologue for

ChREBP/Mondo A (Mondo), and disruption of its function

severely affects energy metabolism, rendering the fruit fly

highly intolerant to sugars and causing lethality in the late

pupal stage [16]. Because of the essential role of this transcrip-

tion factor in the Drosophila fat body [16,17], the counterpart

of mammalian liver and adipose tissue, it has been proposed

that the liver and adipose tissue-specific ChREBP, rather

than the muscle-specific Mondo A, represents the ancestral

function of the protein [16].

An important fact that has not been taken into consider-

ation for the study of ChREBP so far is that glucose is the

basic component of cellulose. Although cellulose is the

most abundant organic polymer on Earth, only few animals

can digest it. Among them are termites (Insecta: Blattodea:

Termitidae), whose ecological success stems partially from

their adaptation to use recalcitrant plant lignocellulose as

their primary food source through symbiotic associations.

Termites consume an estimated 3–7 billion tonnes of ligno-

cellulose annually, with 74–99% of the ingested cellulose

being hydrolysed [18]. Another factor contributing to the eco-

logical success of termites is the reproductive division of

labour between castes, a defining feature of all eusocial

insects [19,20]. Typically, once a year, winged imagoes (also

called alates) undergo a dispersal flight to become the pri-

mary reproductives (primary kings and queens) of newly

founded colonies, which in some species grow to contain

millions of individuals. Soldiers are permanently sterile and

defend the colony. Workers participate in cooperative tasks,

such as nest building, rearing of larvae, food collection and

feeding of dependent nest-mates. They transfer the food to

nest-mates by oral trophallaxis, and the diet transferred dif-

fers among sterile and reproductive individuals [21,22].

Many termite species, such as Prorhinotermes canalifrons (Rhi-

notermitidae; figure 1a), have an alternative reproductive

strategy involving secondary kings and queens (also called

neotenics). This reproductive option is open to immature

stages and castes, such as workers (stricto sensu pseudergates)

and nymphs, and is accompanied by the rapid development

of reproductive organs and onset of reproductive activities

following the moult of the immature termite.

In the honeybee, a specific diet and, more generally, the

nutritional status influence caste determination and behav-

ioural development [23,24]. The role of environment in

caste determination of termites has been assumed to be omni-

potent compared with exclusively genetic effects (but see

[25,26]). Secondary reproductives develop in response to

external stimuli, such as environmental factors (e.g. nutrition

or season [20,27]) and social contexts (pheromone exposure

[20]). In Nasutitermes sp. (Termitidae; figure 1b), the reproduc-

tive strategy is usually shifted towards the production of a

high number of winged dispersers by a highly fecund long-

lived physogastric (hypertrophied abdomen) primary queen

and her mate (the primary king) assisted by numerous per-

manent workers and soldiers. This sophisticated colony

organization, characterized by large, stable, well-defended

and provisioned nests, is primarily maintained through
pheromone communication that plays a major role in main-

taining reproductive monopoly by the queen. In three

eusocial insects (wasp, bumblebee and desert ant), a con-

served class of fatty-acid derived pheromones (saturated

hydrocarbons), overproduced by queens or fertile individ-

uals, functions as sterility-inducing pheromones and as a

signal of fecundity [28]. This reproductive inhibition prevents

workers from activating their ovaries and causes secon-

dary oocyte reabsorption (regression) [28]. In the termite

Cryptotermes secundus (Kalotermitidae), queen-specific phero-

mones act as a fertility signal to indicate queen presence and

to prevent nest-mates from reproducing [29].

Because termites use cellulose as their main carbohydrate

source, we hypothesized that this dietary specialization may

have placed a selective pressure on the ChREBP pathway in

termites. This prompted us to investigate the role of

ChREBP as a putative control factor involved in nutritionally

driven regulation of the phenotypic plasticity of termite

caste systems. We report here the caste-dependent expres-

sion pattern of ChREBP and its lipogenic target genes in

eight different termite species. We also describe ChREBP

expression during caste differentiation. Moreover, we show

the impact of the diet on ChREBP gene expression, and finally,

via a combination of a pharmacological approach and behav-

ioural assays, we identify ChREBP as a fertility-signalling

factor in termites.
2. Results
2.1. Carbohydrate-responsive element-binding protein

is a conserved lipogenic regulator upregulated in
termite queens

We performed a BLAST search using the mammalian ChREBP

coding sequences as bait, and this identified a single homolo-

gous gene in the two available published termite genomes:

Zootermopsis nevadensis [30] and Macrotermes natalensis [31].

To evaluate cross-species comparison, amino acid sequences

of ChREBP polypeptides from Homo sapiens, Mus musculus,
Drosophila melanogaster and Apis mellifera were aligned and

compared with those of the termite sequences. The compari-

son indicated an evolutionarily-conserved termite ChREBP of

1111 amino acids with a molecular weight estimated to be

112 kDa (electronic supplementary material, figure S1). The

structural organization of regulatory and functional domains,

such as the glucose-sensing module (GSM), was evolutionarily

conserved among all ChREBP orthologues [32]. Mammalian

(H. sapiens and M. musculus) and termite (Z. nevadensis and

M. natalensis) GSM ChREBP amino acid sequences exhibited

45–46% sequence identity.

Using Bayesian inference (BI) and maximum-likelihood

(ML) methods of tree reconstruction, we performed a phylo-

genetic analysis of the GSM amino acid sequences. The

alignment contained 331 amino acids from 45 sequences

from vertebrates (human and mouse), arthropods including

a xiphosuran, eusocial insects (bees, wasps, ants and termites)

and solitary insects (wasps, sawflies, beetles, bugs, flies, moths

and butterflies), and a mollusc. The two methods of phylo-

genetic reconstruction produced ChREBP trees with very

similar topologies (figure 2 gives the ML tree; see the electronic

supplementary material, figure S2 for the BI tree). The position
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of the termites was surprising, because this clade appeared as

the sister group of the Hymenoptera (ML tree, ML bootstrap

values , 80%), and part of a clade comprising Hymenoptera,

Coleoptera, Lepidoptera and Hemiptera (ML and BI trees, ML

bootstrap values less than 80% and Bayesian posterior prob-

abilities less than 0.95). In addition, termite ChREBP had an

independent and accelerated evolution attested by an isolated

clade with long branches.

Because of its high developmental plasticity, we investi-

gated ChREBP expression in P. canalifrons in detail. Initially,

we analysed ChREBP mRNA levels in all castes and develop-

mental stages, including eggs, in four colonies. Quantitative

real-time polymerase chain reaction (qRT-PCR) analysis

using specific primers showed that ChREBP was upregulated

in mature primary queens and in mature neotenic queens

compared with young primary queens, alate females, male

reproductives and sterile individuals (figure 3a). Prorhino-
termes canalifrons workers are totipotent and can rapidly

develop into male and female secondary reproductives (neo-

tenics) when the primary queen or king disappears [35].

When the primary queen and king were experimentally

removed, ChREBP mRNA levels increased during differen-

tiation of sterile workers into mature female reproductives,

but not into male reproductives (figure 3b). This suggested

that ChREBP might play a role in the regulation of caste

differentiation, specifically into the queen phenotype.

In Termitidae, and to a lesser extent in P. canalifrons, the

queen exhibits a prodigious fecundity due to a gradual

increase in the maturation of ovaries and continuous

growth over time. This exceptional growth of an adult

insect, known as physogastry, is unique to the termites [36].

We compared ChREBP expression in mature queens and ster-

ile workers of eight different species, and for each species we

found 10- to 50-fold increase in ChREBP expression in mature

primary queens compared with their workers (figure 3c).
Furthermore, the difference in ChREBP expression observed

between young and mature queens represents a clear link

between ChREBP and fertility, since young primary queens

(4 months old) were only slightly physogastric, while

mature primary queens (4 years old) had reached maximum

physogastry (figure 3a). In addition, in all other termite

species studied, the highest ChREBP expression was detected

in the most physogastric and hence the most fertile queens

based on the observed number of ovarioles (data not shown).

By western blotting, we next quantified ChREBP protein

levels in P. canalifrons using a commercial antibody generated

against the human ChREBP peptide. As seen in the electronic

supplementary material, figure S3, indeed this antibody

showed a high specificity for the ChREBP termite protein.

Consistent with the mRNA profile, the ChREBP protein

was detectable in protein extracts from queens (figure 3d ),

and we also detected the protein at the cellular level using

high-resolution panoramic colourimetric and immunohisto-

logical imaging (figure 4). ChREBP was observed in the

cytoplasm and in nuclei (figure 3e) of different metabolic tis-

sues, but was absent in muscles (figure 4). The absence of

ChREBP in muscle tissue is consistent with the proposed

hypothesis [16] that ChREBP represents the ancestral function

of the ChREBP/Mondo A proteins. We detected ChREBP at

high levels in germ cells, in oocytes at the beginning of vitel-

logenesis, and in somatic follicular cells (according to the

nomenclature of Grandi [37,38]; figure 4). Furthermore, we

detected ChREBP in certain cells of the villus of the crypt

of the midgut and hindgut, and in Malpighian tubules

(figure 4). The presence in the midgut may be particularly

important, because this is where glucose is released during

lignocellulose digestion [39]. Apart from the ovaries and

the gut, ChREBP was detected in neurons of the protocereb-

rum and in ventral ganglions (figure 4). Finally, we observed

expression of ChREBP in adipocytes of the fat body (figure 4),
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which is a functional counterpart to the mammalian adipose

tissue and liver, which controls development, differentiation

and metabolism by secretion of humoral factors [40]. In ter-

mites, the structure and the function of this complex tissue

vary according to caste, sex and age [36,41]. Dramatic physio-

logical modifications of adipocytes in fertile physogastric

queens have previously been described at the structural

level, when the imaginal adipocytes are transformed into

royal adipocytes [36,42]. It should be noted that ChREBP

mRNA levels determined in different tissues of Drosophila
third instar larvae [16], and its enrichment reported in fat

bodies of adult flies [43] were correlated with our protein cel-

lular localization.

The localization of ChREBP in termite queen tissues, its

function in sugar tolerance in the Drosophila fat body [16]

and its role in the coordination to increase fat mass by
regulating lipid synthesis [17] strongly suggest that

ChREBP may be involved in the regulation of lipogenesis in

mature termite queens. This hypothesis is consistent with

the upregulation of mRNA levels of two genes coding for

lipogenic enzymes, ACC and FAS (figure 3f ), which are

ChREBP target genes necessary for de novo synthesis of

fatty acids [2,5,7,9].
2.2. Carbohydrate-responsive element-binding protein is
regulated by a carbohydrate diet in termite queens

Based on the conserved structural organization of the func-

tional domains on ChREBP, and the conserved regulation

in mice [44,45] and Drosophila [46], where ChREBP mRNA

levels increase when animals are fed high-carbohydrate
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diets, we decided to explore how ChREBP is regulated in

relation to carbohydrate intake by P. canalifrons female neoten-

ics and Nasutitermes sp. queens compared with workers.

Indeed, we found a two to threefold increase in ChREBP

mRNA levels in queens that were re-fed carbohydrates, in con-

trast to no changes in ChREBP mRNA levels in workers

(figure 5); this increase in ChREBP expression in queens, in

turn, leads to increased mRNA levels for genes encoding

fatty-acid synthetic enzymes, such as FAS (figure 5).
2.3. Inhibition of fatty-acid synthesis in queens induces
head-butting in workers, an early indicator of
reproductive disinhibition

In order to test one of the hypothesized downstream effects of

ChREBP, i.e. the regulation of synthesis of pheromones

produced by mature queens to signal fertility, we combined

a pharmacological approach and behavioural assays in
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mRNA in queens. Expression of ChREBP mRNA and its FAS target gene (qRT-
PCR analysis) in female neotenic reproductives compared with workers in
P. canalifrons (a) and in primary queens compared with workers in Nasutitermes
sp. (b). Values are means+ s.e. (error bars) of 3 – 10 termites from three
independent experiments. Significant differences from fasted are indicated
with asterisk (*p , 0.05).
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P. canalifrons. In the absence of the fertility signal, e.g. in

queenless colonies, secondary queens rapidly replace

former queens. The lack of the queen pheromone signal

and the resulting disinhibition of the reproductive potential

in sterile immatures is evident from behavioural modification

in prospective queens, as dominant workers likely to soon

become the new reproductives increase head-butting

[29,35,47]. To experimentally mimic the loss of the primary

queen, we used 5-tetradecyloxy-2-furoic acid (TOFA), which

inhibits fatty-acid synthesis of malonyl-CoA by ACC

[48,49]. This modifies queen physiology and she is perceived

by nest-mates as being absent. Butting behaviour among

workers significantly increased when queens were fed

TOFA (frequency of butting ¼ 102+ 10 (mean+ s.e.; n ¼
30)) compared with controls (21+ 2; mean+ s.e.; n ¼ 30;

p , 0.05; Mann–Whitney U-test). This effect was absent

when kings were fed TOFA (27+ 3 versus controls 13+ 2

(mean+ s.e.; n ¼ 30; p ¼ 0.81; Mann–Whitney U-test).

Thus, activation of the ChREBP target gene ACC appears to

be necessary for a queen to be perceived as a queen and to

suppress the reproductive potential of sterile nest-mates.
3. Discussion
We have shown that the transcription factor ChREBP, an evo-

lutionarily conserved glucose sensor that regulates gene

expression to drive fatty-acid biosynthesis in mice and in the

fruit fly, has a unique expression profile in termites, which

are the oldest social insects. ChREBP is highly expressed in

mature reproductive females of eight different termite species,

compared with reproductive males and sterile worker and

soldier individuals. ChREBP expression is increased in

P. canalifrons workers, which become reproductive females,

and when the ChREBP pathway is experimentally silenced
dominant workers engage in head-butting behaviours as

part of establishment of who takes over the reproduction.

Collectively, these findings, in combination with the tissue

localization of ChREBP expression in fat bodies and ovaries,

strongly suggest that ChREBP is involved in fertility signalling

and maintenance of reproductive dominance by the resident

queen. We further document that dietary carbohydrates in

the abdomen of mature female reproductives affect queen

physiology, by inducing ChREBP expression and thus its

lipogenic target genes.

Termites use cellulose as their main carbohydrate source,

and glucose metabolism and its regulation are especially

important as a signal of prodigious fecundity in reproductive

females. Indeed, glucose acquired through adult feeding is

especially important for females of longer lived species,

who have to mature eggs throughout their adult life [50,51].

Recently, Foster et al. [52] demonstrated that adult-acquired

carbohydrates are a major precursor (acetyl CoA) via incor-

poration into haemolymph trehalose and subsequent

glycolysis for sex pheromone production in moths. In

adults of D. melanogaster, lipid homeostasis influences phero-

mone production, since fat-body gene inactivation encoding

lipid metabolic effectors, such as FAS, decreases the

amount of pheromones [53,54]. In three eusocial insects, a

conserved class of fatty-acid derived pheromones (saturated

hydrocarbons) is overproduced by queens or fertile individ-

uals and acts as sterility-inducing queen pheromones and

as a signal of fecundity [28]. In termites, colony cohesion,

expressed as queen reproductive monopoly, is maintained

via the production of fatty-acid derived pheromones that

operate as fertility signals to indicate the queen’s presence

and to prevent nest-mates from reproduction [29]. Using

TOFA, an inhibitor of fatty-acid synthesis that functions by

blocking the synthesis of malonyl-CoA by ACC, we demon-

strated that the inhibition of fatty-acid synthesis of queens

causes behavioural changes of workers with an increase of

butting. Butting is associated with reproductive dominance,

and workers that go on to replace the queen display more

butting than workers that do not change caste [29,47]. This

indicates that mature reproductive females produce phero-

mones derived from de novo fatty acids for suppression of

worker head-butting behaviours, and we present substantive

evidence supporting the fact that ChREBP is important in the

production of these mature reproductive female signals

because ACC is a target gene of ChREBP. This suggests that

the activation of ChREBP, at least driven in part by carbo-

hydrates, is necessary for the maintenance of reproductive

dominance of the termite queen. This links the fertility net-

work with the chemical communication pathway; however,

the full pathway leading to the increase in ChREBP in

mature female reproductives remains to be identified.

In all animals, digestion and absorption of carbohydrates

in the diet induces profound hormonal changes, such as in

the concentration of insulin. In most insects, including ter-

mites, two major hormones are essential to elicit major

behavioural and physiological events. Juvenile hormone

(JH) controls metamorphosis in immature insects [55–58]

and maturation of reproduction in adult insects [59,60]. In

adult females, JH levels are regulated in response to the

intake of sugars [61] and JH interacts with insulin signalling

[62,63]. The second hormone, ecdysone, is produced during

adulthood primarily in the ovaries and accumulates at high

levels in females, but not in males [64,65]. In flies, for
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example, ovary development results in the release of

20-hydroxyecdysone, which causes the production of

cuticular hydrocarbon sex pheromone [66]. In the termite

Zootermopsis (Archotermopsidae), JH and ecdysteroid titres

were measured during ovarian maturation in young repro-

ductive females following their release from inhibitory

stimuli produced by mature queens. Four days after disinhi-

bition, JH released by corpora allata and its titre in

haemolymph decreased while ecdysteroid titre increased.

Fully mature queens had the highest rate of JH production,

the lowest ecdysteroid concentrations and the highest

number of functional ovarioles [59]. Interestingly, in Droso-
phila, the sterol regulatory element-binding protein, a key

regulator of lipid synthesis that functions in synergy with

ChREBP to control lipogenic target genes [67], is activated

by ecdysone to control oocyte lipid accumulation [68]. As

ChREBP is expressed in somatic follicular cells and in the

fat body (where JH induces the synthesis of the main precur-

sor of egg yolk, i.e. vitellogenin), it is tempting to speculate

that ChREBP could be regulated by JH and/or ecdysteroids

in termites. This hormonal signalling may explain the caste

and sex specificity in ChREBP gene expression.

In conclusion, ChREBP is a transcription factor upregu-

lated in mature queens that, through a carbohydrate-rich

diet, links nutritional status and endocrine control with the

reproductive status of queens through the regulation of

lipid metabolism. Our preliminary results also suggest that

regulation of the lipid metabolism might be important in con-

trolling termite phenotypic plasticity. The conservation of

ChREBP in all termite species studied suggests that

ChREBP has remained an important regulator over the

course of millions of years of termite evolution.
4. Material and methods
4.1. Termites
In 2001, colonies of P. canalifrons (Rhinotermitidae) contain-

ing hundreds of individuals each were collected with pieces

of wet wood on the Réunion Island in the Indian Ocean.

Colonies were brought to the laboratory and reared at 288C,

80% relative humidity and a 12 L : 12 D regime. Degraded

birch wood was used as food. Cross-breeding of emerging

alates was done in 2010 and in 2014, so that primary

queens used in this study were 4 years or 4 months old,

respectively. Colonies from Termitidae termite species (Apar-
atermes sp., Anoplotermes sp., Cavitermes sp., Neocapritermes
taracua, Embiratermes sp., Labiotermes labralis and Nasutitermes
sp.) were collected in French Guiana in March 2014. After

removing their legs and antennae, individuals were put

directly in RNAlater (Life Technologies) and maintained at

2208C.

4.2. Phylogenetic and amino acid alignment analyses
We obtained 45 amino acid sequences of ChREBP (also called

‘Mondo B’, ‘WBSCR14’, ‘MLXIPL’ or ‘MLX interacting

protein-like’) for two vertebrates (human and mouse), one

mollusc and 42 arthropods (wasps/sawflies, ants, bees, bee-

tles, bugs, flies, moths, butterflies and a horseshoe crab) and

amino acid sequences of Mondo A for two vertebrates

(human and mouse) from the database at NCBI. Sequence
searches were performed using ‘ChREBP alpha’, ‘WBSCR14’,

‘MLXIPL’, ‘MLX interacting protein-like’, ‘MondoB’, ‘Mondo’,

‘dMondo’, ‘dChREBP’ and ‘Mio’ keywords.

Amino acid sequences from the termites Zootermopsis
nevadensis [30] and Macrotermes natalensis [31] and from the

NCBI protein database were aligned using two different

algorithms, Muscle and ClustalW2, with the SEAVIEW software

[69], and the alignment was checked manually. ChREBP is a

multi-domain protein and some of its regions are highly con-

served among the Mondo proteins, such as the Mondo

conserved region (MCR) and the glucose-sensing module

(GSM) that is the most important region in terms of glucose

sensing and regulation [16,32]. Owing to its high conserva-

tion and structural role in the glucose response, only the

GSM region was used in the phylogenetic study and align-

ment was trimmed according to the Mus musculus GSM

region boundaries (accession no. NP067430) [16].

The best model of evolution was selected using PROTTEST

v. 3.3 software [70] and following the corrected Akaike

Information Criterion. The best model of evolution identied

by PROTTEST was JTT þ G (Jones Taylor Thornton model

[71]). ML analyses were performed by PHYML [72] using

an input tree generated by bioNJ, the JTT þ G model of

amino acid substitution and 1000 repetitions of bootstraps.

BI analyses were performed by running two parallel analyses

in MRBAYES [73], each consisting of four Markov chains of 1

000 000 generations, each with a sampling frequency of one

tree every one thousand generations and the JTT þ G

model of amino acid substitution. Convergence of the par-

ameters was evaluated using TRACER v. 1.5.0 [74].

A consensus tree was then calculated after omitting the first

25% trees as burn-in.

4.3. Gene expression analysis
Total RNA was extracted from 3 mg of nitrogen-frozen

crushed individual termites and purified using miRNeasy

Micro kit (Qiagen) and RNAse-free DNAse according to

the manufacturer’s instructions (Qiagen). Reverse transcription

was performed with 500 ng of total RNA using the iScriptTM

cDNA synthesis kit according to the manufacturer’s protocol

(Bio-Rad). Quantitative PCR was performed with 5 ng of

reverse-transcribed total RNA, 0.5 mM of each primer (Euro-

gentec) in 1� Power SYBR Green PCR Master Mix (Life

Technologies) using LightCycler StepOnePlus (Applied Bio-

systems). All samples were normalized to the threshold cycle

value for actin mRNA, chosen as an invariant control [75].

Primer sequences will be provided on request. Amplifications

of ChREBP, actin, ACC and FAS genes were checked by

sequencing one unique amplified fragment per gene.

4.4. Western blotting and enhanced chemiluminescence
detection

Termites, mice liver and adipocyte total extracts (40 mg each)

were prepared using lysis buffer as described elsewhere [76].

Protein concentration was determined using the Bio-Rad

Protein Assay. Proteins (50 mg) were subjected to SDS-

PAGE analysis on 10% gels and transferred to nitrocellulose

membranes. ChREBP proteins were detected with rabbit

polyclonal antibody raised against a peptide mapping at

the C terminus of ChREBP of human origin (1 : 5000 dilution
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of ab81958; 1 mg ml21; Abcam). Liver and total fat protein

extracts from glucose re-fed mice were used as positive con-

trols of the experiments and efficiency of the antibodies

(relative molecular weight 95 kDa). Blots were developed

with ECL SuperSignal West Pico chemiluminescent reagents

(Pierce).

To determine the specificity of binding of ChREBP anti-

body to ChREBP termite protein, P. canalifrons ChREBP

cDNA was generated from queen poly(A) RNA and cloned

in pT7CFE1-CHis vector (Thermoscientific). The protein was

synthesized using in vitro TNT T7 Quick Coupled Transcrip-

tion/Translation in Reticulocyte Lysate System (Promega)

and analysed by western blotting. In vitro translated proteins

(2 ml) were subjected to SDS-PAGE analysis on 12% gels and

transferred to nitrocellulose membranes. In vitro synthesized

ChREBP proteins were detected with rabbit polyclonal anti-

body raised against a peptide mapping at the C terminus of

ChREBP of human origin (1 : 5000 dilution of ab81958;

1 mg ml21; Abcam). We realized an immunizing peptide

blocking experiment as recommended by Abcam. ChREBP

antibody is neutralized, i.e. incubated with five to eight

times excess blocking peptide (ab210715; 1 mg ml21; Abcam)

that corresponds to the epitope recognized by the antibody,

to antibody by weight during hybridization overnight at

48C. Blots were developed with ClarityTM Western ECL

Blotting Substrate on ChemiDoc MP (BioRad).

4.5. Immunohistochemistry
Prorhinotermes canalifrons and Nasutitermes sp. mature queens

were fixed for 24 h in 4% paraformaldehyde and embedded

in paraffin. Serial sections (4 mm) were immunostained for

ChREBP overnight at 48C using rabbit polyclonal anti-

ChREBP antibody (1 : 500 dilution of ab81958; 1 mg ml21;

Abcam) followed by a fluorescein isothiocyanate-conjugated

goat anti-rabbit secondary antibody (1 : 300; eBioscience). Sec-

tions were mounted using Vectashield mounting medium

with DAPI (40-6-diamidino-2-phenylindole; Vector Labora-

tories), scanned using the Pannoramic Lamina multilabel

slide scanner (Perkin Elmer) and observed with PANNORAMIC

VIEWER and IMAGEJ. To determine the specificity of binding of

ChREBP antibody to ChREBP termite protein, we also

realized immunizing peptide blocking experiments, as rec-

ommended by Abcam, on sections of P. canalifrons and

Nasutitermes sp. mature queens. Before proceeding with the

staining protocol, ChREBP antibody (1 : 500 dilution of

ab81958; 1 mg ml21; Abcam) is neutralized, i.e. incubated

with five times excess blocking peptide (ab210715;

1 mg ml21; Abcam) that corresponds to the epitope recognized

by the antibody, to antibody by weight overnight at 48C.

4.6. Feeding experiments
Physogastric queens, kings and 100 workers of Nasutitermes
sp. and physogastric neotenic female reproductives, neotenic

male reproductives and 30 workers of P. canalifrons from

six colonies per species were placed in Petri dishes

on humidified sand, fasted for 24 h, and then fed for 24 h

(Nasutitermes sp.) and 30 h (P. canalifrons) with a piece of

wood impregnated with 10% glucose. Individuals were

weighed before to start the experiment and after the diet

protocol to observe losses and/or gains of weight. Nitrogen-

frozen crushed female neotenic and queen abdomen and
worker extracts were prepared and analysed for actin,

ChREBP and FAS mRNA levels.

4.7. Effect of 5-tetradecyloxy-2-furoic acid on behaviour
Physogastric secondary queens and kings of P. canalifrons
from three colonies were isolated in Eppendorf tubes pierced

with numerous small openings and filled with humidified

sand. Each tube was placed in a Petri dish (ø ¼ 5 cm) contain-

ing 30 workers from the same colony. This set-up allowed

antennation among workers and the diffusion of volatiles

emitted by the reproductives into the Petri dish. Reproduc-

tives were fed for 3 days with 0.5 cm2 square paper

(Whatman 3MM) loaded with 10 ml of TOFA (99% purity;

Santa Cruz Biotechnology) suspended in ethanol at a con-

centration of 3 mg ml21 or with 10 ml of ethanol for control

experiments. It is known that TOFA is converted into 5-tetra-

decyloxy-2-furoyl-CoA exerting an allosteric inhibition on

ACC that prevents fatty-acid synthesis in adipocytes and hep-

atocytes [48,49]. Workers in the Petri dishes had access to

non-treated Whatman 3MM paper only. Nile blue dye

allowed us to validate the feeding efficiency as previously

reported [75]. Queens and kings started to feed approxi-

mately 15 h after the introduction of the square paper,

which was weighed 1 and 3 days after introductions. Prior

to these experiments, we verified the viability of reproduc-

tives in response to TOFA concentrations; no mortality was

observed. Three days after the introduction of the paper,

we measured the frequency of head-butting interactions

among workers (as defined in [47]) in each dish by recording

for 30 min with a Sony DCR-SR90 camera.

A control experiment, adapted from Penick et al. [47], was

conducted using three colonies to obtain a reference of butting

behaviour in this termite species in queenright and queenless

conditions. Briefly, we allowed one queen with 60 workers

to acclimate for three days to the new nest conditions (Petri

dish with Whatman 3MM paper). Then, 30 workers and the

queen were placed in one dish while the other 30 workers

were placed in another dish for 20 h without the queen. Sub-

sequently, head-butting events among workers were

recorded for 30 min. Removing queens from colonies resulted

in a significant increase in butting behaviour among workers

in queenless (40+10; mean+ s.e.; n ¼ 30) compared with

queenright (10+3; mean+ s.e.; n ¼ 30; p , 0.04, Mann–

Whitney U-test) conditions, similar to what has been observed

in Z. nevadensis [47] and Cryptotermes secundus [77].

To determine if inhibition of fatty-acid synthesis by TOFA

caused a change in other semiochemical profiles of the workers,

we recorded trail-following pheromone bioassays as described

previously [78]. We observed no significant differences

between worker behaviour when queens were fed with

TOFA or ethanol or when kings were fed with TOFA or ethanol

(electronic supplementary material, table S1). In the light of the

phenotype observed in ACC gene knockout Drosophila [53], we

dissected several reproductives and used binocular scopes to

determine cuticular defects, but none were observed.

4.8. Developmental experiments
Nine groups of 20 old workers of P. canalifrons were collected

from three colonies and kept in three Petri dishes containing

humidified sand and supplied with pieces of birch wood. The

groups were monitored daily. Three weeks of absence of
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reproductives induced development of new reproductives,

male and female neotenics, in all nine experimental groups.

Eggs were observed in all groups as well. Total RNA was

extracted and purified from individual termites and

ChREBP expression was quantified as reported above.

4.9. Statistics
Quantitative results are expressed as means+ s.e. The com-

parison of different groups was carried out using unpaired

two-tailed Student’s t-test. For statistical analyses with non-

normal distributions or unequal variances, analyses were

carried out using Mann–Whitney U-test. Differences were

considered statistically significant at p , 0.05.
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