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ABSTRACT

While transcription factors (TFs) are known to reg-
ulate the expression of their target genes (TGs),
only a weak correlation of expression between TFs
and their TGs has generally been observed. As lack
of correlation could be caused by additional lay-
ers of regulation, the overall correlation distribu-
tion may hide the presence of a subset of regu-
latory TF–TG pairs with tight expression coupling.
Using reported regulatory pairs in the plant Ara-
bidopsis thaliana along with comprehensive gene
expression information and testing a wide array of
molecular features, we aimed to discern the molec-
ular determinants of high expression correlation of
TFs and their TGs. TF-family assignment, stress-
response process involvement, short genomic dis-
tances of the TF-binding sites to the transcription
start site of their TGs, few required protein-protein-
interaction connections to establish physical inter-
actions between the TF and polymerase-II, unam-
biguous TF-binding motifs, increased numbers of
miRNA target-sites in TF-mRNAs, and a young evo-
lutionary age of TGs were found particularly indica-
tive of high TF–TG correlation. The modulating roles
of post-transcriptional, post-translational processes,
and epigenetic factors have been characterized as
well. Our study reveals that regulatory pairs with
high expression coupling are associated with spe-
cific molecular determinants.

INTRODUCTION

The regulation of gene expression is one of the most essen-
tial processes in the control of cellular functions and devel-
opment. Largely driven by technological advances, but also
because of the central biological importance of transcrip-
tional regulation, transcriptional information has become
the main type of information collected in many experiments,
which has led to a widespread availability of comprehensive
publicly available datasets generated for many cell-types, tis-

sues, and organisms exposed to many different experimental
conditions.

In the analysis of the generated expression data, the in-
ference of gene regulatory networks (GRNs) is a central
goal, i.e. discerning the interplay between transcription fac-
tors (TFs) and the genes they regulate, their target genes
(TGs), based on gene expression information. Many com-
putational approaches to predict regulatory connections
have been developed (for review, see (1–4)) that apply a
wide range of mathematical and computational methods
(5,6), combinations thereof (7), as well as approaches that
include prior biological knowledge about genes and their in-
teractions at the level of proteins and mediated via metabo-
lites (8,9). However, the results obtained so far proved far
from perfect, neither for eukaryotic organisms, such as Sac-
charomyces cerevisiae or Arabidopsis thaliana (7,10), where
gene expression regulation is thought to be under multi-
layer control and, therefore, challenging to predict, nor for
prokaryotic organisms such as Escherichia coli (7,11), where
regulatory processes are believed to be less complex. The
unsatisfactory performance could be caused by algorith-
mic limitations of the statistical inference methods (12), or,
more principally, by the absence of a direct association of
expression between regulating, TFs, and regulated genes,
TGs. When attempting to infer GRNs from gene expression
data, we assume that changes of the expression of genes en-
coding TFs are followed by expression changes of the TGs
they regulate. Hence, a correlated gene expression profile,
temporal or across different conditions, should logically fol-
low, which, in reverse, can be exploited to infer regulatory
interactions from expression data. Indeed, in the prokaryote
E. coli, experimentally verified regulatory gene pairs show
higher gene expression correlation levels between TFs and
their TGs than between TFs and non-TGs (13). However,
when probed in eukaryotes, where additional layers of gene
expression regulation have evolved, the correlation of ex-
pression between TFs and their known TGs proved to be
only slightly higher than the expression correlation between
TFs and randomly selected genes (7).

As TFs exert their function as proteins and not as tran-
scripts, their function can be modulated by many factors,
which could act independently of the expression of TFs,
such as the rate of translation and protein degradation,
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regulation by post-translational modifications (PTMs), and
interactions with other proteins required to initiate tran-
scription (14). It can be also modified by properties and
functional states of the promoter sequence of the respec-
tive TGs, e.g. the openness of chromatin, epigenetic mark-
ers, or presence of other TFs, which bind to this DNA re-
gion (15,16). Those processes in-between the expression of
TFs and their resulting activity, leading to the activation
or repression of a TG, can heavily influence on the func-
tional significance of expression correlation levels between
TFs and their TGs, even uncoupling correlation and func-
tional relevance completely, and for principal reasons. This
may mean that for the principal reasons described above,
no consistently strong expression-based signal that sepa-
rates true from false TF–TG pairs is discernible in higher
organisms, such that inferring GRNs from expression data
alone would essentially be a futile exercise. However, it is
also possible that the small, but nonetheless discernible shift
towards increased correlation values among true vs. false
pairs is associated with a subset of TF–TG pairs exhibit-
ing relatively tight correlations, which can furthermore be
associated with specific gene-related or genome structural
properties.

Here, we address the question whether for experimen-
tally verified TF–TG pairs, those that exhibit high expres-
sion correlation are characterized by specific gene-related or
genome structural properties that are different from those
TF–TG pairs that appear uncorrelated. Alternatively, our
study may reveal that no such set differences exist and
that the small, but detectable shift to increased correlation
among true versus false regulatory pairs is merely a general
signal that is weakened by the many influencing factors dis-
cussed above. Furthermore, our study goal also allows us to
estimate the extent of direct transcriptional regulation and
to assess the importance of additional layers of gene expres-
sion regulation that may obscure expression correlation.

We performed our analysis in the well characterized plant
A. thaliana, for which a thoroughly curated genome, broad
expression information obtained for different developmen-
tal stages, stress conditions and other experiments, and, crit-
ically for this study, a dataset of candidate true TF–TG
pairs is available. The recently published (Plant Cistrome
Database (PCD), (17)) contains information about exper-
imentally identified TF–genomic–DNA binding events and
associated binding-sites (TFBSs) for 386 selected TFs of A.
thaliana, and thus, knowledge about TFs and their likely
TGs. Therefore, it provides the basis to systematically probe
the expression correlation of TFs and their candidate TGs
in A. thaliana, with the goal to determine whether there are
indeed characteristic molecular properties for expression-
correlated versus uncorrelated pairs, respectively. As for
molecular properties, we considered a wide array of ge-
nomic (e.g. sequence composition, positional information
of TFBSs relative to the transcription start site (TSS) of
genes), genome structural (e.g. distances between genes),
higher levels of gene expression regulation (e.g. PTMs,
protein–protein interactions, chromatin state), and evolu-
tionary parameters (‘age’ of genes). Each considered prop-
erty was added based on a specific rationale potentially link-
ing it to gene expression regulation. For example, it is pos-
sible that TF-transcripts and -proteins are always present

at constant levels in cells, but the TF-proteins are activated
and deactivated via phosphorylation status changes by ki-
nases and phosphatases acting on them. In that case, no
expression correlation signal between those TFs and their
TGs is to be expected. As a surrogate to address this ques-
tion, we tested the number of potential phosphorylation
sites on TFs to serve as a criterion that may distinguish
correlated (few phosphorylation sites) from uncorrelated
(many phosphorylation sites) TF–TG pairs. Similarly, genes
involved in essential housekeeping functions may always be
expressed at relatively constant levels and, therefore, show
reduced levels of correlation with TFs, while genes linked to
response-to-environment processes may exhibit a larger dif-
ferential dynamic range and hence increased correlation. As
the former may be evolutionarily older with response genes
evolving later in evolution, we tested for the role of evolu-
tionary age of genes. As it has been shown before that ge-
nomic features such as length of a gene or distance to the
next upstream gene is correlated with differential gene ex-
pression behavior (18), we tested for their relevance with
regard to pairwise correlations. This study was also moti-
vated by our initial observations that unexpectedly, partic-
ular TF-families are significantly enriched in the set of cor-
related TF–TG pairs. And as the assignment of TFs to be-
long to a particular family must have molecular correlates
or may reflect specific modes of gene expression regulation,
we wished to discern those.

To identify informative molecular determinants and
hence learn about regulatory mechanisms, we performed
univariate statistical tests on the set of selected candidate
features deemed relevant in the modulation of gene expres-
sion (135 in total) and trained a machine learning (ML)
model (Random Forest Classifier) to discern multivariate
effects as well as to unravel interactions between the selected
features, and to gauge the predictability of correlation given
prior information. The ML-model proved indeed capable of
distinguishing highly correlated from non-correlated TF–
TG pairs. By discussing the discerned informative features
with regard to possible mechanistic relevance, our study
sheds light on the orchestration of transcriptional regula-
tion in eukaryotes as represented by the plant A. thaliana.

MATERIALS AND METHODS

Transcription factor (TF)–target gene (TG) pairs, DAP-seq
data

The set of true interactions of transcription factors (TFs)
and their target genes (TGs) was defined as the set of
physical interactions and associated genomic positions as
reported in the PCD (17). This database provides infor-
mation on TFs binding to genomic DNA obtained from
DNA affinity purification assays combined with sequenc-
ing (DAP-seq) for 386 A. thaliana TFs. TF-binding sites
(TFBS) were obtained by scanning the reported peak re-
gions from DAP-seq experiments, with binding motifs pro-
vided as position weight matrices (PWM) for every TF in
the PCD reported in O’Malley et al. (17) and using the ‘TF-
BSTools’ package available from the Bioconductor reposi-
tory, with the background nucleotide composition obtained
for each TFs from PCD and with a minimal score thresh-
old set to 80%, which represents the quantile between the
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minimal and the maximal possible value from the respec-
tive PWM (19). Genes were considered targets of a TF, if
an associated DAP-seq peak with a correspondingly present
TFBS was found located in the respective gene promoter re-
gion. Gene promoters were defined as the genomic interval
of –500 bp to –1 bp from the transcription start site (TSS)
of a gene, consistent with the reported effective promoter
length in A. thaliana (20). The location of respective TSSs
was taken as the annotated transcription start site according
to the TAIR-10 (21) annotation file. Genes without anno-
tated 5′UTR sequences (7679 genes, including 59 TFs with
5′UTR sequence length of zero) have been removed from
the set of considered TFs and TGs to avoid false promoter
and TSS annotations. In total, the dataset comprised 280
655 TF–TG pairs, created between 290 TFs and 15 852 TGs
with respectively available expression information (presence
on ATH1-chip, see below). Distances between TFBS and
TSS were computed with bedtools’ ‘closest’ command (22),
which determines the respective closest distance to a TSS of
neighboring genes, regardless of direction.

Expression data

As the primary source of expression information, data were
obtained from a set of 5296 hybridizations on Affymetrix
ATH1 expression microarrays, as available from NASC
database (http://arabidopsis.info/affy). Natural logarithm
of all expression values was calculated for the 15 852 genes
that are part of the DAP-seq set, have annotated 5′UTR,
and are present on the expression microarrays. Mapping
of ATH1-mircoarray identifiers to AGI-identifiers was re-
quired to be unique. Expression data were further nor-
malized by quantile normalization using the ‘normal-
ize.quantile’ routine from the ‘preprocessCore’ R package
(23).

Expression data using the RNA-seq technique was ob-
tained from TravaDB (24) for 158 biological samples. Reads
per kilobase per million mapped reads (RPKM) was ob-
tained for each of 33 323 genes for all 158 samples, and log-
transformed (log(RPKM + 1) to render them normally dis-
tributed.

Correlation of expression and active TFs selection

Pairwise Pearson correlation coefficients were calculated
between the expression values of all 5296 microarray hy-
bridizations values associated with the 290 TFs present in
the PCD and the 15 852 genes present in the expression
microarray dataset. From the matrix of correlation coeffi-
cients, we selected the correlation coefficients of the 280 655
pairs, which were reported in the PCD as candidate regu-
latory pairs, i.e. pairs of TFs and TGs with the respective
TFBS present in their promoter regions and with a proper
annotation of the 5′UTR. The set of those 280 655 TF–TG
pairs was taken as the set of true regulatory pairs. For com-
parison, correlation coefficients for TFs and non-TGs pairs
were computed for each TF and randomly selected genes,
which were not assigned as TGs in the PCD for the selected
TF and were present in the expression dataset. The num-
ber of non-TG pairs for each TF was chosen to match the
number of true TGs pairs for this TF.

For every TF, Pearson correlation coefficients of the ex-
pression of all its TGs (all-against-all) were calculated,
along with the correlation of expression of the same number
of pairs of non-TGs for this TF. If the number of TGs of the
TF was larger than 3000, we used a subset of 3000 TGs ran-
domly selected from the set of all TGs associated with the
selected TF. Of the set of 290 TFs, TFs were designated ‘ac-
tive’, if the average of the pairwise correlation of the associ-
ated TGs was above a threshold value of 0.013 (Figure 1B),
leaving 157 active TFs for analysis. This threshold was de-
termined as the 97.5th percentile of random non-TGs pair
averages over all TFs. From the set of all 280 655 pairs, 104
369 pairs with active TFs were selected. Pearson correla-
tion coefficients were calculated with the function ‘cor’ from
‘stats’ R-package (25).

To compare results obtained from two different expres-
sion profiling techniques, microarrays and RNA-seq, we as-
sessed the concordance of TF–TG correlation by calculat-
ing the correlation between TF–TG-pair-correlation values
obtained for both techniques. A subset of 15 838 TGs and
280 TFs was present in both sets. For the associated set of
268 090 TF–TG pairs, we calculated their Pearson corre-
lation coefficients in the two expression datasets. With the
Pearson correlation coefficient assigned for each pair calcu-
lated from both expression datasets, we computed the Pear-
son correlation between those coefficients for all TF–TG
pairs.

TF-family assignments and enrichment analysis

TF-family assignments of all TFs were obtained from
PlnTFDB (26). The 157 active TFs represented in the PCD
were found to belong to 24 families (Table 1) out of the to-
tal of 82 families present in the PlnTFDB (26). Tests for
TF-family enrichment were performed with the Fisher ex-
act test. One-tailed Fisher exact P-values corresponding to
the significance of overrepresentation of TFs belonging to
the selected TF-family have been calculated based on counts
in 2 × 2 contingency tables. Counts n11, n12, n21 and n22
in the contingency table refer to n11, number of correlated
TF–TG pairs with TFs of a given TF-family; n12, number
of correlated pairs with the TFs of other TF-families; n21,
number of uncorrelated pairs with the TFs of the particu-
lar TF-family; n22, number of uncorrelated pairs with the
TFs of other TF-families. Listed P-values correspond to
multiple testing-corrected Fisher exact P-values using the
Benjamini–Hochberg method, referred to as False Discov-
ery Rate (FDR) throughout this article (27).

GO enrichment analysis

Gene ontology (GO) annotation information, GO-slim pro-
cess categories, was obtained from TAIR-10 database (21).
Tests for GO-term enrichment were performed with the
Fisher exact test as described above, but with GO-term-
counts replacing TF-family-counts.

Collected sets of features associated with expression regula-
tion

TF and TFBS information.

http://arabidopsis.info/affy
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Table 1. List of TF-families enriched in correlated and uncorrelated TF–TG pairs for the set of active TFs

TF-family
Number of active
TFs in TF-family

Number of TF–TG
pairs created with
active TFs from

TF-family
Number of all TFs

in TF-family
Fisher exact test,

pFDR Odds ratio

TF-families enriched in correlated TF–TG pairs
WRKY 21 10 534 72 0.00E+00 3.74
TCP 5 531 24 4.83E-25 3.29
MYB 18 5627 147 5.54E–18 1.49
HB 5 1746 91 5.05E–04 1.31
E2F-DP 2 229 8 7.51E–03 1.70
NAC 5 1261 104 9.04E–03 1.26
TF-families enriched in uncorrelated TF–TG pairs
AP2-EREBP 39 8590 146 1.38E–158 0.21
C2C2-Dof 5 3258 36 9.85E–43 0.31
bZIP 14 5510 70 1.45E–41 0.44
BBR/BPC 1 897 7 1.14E–29 0.06
C2C2-GATA 3 689 29 9.28E–29 0.00
BES1 4 1322 8 2.08E–19 0.29
C3H 1 702 68 1.56E–17 0.14
LOB 3 508 43 3.76E–13 0.14
S1Fa-like 1 261 3 3.20E–11 0.00
CAMTA 1 312 6 1.18E–10 0.06
HSF 6 840 23 5.02E–08 0.43
bHLH 2 217 136 4.40E–07 0.09
C2H2 3 917 99 8.95E–03 0.72

Significance was calculated based on the Fisher exact test for enrichment in the set of correlated pairs (r > 0.4) versus uncorrelated (–0.1 < r < +0.1) pairs
with FDR correction for multiple testing. Odds ratios represent relative enrichment of counts in correlated versus uncorrelated pairs. Note that counts
entering the enrichment statistic and computed P-values were based on TF–TG pairs, such that every TF entered the statistic based on all its TGs.

TFBS composition, entropy. The PCD provides informa-
tion about TFBS motifs for every of the 386 profiled TFs
in the form of a position weight matrix (PWM). The length
of motifs, N, was taken as the number of positions in the
PWMs (number of base pairs).

From the PWMs assigned to each TF, we calculated the
percentage occurrences of each of the four different bases
by summing the probabilities of each base-type across all
positions in the PWM, and dividing it by the length of the
PWM-motif. With the information about the frequency of
each base type in a given TFBS motif, we calculated the
ratio of A–T relative to G–C base pairs, i.e. double versus
triple H-bonded base pairs, and likewise, A–G pairs relative
to T–C base pairs, i.e. purines versus pyrimidines.

To test for specificity of TFBSs, we computed the se-
quence entropy (SE) of each TFBS motif. SE was defined
as the average positional entropy (S) of a motif (Equation
1),

SE =
∑N

i=1 Si

N
,

with Si = −
∑

j∈(A,C,G,T)

pi, j log
(

pi, j
)
, (1)

where pi,j is the relative frequency of a base j at position i,
and N is the total length (number of basepairs) of a given
TFBS. Similarly, the average sequence entropy associated
with the five positions of lowest S-values was computed as
well (core motif entropy), to account for potential problems
of comparing SEs of TFBSs with different lengths. Here,
five positions were chosen to capture a minimal TF–DNA
core binding site.

Distribution of TFBS in promoters. For each TF–TG pair,
the distance between the TFBS of the TF and the TSS
of the TG was determined. In cases of multiple TFBS-
occurrences, the distance of the TFBS closest to the TSS
was taken. For every TF, we calculated the total number
of TGs, and for TGs, we calculated the number of all TFs
with TFBS in their promoter regions. For TGs, we calcu-
lated the average and standard deviation of the distance be-
tween TFBSs and the associated TSS for all TFs, which
have TFBSs present in a distance interval of –1000 bp to
+500 bp from the respective TSS. For TFs, we calculated
the mean and standard deviation of the distance between
associated TFBSs and TSSs across all TGs. Only TFBSs in a
distance interval of –1000 bp to +500 bp from any TSS were
used. Here, we considered a larger sequence interval around
the TSS than the one used to identify candidate targets (–
500 bp to –1 bp, equivalent to the upstream promoter) as
a wider interval may be relevant for expression modulation
as shown in E. coli (28). Distances between TFBS and TSSs
were calculated by bedtools’ ‘closest’ function (22).

Hierarchical layers of processing. The set of regulatory
TF–TG pairs was used to infer regulatory connections be-
tween TFs themselves, where TFs are assigned as TFs, but
also as TGs of other TFs. From the network, we extracted
information about the number of ‘in’ and ‘out’ edges for ev-
ery TF, which stands for the number of regulators acting on
the TF and the number of TFs regulated by this TF, respec-
tively. The ratio of ‘in’ edges to all edges (‘in’ plus ‘out’) was
calculated, referred to as ‘Number of TFs regulating the ex-
pression of TF over all connections of TF’. Similar to Duan
et al. (29), this ratio allows assigning a relative position of
a TF in the TF-regulatory network, considering initiation
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(top-level), processing, and effector (bottom-level) layers as
conceptual layers of information processing. Ratios of or
near zero indicate top-level TFs in the regulatory network
hierarchy, while ratios near one indicate bottom-level TFs
that have as targets genes other than TFs. Inference of net-
work and all analysis were performed with ‘igraph’ package
implemented in R (30).

Post-transcriptional and post-translational modifications, in-
cluding protein–protein interaction

miRNAs and associated target genes. Sequences of known
miRNAs of A. thaliana were obtained from the miRBase
v22.1 database (31). The miRNA-target search was done
using as candidate targets (a) the cDNA sequence of all
protein-coding genes, and (b) complete DNA sequences of
genes, including introns, of A. thaliana. The inclusion of
full-length gene sequences, i.e. including introns, was mo-
tivated by reports that miRNAs can also target introns
and/or splice sites of nascent mRNA with a potential role
in gene regulation through e.g. splicing regulation (32).
Target prediction was performed using the TAPIR-Fast
and TAPIR-Precise software (33). For both algorithms, the
score cutoff was set to 4.0 and the free energy ratio to 0.7,
where ratio refers to the fraction of the actual free energy
gain upon miRNA–target interaction to the free energy gain
of a perfectly matching miRNA–mRNA pair. The union of
predictions generated by TAPIR-Fast and TAPIR-Precise
was used as the set of miRNA and their target genes. The
number of predicted miRNA target sites was determined
for every gene, along with the maximal free energy ratio
between gene and all miRNAs that can target this gene.
From the predictions obtained from using full DNA se-
quences as potential targets, i.e. including introns sequence,
we extracted only those interactions with miRNA, which
targeted introns or exon-intron junction and calculated the
number of those interactions for TFs and TGs as the num-
ber of target sites of miRNA targeting the introns in the
pre-mRNA.

From the TAPIR-Precise algorithm, predictions of
miRNA mimicry targets (34) were obtained. The number
of predicted miRNA mimicry target sites was determined
for every gene, using cDNA sequence, along with the max-
imal free energy ratio between gene and miRNAs, from the
mimicry search.

mRNA stability. The stability of mRNAs was taken as re-
ported in (35). The measurements of the mRNA decay were
performed in A. thaliana cell cultures. The half-life, the time
needed to degrade half of the molecules, of 13 012 mRNAs
was calculated from nonlinear least-square regression fitted
to experimental data. For every TF–TG pair, the product of
half-lifes for the respective TF and TG was calculated. Val-
ues of the half-life associated with TGs, TFs and the prod-
uct of those half-lives for every TF–TG pair were obtained
from the supplementary results of (35).

Number of phosphorylation sites. The database PhosPhAt
(36,37), version 4.0, was used as a data source for phospho-
rylation sites of TFs. Information about phosphorylation
sites was obtained for 7959 proteins (including 112 TFs).

For each TF, we collected the number of phosphorylation
sites validated by experimental data. For TFs with different
numbers of phosphorylation sites reported for different iso-
forms, the respective mean number of phosphorylation sites
was taken.

Protein–protein interaction network. Information about
protein–protein interactions (PPI) was obtained from
APID (38), AtPIN PPI (39), BIND (40), BioGrid (41), DIP
(42), IntAct (43), Interoporc (44), iRefIndex (45), MINT
(46), MolCon (http://www.ebi.ac.uk/Tools/webservices/
psicquic/view/main.xhtml), STRING (47) databases. From
all databases, we discarded connections supported by
co-expression or text mining only. Taken as a superset of all
data resources, we created a PPI network, in which nodes
are proteins and edges represent interactions between two
proteins present in the PPI databases. We created two
different PPI networks; (i) built with the use of all proteins
present in databases; (ii) built with the use of only TFs
present in the PCD only. From the first PPI network,
we calculated the shortest path between TFs of interest
and the largest subunit of the Pol-II complex (TAIR ID:
AT4G35800), as the PPI-distance between TF and the
polymerase Pol-II subunit. The node degree of every TF
was calculated for both PPI networks. Self-interactions, i.e.
homo-multimers, were detected by a non-zero difference
between the number of nodes with loops included and the
number of nodes without loops, calculated for the first PPI
network. If a TF from the PCD was not present in PPI
data, we assigned an arbitrarily large value of ‘2000’ as the
distance to Pol-II subunit and ‘0’ for all other parameters.
If no valid pathway between TFs and Pol-II subunit was
detected, reported as ‘Inf’, we assigned the value of ‘1000’
instead. Inferences of PPI networks and all analyses were
performed with the ‘igraph’ package implemented in R
(30).

Genomic and genome annotation derived information

Genomic data about genes. Genome annotation informa-
tion and all information pertaining to positions of ge-
nomic elements used below were obtained from the avail-
able TAIR-10 (21) annotation. From the GFF file, we ex-
tracted information about the number of isoforms, lengths
of mRNAs, protein, 3′UTR and 5′UTR for all the present
isoforms, and distance to the closest upstream gene. For ev-
ery gene, we calculated the maximum, minimum, and mean
length of those selected features for all present isoforms
and difference of the protein length. For 5′UTRs, informa-
tion about the presence of introns was extracted. We called
5′UTR as intron-containing, if there was an overlap be-
tween the 5′UTR and an intronic region. The number of iso-
forms for each gene was determined, as well as the difference
between the shortest and the longest protein (splice vari-
ants) encoded by each gene. A set of 7679 genes, including
59 TFs, with missing information of 5′UTR length (5′UTR
length was equal to 0) was removed from the analysis.

All computations for detecting overlaps of genomic re-
gions were performed using bedtools’ ‘intersect’ function
(22).

http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml
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Evolutionary age of genes. The evolutionary age of genes
was taken from a previous study that assigned A. thaliana
genes to 13 different phylostrata representing different evo-
lutionary ages. Based on BLAST-based protein sequence
homology searches against species of different evolutionary
age, A. thaliana genes were assigned to the respective oldest
age bin with a significant BLAST-hit (48). Accordingly, A.
thaliana genes were binned into 13 phylostrata, PS1 to PS13.
Oldest genes, with homologous sequences in prokaryotes,
were assigned to PS1, and youngest genes, those without
any homologs in any species other than A. thaliana, were
assigned to PS13. All other categories constitute genes of
gradually evolutionarily younger genes from PS1 to PS13.
Those categories were assigned to all TGs and TFs in our
dataset. For each TF–TG gene pair, the difference of evolu-
tionary age was calculated as the difference between evolu-
tionary age category of the TG and evolutionary age cate-
gory of the regulating TF (ageTG–ageTF).

DNA binding domains. From the Uniprot database (49),
we extracted information about the first and, if present,
second DNA-binding domain (DBD) for every TF, where
‘first’ and ‘second’ relates to ordering relative to the N-
terminus of the TF-protein. We searched the Uniprot
database with AGI names for each TF, and from the re-
sults, we extracted information about the length of the re-
spective protein, number of DBDs, with value 1 assigned
to TFs with only one DBD, and 2 assigned to TFs with
two or more DBD, starting position of a DBD for the first
and the second DBD, if present. Then, we calculated the
relative distance of the starting position of each DBD to
the N-terminus of the protein, measured by the ratio of the
starting position of DBD relative to the N-terminus and the
length of the protein.

Promoter composition. Promoter composition of every
gene was calculated as a percentage composition of each
nucleotide, A, C, G and T, and also counts of each of the
16 possible dinucleotides. The number of dinucleotides was
calculated with the use of the sliding window of length 2
with a stepsize of one nucleotide in the promoter DNA se-
quence. The promoter region was obtained from TAIR-10
(21) as a region of –500 bp to –1 bp relative to the TSS
and promoter sequence was obtained from FASTA file for
TAIR-10 (21) with use of bedtools’ ‘getfasta’ function (22).

TATA-box in gene promoters. Genes were considered
TATA-box containing, if they contained a TATA-box motif
(consensus sequence ‘TATAWA’ (50) in the 60bp upstream
of the TSS. The TATA-box motif was searched in forward
orientation only, as for the TATA-box motif, orientation-
dependence has been reported with only the forward motif
being active (51). In total, 4739 genes, 4185 present in the
PCD, were considered TATA-box-containing and were pro-
filed with regard to expression (on the ATH1-Affymetrix
microarray, requiring uniqueness of ATH1-probe/ AGI-
identifier mapping).

Epigenetics

DNA methylation. Information about differentially
methylated regions of DNA was obtained from two

sources: the 1001 Genome Project (52) and from (53).
From the 1001 Genome Project, methylomes were col-
lected for 1107 different A. thaliana accessions. From (53),
information on 152 methylomes of different A. thaliana
accessions from the Northern hemisphere was obtained. In
each dataset, the localization of differentially methylated
regions was reported for the CpG and the CHH sequence
context, where H is any nucleotide except G, and in the
1001 Genome Project dataset, also for the CHG context.
The number of differentially methylated regions present
in the selected genomic regions was calculated in every
promoter of the TG, defined as –500 bp to –1 bp interval
relative to the TSS; regions around the TSS, –100 bp to 100
bp from TSS, and gene body region.

Open chromatin marks. The localization of open chro-
matin marks, identified by DNase-seq as DNase-I Hyper-
sensitive Sites (DHS), was obtained from (54), reported
for plants during photomorphogenesis and heat stress, and
from (55), DHS regions obtained from wild type plants
from flowers and leaves. 734 and 1980 different DHS were
reported after light stimuli and after heat stress, respectively.
38 290 and 41 193 different DHS were reported in leaves
and flowers, respectively. From those four datasets covering
different conditions and different tissues, the localization of
stable and dynamic DHS were obtained. Stable DHS were
defined as DHS present in all samples, i.e. intersection of all
four datasets. Dynamic DHS were defined as DHS present
in at least one sample, but not all samples, i.e. union of all
four datasets without stable DHS minus the intersection set
(exclusive OR). Note that with regard to stable DHS, we op-
erated under the assumption that if DHS were found consis-
tently across four very different conditions, they can also be
assumed open under different conditions, including those
covered by the used expression data. We found 24 845 sta-
ble DHS and 69 856 dynamic DHS. For each TG, we cal-
culated the number of stable and dynamic DHS present in
their promoter region, defined as –500 bp to –1 bp sequence
interval relative to the TSS, and in the gene body region.

The information about stable and dynamic DHS was
merged with the information about the localization of TF-
BSs in promoter regions. For each regulatory TF–TG pair,
binary information about the presence of TFBS in the sta-
ble or dynamic DHS was generated, where value ‘1’ was as-
signed to all pairs with TFBS in the stable or dynamic DHS
and value ‘0’ assigned to all pairs without TFBS in the sta-
ble or dynamic DHS.

Number of epigenetic mark types. The percentage of epi-
genetic mark types for each gene was calculated as the ratio
of the number of epigenetic marks: differentially methylated
DNA regions, and open chromatin regions, present for this
gene over the total number of all potential epigenetic mark
types.

Information about adjacent genes

Adjacent protein-coding genes were selected as genes with
a distance equal or smaller to thresholds of 0.5, 1, 2, 5 kb,
from the positional boundaries of a gene of interest. From
the subset of genes assigned as adjacent, we calculated their
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mean expression based on the 5296 microarray hybridiza-
tions, mean number of TFBS in their promoters, and the
number of shared TFBS with the gene of interest. List of
adjacent genes was obtained by bedtools’ ‘closest’ function
(22).

Imputation and scaling

Imputation of missing data was performed with the use of
the ‘mice’ package (56). Imputation was done on the R-
dataframe with information about TF and separately on the
dataframe with information about all TGs.

To collapse highly correlated features in our model, we
standardize all features to a distribution with mean = 0 and
SD = 1 and clustered them based on the Pearson correlation
coefficient. Correlated features (Pearson correlation coeffi-
cient above 0.85) were merged (average) and treated as one
feature. From the set of 135 features, 112 clusters of features
were created treated as the predictor variables.

Univariate testing of feature importance, effect size

For every considered molecular feature, the significance of
differences between the set of correlated and uncorrelated
TF–TG pairs was assessed by applying the non-parametric
Wilcoxon–Mann–Whitney test as implemented in R, and
the magnitude of difference (effect size) quantified as Co-
hen’s effect size, D, as implemented in the R package ‘effect-
size’ R (57). In essence, Cohen’s D captures the difference of
two means relative to the average standard deviation of the
observations.

Random Forest classification

Random Forest (RF) model. The input dataset used for
the RF model was created for all 104 369 regulatory pairs
obtained from PCD, created between TFs assigned as ‘ac-
tive’ and TGs with annotated 5′UTR. Regulatory pairs were
divided into two sets: correlated pairs, with a Pearson corre-
lation coefficient >0.4, and uncorrelated, with Pearson cor-
relation coefficient greater than −0.1 and smaller than 0.1.
Removing all other pairs resulted in a decrease of the num-
ber of pairs from 104 369 to 48 090 . Using as categorical
outcome variables the labels ‘correlated’ or ‘uncorrelated’,
we applied the Random Forest classifier, with 3000 trees and
five variables selected for each tree, with the number five se-
lected to correspond to 0.5 × sqrt(number of feature clus-
ters), on our dataframe with a total of 112 clustered predic-
tor variables, and with minimal size of the terminal nodes
of 150 observations. By choosing high numbers of observa-
tions in terminal nodes, i.e. not further splitting the data to
purity, and low numbers of variables to enter each tree, our
settings were intended to reduce overfitting. Random Forest
classification was used as implemented in the ‘randomFor-
est’ R package (58).

Cross-validation. From the set of TFs and all potential
TGs, we selected two subsets, a training and a test set. In
each subset, a non-overlapping set of TFs and TGs were
present, i.e. sets were rendered non-redundant not only with
regard to pairs, but pair-members as well. Not implement-
ing this strict check for non-redundancy and basing it on the

pair-identity alone, bears the risk of memorizing the prop-
erties of a pair member, leading to overly optimistic results
as it is recognized again in the test set. We randomly selected
80% of TFs and TGs to be present in the training set and
the remaining 20% present in the test set. With this split,
the RF machine learning model was trained only on pairs
formed by TFs and TGs contained in the training subset.
TF–TG pairs formed between TFs and TGs from the re-
spective other set (training/ testing) were discarded. It is
important to note that we report performances not as OOB
(out-of-bag) error as done typically for RF, but used cross-
validation that guaranteed absence of overlap between any
of the components (TFs, TGs) between the training and test
set. Created datasets have high class imbalances, only eight
percent of all pairs were assigned to the class ‘correlated’.
To eliminate imbalanced-classes problem, we undersampled
the majority group, i.e. uncorrelated pairs, to have an equal
number of samples for both classes. The procedure of ran-
dom sampling, fitting of RF, and performance evaluation
was performed 20 times. For better execution performance,
each RF was trained with the use of the ‘foreach’ function,
with the ‘doParallel’ backend, on six cores with the forest
of 500 trees to train for each core, which were further com-
bined into one random forest model with 3000 trees in total
(59,60).

Classification performance assessment and variable im-
portance estimation. The performance of the RF-
classification was measured after each of the 20 Random
Forest training runs. The performance was measured by
means of the area under the curve (AUC) for the receiver
operating characteristics (ROC) and the precision–recall
(PR) curve. Both measurements were performed on the
respective test subset results. Predictions for pairs from the
test set were compared with the true labels for those pairs.
AUC scores were calculated with R package ‘PRROC’ (61).

Variable importance was measured as the mean decrease
of accuracy (MDA) for each variable after every iteration
of Random Forest training. Mean values of MDA from
all iterations were used as a final score for feature impor-
tance. MDA score was calculated using the ‘randomForest’
R package (58).

Interaction of features. Feature interactions were assessed
by using RandomForestExplainer (62). The basic rationale
implemented in this method posits that interactions be-
tween variables (features) become evident as frequent occur-
rences of close distances between them in the hierarchy of
splits of the classification trees grown as part of a RF model.
All variables of the model are each considered as condition-
ing variables. Then, for every variable––taken as the condi-
tioning variable––the frequency and distances to all other
variables (including the considered conditioning variable)
are recorded for all RF tree models and the most frequently
occurring pairs of variables and their average distances re-
ported. Here, frequency is taken as a number of trees in
which a particular variable pair was contained as part of
the same subtree and with the conditioning variable closer
to the root of the tree than the respective other variable. The
observed distances are compared to the observed uncondi-
tional distances of all variables to the root (first split) across
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all trees. If interactions are relevant, the unconditional dis-
tances of all variables should be larger than the distances
to conditioning variables, with which it is interacting. In-
teractions also become evident as frequent occurrences of
variable combinations. Thus, both, the pair frequency and
the associated distances are informative with regard to in-
teraction effects. The reported interaction effects have been
obtained as averages over all 20 performed cross-validation
runs.

Data availability. All TF–TG pairs, along with all feature
annotations for all genes present in them, is available as Sup-
plementary information (Supplementary Table S3).

RESULTS

Influence of transcription factors (TFs) on the expression of
their target genes (TGs)

The PCD provides information about transcription factor
(TF) binding events to genomic DNA and derived binding
sites (TFBSs) of 386 TFs, obtained from DNA affinity pu-
rification sequencing (DAP-seq) assays applied in the plant
A. thaliana. Requiring TFBSs to be located in the upstream
promoter region of a potential target gene (TG), with pro-
moters assumed as the interval of –500 bp to –1 bp of a
gene’s transcription start site (TSS), we identified a set of
280 655 regulatory pairs of TFs and their candidate TGs.
Inspecting the associated correlations of gene expression of
all such TF–TG pairs across a large dataset of microarray-
based gene expression profiling experiments, only a small,
albeit significant, shift toward larger positive values was ev-
ident, when comparing those assumed true TF–TG pairs to
pairs of TFs and randomly chosen non-TGs (Figure 1A).
The goal of this study is to determine whether this weak
evidence of transcriptional coupling applies uniformly to
all TF–TG pairs or whether particular molecular properties
render some TF–TG pairs transcriptionally coupled, while
others are under more complex regulatory control mecha-
nisms, perturbing the direct correlation between expression
of TFs and their TGs.

Some of the DAP-seq profiled TFs may exert only a
small effect on their TGs or only under very few conditions
probed as part of the available gene expression datasets.
Thus, such TFs would not lead to a discernable expression-
mediated regulatory effect in our expression dataset. Al-
ternatively, the TF may very well have an effect, which,
however, cannot be related to its expression level, but is
connected to other factors such as protein level, post-
translational modification, other interaction partners etc.
While the former explanation would be a technical limita-
tion, the extent of the latter is one central question of this
study. Hence, we first sought to identify those TFs with a
noticeable and coherent effect on altered gene expression
of its TGs and independently of the mechanism of regula-
tion of TF-activity. As evidence of TF-activity, we probed
for pairwise gene expression correlation among candidate
TGs, predicted from the DAP-seq dataset, i.e. we estimated
the activity of a TF, based on its effect on its TGs as done
similarly before (63,64). The distribution of correlation co-
efficients computed among TGs proved significantly shifted

to larger positive values compared to correlation levels of
randomly chosen genes (Figure 1B). Thus, TF-activity was,
in fact, evident in the data, and furthermore, we can distin-
guish those with an effect (called ‘active’ TFs) from those
that do not show any discernible evidence of activity in our
expression dataset. Consequently, from the set of all TFs, we
selected as active all those, for which the expression of corre-
lation among all TGs was greater than the 97.5th percentile
level of mean correlation values of non-TGs (mean Pearson
correlation between TGs expression, r > 0.013; Figure 1B).
We obtained a set of 157 TFs considered active as evidenced
by an associated correlated expression of their TGs.

For the 157 TFs considered active, we created the as-
sociated set of regulatory TF–TG pairs (104 369 pairs in
total). The correlation levels between active TFs and their
TGs was significantly higher relative to considering all reg-
ulatory pairs based on all 386 TFs (P-value = 2E–39,
Wilcoxon–Mann–Whitney test) (Figure 1A and C). A more
pronounced difference was observed between TF–TG pairs
and TF–non-TG pairs, when considering active TFs only
(P-value = 5.8E–205, Wilcoxon–Mann–Whitney test; Co-
hen’s D effect size = 0.16) compared to the respective com-
parison for all TFs (P-value = 2.9E–143, Wilcoxon–Mann–
Whitney test; effect size = 0.07). Nonetheless, the large over-
lap between true and false regulatory pairs still precludes
using co-expression alone as evidence of a regulatory rela-
tionship.

In the following, we aim to identify the determinants of
direct transcriptional coupling as opposed to the more com-
plex regulation of gene expression regulation for this set of
157 active TFs and their TGs.

Selected TF-families are enriched in the set of TFs with high
correlation with their TGs

It appears possible that direct transcriptional coupling be-
tween TFs and their TGs, resulting in correlated gene ex-
pression, is evident for particular TF-families only, oper-
ating with particular modes of action. Based on their do-
main architecture, TFs present in A. thaliana can be clas-
sified into 82 TF-families (26) with members of 24 families
found present in the set of selected active 157 TFs (Supple-
mentary Table S1). Indeed, six TF-families (WRKY, TCP,
MYB, HB, E2F-DP, NAC) were found significantly en-
riched (pFDR < 0.01, Fisher exact test) in the set of TF–
TG pairs with pronounced expression correlation (Pearson
correlation coefficient, r, with r > 0.4; 4340 pairs, 4.2%
of the total set) relative to a set of uncorrelated pairs (–
0.1<r<0.1; 43 750 pairs, 41.9% of the total set, Figure
1C) (Table 1). In the set of TF–TG pairs, which were
considered uncorrelated, an enrichment of 13 TF-families
was observed (AP2-EREBP, C2C2-Dof, bZIP, BBR/BPC,
C2C2-GATA, BES1, C3H, LOB, S1Fa-like, CAMTA, HSF,
bHLH, C2H2) (Table 1). As this overrepresentation of par-
ticular TF-families in the correlated as well as uncorrelated
pair set must have underlying molecular causes, those re-
sults imply that indeed, there are characteristic molecular
determinants of high or low gene expression correlation be-
tween TFs and their TGs.
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Figure 1. Distribution of Pearson correlation coefficients of TF–TG pair
expression. (A) Expression correlation between transcription factors (TFs)
and their target genes (TGs) (green) and random non-target genes (non-
TGs) (grey) for all TFs. Dashed vertical lines represent the median Pearson
correlation coefficient for regulatory pairs obtained from DAP-seq (green)
and pairs with random genes (grey), median values 0.006 and -0.005 re-
spectively (P-value < 2.2E–16 Wilcoxon–Mann–Whitney test; effect size
= 0.07). (B) Frequency distribution of pairwise correlation coefficient of
genes identified as TGs of TF (green) and randomly selected non-TGs
(gray). For every TF, the mean pairwise correlation of gene expression val-
ues for all its TGs was computed. For comparison, size-matched sets of
random genes were drawn and their respective mean pairwise correlation
coefficient computed. The histograms were obtained over all such mean
values. TFs with associated TG-sets that exhibit pairwise correlation above
a correlation level of r > 0.013 (dotted line, r-value greater than 97.5th per-
centile of the randomly selected non-TGs) were defined ‘active’. Dashed
lines represent median values of expression correlation for TGs (green),
0.014 and non-TGs (gray), 0.008 (P-value < 2.2E–16 Wilcoxon–Mann–
Whitney test). Notably, the mode of distribution of the random pairwise
correlation coefficients is not on or near-zero correlation. This may result
from a residual global correlation of all genes across all hybridization sam-
ples resulting from imperfect normalization or even a true global resid-
ual correlation. (C) Expression correlation between transcription factors
(TFs) and their target genes (TGs) (green) and random non-target genes
(non-TGs) (gray) for set of selected active TFs. TFs were defined as ‘ac-
tive’ if their respective TGs exhibit significant pairwise expression corre-
lation (Figure 1B). Dashed vertical lines represent the mean Pearson cor-
relation coefficient, r, for regulatory pairs obtained from DAP-seq (green)
and pairs with random genes (gray), median values 0.018 and –0.010 re-
spectively (P-value < 2.2E–16 Wilcoxon–Mann–Whitney test; effect size =
0.16). Dotted vertical lines represent the threshold for the selection of cor-
related pairs (black), r > 0.4 and gray dotted lines represents uncorrelated
pairs selection with –0.1 < r < +0.1 (gray).

Correlated pairs are enriched for selected molecular processes

We performed a GO (gene ontology)-term enrichment anal-
ysis on the correlated pair set to determine, which molec-
ular processes rely on direct transcriptional coupling be-
tween TFs and their TGs. TFs and TGs present in correlated
pairs show high enrichment in categories associated with re-
sponse mechanisms to external and dynamic environmen-
tal perturbations (‘response to external stimulus’, ‘response
to stress’, ‘response to abiotic stimuli’, and ‘response to bi-
otic stimuli’) (Table 2). To a lesser degree, albeit significant,
TFs and TGs forming correlated TF–TG pairs were also
found enriched for GO-categories associated with regula-
tion of ‘embryo development’, ‘cell cycle’ and ‘cell death’,
processes that are more developmental and ‘house-keeping’
in nature. Thus, direct transcriptional coupling appears to
be more relevant for processes associated with a response
to the external stimuli, both biotic and abiotic, rather than
developmental programs.

Biological and molecular properties of TFs and their TGs
considered as determinants of transcriptional coupling

Prompted by the found significant enrichment of particu-
lar TF-families and GO-categories in the set of highly cor-
related regulatory pairs, we looked for the specific gene-
related molecular features of TFs and of TGs, which could
be associated with high or low expression correlation, re-
spectively. In essence, we wished to determine, which molec-
ular features render regulatory pairs directly coupled via
gene expression, and which ones are more likely character-
istic of more complex regulatory processes. We aimed to se-
lect features related to the regulation of the activity of TFs
as well as properties of the promoters of TGs, along with
more general genomic properties. Based on publicly avail-
able datasets, we collected a total of 135 parameters that
characterize TFs, their TGs and regulatory pairs (Supple-
mentary Table S2). Selected attributes can be grouped into
the following four categories: information about TFs and
its TFBS, post-transcriptional and post-translational reg-
ulation (including protein–protein interactions (PPI)), ge-
nomic information and genome-derived annotation infor-
mation, and epigenetics.

The found significant enrichment of particular TF-
families in the set of correlated TF−TG pairs (Table 1) sug-
gests a relevance of features directly associated with TFs
and their mode of action. From the PCD, we derived in-
formation about the genomic localization of TF-binding
events along with the number of potential TGs and the com-
position of TFBS-motifs, i.e. nucleotide composition and
sequence entropy of the TFBS motif measured as the com-
positional entropy, SE (Equation 1). The localization of the
TFBS in relation to TSS was calculated for each regulatory
pair and also taken as averaged across all TGs as well. With
the known potential regulatory connections between TFs
and their TGs, we recreated the regulatory network from
which we extracted network-related characteristics such as
the number of regulatory connections and number of TFs,
which are regulating a particular gene.

Post-transcriptional silencing and degradation of mR-
NAs through interaction with miRNAs, post-translational
modification and interactions with other proteins can
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Table 2. List of Gene Ontology (GO) process categories enriched in correlated and uncorrelated TF–TG pairs for active TFs and their TGs

Transcription factors Target genes

GO category
Fisher exact
test, pFDR Odds ratio GO category

Fisher exact
test, pFDR Odds ratio

Enriched in correlated TF–TG pairs
response to external stimulus 7.17E−92 2.04 response to biotic stimulus 2.31E−85 2.67
response to stress 3.15E−74 1.52 response to external stimulus 1.47E−69 2.25
response to biotic stimulus 2.39E−69 2.03 response to stress 5.90E−64 1.72
catabolic process 4.68E−50 4.27 response to chemical 2.03E−36 1.57
response to abiotic stimulus 1.62E−35 1.40 response to abiotic stimulus 3.24E−23 1.55
cell cycle 9.73E−23 3.17 secondary metabolic process 2.32E−18 2.10
cellular homeostasis 9.00E−12 2.67 cell death 7.29E−13 2.42
cell communication 2.76E−10 1.46 photosynthesis 1.48E−07 1.90
embryo development 1.17E−06 1.70 response to endogenous stimulus 3.07E−07 1.29
regulation of molecular function 5.28E−04 1.41 cellular protein modification process 6.27E−07 1.24
response to chemical 6.65E−04 1.07 signal transduction 7.48E−04 1.19
transport 3.45E−02 1.32 cell communication 1.39E−02 1.23
lipid metabolic process 4.68E−02 1.29 generation of precursor metabolites

and energy
1.88E−02 1.28

secondary metabolic process 9.51E−02 1.10 abscission 6.67E−02 1.81
cell differentiation 2.41E−01 1.04 fruit ripening 1.05E−01 3.81
other biological processes 3.03E−01 1.05 catabolic process 2.05E−01 1.06
growth 3.03E−01 1.05 RNA binding 2.38E−01 8.89
DNA binding 3.05E−01 1.07 lipid binding 2.38E−01 8.89
nucleic acid binding 3.05E−01 1.07 regulation of molecular function 5.03E−01 1.02
response to endogenous stimulus 3.64E−01 1.01 DNA-binding transcription factor

activity
5.76E−01 1.48

other binding 5.76E−01 1.48
catalytic activity 6.79E−01 0.99

Enriched in uncorrelated TF−TG pairs
response to light stimulus 9.90E−46 0.41 cellular component organization 1.18E−35 0.53
signal transduction 1.55E−36 0.65 reproduction 1.32E−19 0.55
unknown biological processes 9.33E−16 0.00 unknown biological processes 1.53E−19 0.68
nucleobase-containing compound
metabolic process

3.66E−13 0.88 nucleobase-containing compound
metabolic process

1.71E−15 0.70

biosynthetic process 3.66E−13 0.88 DNA metabolic process 6.44E−13 0.37
other metabolic processes 3.66E−13 0.88 post-embryonic development 2.73E−12 0.62
other cellular processes 3.66E−13 0.88 growth 2.43E−11 0.48
abscission 2.63E−11 0.23 anatomical structure development 3.54E−10 0.73
flower development 7.56E−10 0.66 transport 2.08E−09 0.73
protein binding 1.62E−09 0.20 cell differentiation 5.89E−09 0.56
tropism 6.87E−08 0.28 cell growth 2.43E−08 0.49
post-embryonic development 6.07E−05 0.84 flower development 2.43E−08 0.53
cell death 8.65E−04 0.64 multicellular organism development 2.43E−08 0.76
fruit ripening 8.65E−04 0.38 protein metabolic process 2.51E−08 0.70
cellular component organization 2.08E−03 0.73 regulation of gene expression,

epigenetic
8.14E−08 0.26

cell growth 4.68E−02 0.82 cell cycle 3.72E−07 0.56
reproduction 1.35E−01 0.93 circadian rhythm 1.20E−06 0.39
multicellular organism
development

1.51E−01 0.96 biosynthetic process 2.50E−06 0.84

circadian rhythm 2.03E−01 0.89 embryo development 3.76E−06 0.62
photosynthesis 2.78E−01 0.89 carbohydrate metabolic process 1.45E−04 0.76
anatomical structure development 2.78E−01 0.97 lipid metabolic process 4.47E−04 0.76
carbohydrate metabolic process 3.64E−01 0.93 cellular homeostasis 2.34E−03 0.66

tropism 3.67E−02 0.53
other cellular processes 4.07E−02 0.95
cell−cell signaling 1.14E−01 0.34
other metabolic processes 2.12E−01 0.98
response to light stimulus 2.13E−01 0.92
other biological processes 2.38E−01 0.93
translation 3.54E−01 0.94
pollination 4.40E−01 0.94
protein binding 4.84E−01 0.88
nucleic acid binding 6.79E−01 0.00
DNA binding 6.79E−01 0.00
transferase activity 8.99E−01 0.00
transporter activity 8.99E−01 0.00

Significance was calculated based on Fisher exact tests for enrichment in the set of correlated pairs (r > 0.4) versus uncorrelated (−0.1<r<+0.1) TF–TG
pairs with FDR correction for multiple testing. Highlighted in the bold-face font are terms with pFDR <0.001.
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strongly influence the activity of the TFs (14,63,65–68).
With the known sequences of miRNAs present in the
A. thaliana genome, we predicted binding sites and the
strength of the interaction between miRNAs and mR-
NAs, and also with pre-mRNA, including mimicry inter-
actions (34). As for factors that influence the activity of
TFs post-translationally, we selected information on the
number of phosphorylation sites and information about
protein−protein interactions (PPI). Based on the recon-
structed PPI network, we probed for significance of the
number of PPI and calculated the shortest paths between
TFs and the largest Pol-II subunit, i.e. the theoretical num-
ber of interacting proteins needed to establish this interac-
tion, allowing us to test whether short PPI-paths allow more
direct transcriptional coupling.

The gathered genomic features and genome-derived an-
notation parameters such as the length of mRNAs and re-
spectively encoded proteins, length of 5′UTR and 3′UTR,
presence of introns in the 5′UTR, the number of splice vari-
ants described for genes, length of upstream intergenic re-
gions, presence of a TATA-box in the promoter region, and
the number of introns, have been described before to influ-
ence the expression response (18), and were included here
as well. Additionally, we collected information about pro-
moter regions such as nucleotide and dinucleotide compo-
sition. As genes can be arranged into transcriptional clus-
ters on chromosomes not only in prokaryotes, but also in
eukaryotes (69), the regulatory landscape of genes adja-
cent to TG of interest may contain information on its ex-
pression regulation and was included by various parame-
ters (distance to the next upstream gene and others). For
TFs, information about the domain architecture was com-
piled, i.e. the number of DNA binding domains and their
localization in relation to the N-terminus. Based on the se-
quence similarity to proteins in other species, A. thaliana
genes were grouped into 13 classes reflecting their evolution-
ary age ranging from the oldest genes having homologs in
unicellular organisms, to the youngest, that are unique to
A. thaliana (48), allowing us to test the hypothesis that di-
rect transcriptional coupling may be associated with newly
evolved genes, while more complex regulation has evolved
for older genes.

Epigenetic markers, such as state of openness of the chro-
matin and methylation of DNA, can strongly influence the
expression of nearby genes (54,70,71). For genes consid-
ered TGs, information about epigenetic markers, such as
open chromatin sites, defined as DNase-I hypersensitive site
(DHS), and differentially methylated DNA regions present
in their promoter and gene body regions was collected. For
each regulatory pair, we tested whether the TFBS of the TF
was located in a region, which is regulated by changes of
chromatin openness, i.e. was it located in the stable or dy-
namic DHS or neither.

A detailed list of all 135 features is contained in Supple-
mentary Table S2 and described in Materials and Methods.

Identification of feature importance based on univariate test-
ing and Random Forest machine learning classification

To establish, which features were strongly associated with a
direct transcriptional coupling between TFs and their TGs,

all regulatory pairs associated with the set of the detected
157 active TFs were divided into two sets: correlated and
uncorrelated pairs as described above (testing TF-family
enrichment). To examine the importance of each feature,
we performed univariate statistical testing of each feature
between pairs in the correlated and the uncorrelated sets,
and secondly, feature importance extraction from the clas-
sification machine learning algorithm, Random Forest. A
schematic overview of the used data resources and per-
formed analyses leading to these results are presented in
Figure 2.

As some of features show high correlation or redundancy,
e.g. length of the protein and length of the mRNA, we ag-
gregated correlated features to avoid the problem of highly
correlated features, which could influence our analyses, es-
pecially the feature importance extraction using the Ran-
dom Forest machine learning algorithm. Aggregation of
features resulted in a decrease of the number of features
tested from 135 to 112.

Out of the 112 effective features, 28 features have abso-
lute effect size >0.15 and 26 were also significantly different
(adjusted P-value < 0.001) between correlated and uncor-
related pairs (Figure 4, Supplementary Table S4).

To identify more complex, possibly non-linear relation-
ships between features, which can be missed by the uni-
variate testing approach, we applied the Random Forest
(RF) classification machine learning algorithm. Our model
uses the selected 112 features to classify regulatory pairs of
TFs and their TGs into either correlated or uncorrelated
class. First, we wanted to estimate to what extent gene and
genome-related features determine whether TFs and their
TGs exhibit co-transcriptional coupling as evidenced by the
correlated expression, and secondly, if yes, which features
prove to be informative (feature selection).

Applying a rigorous testing scheme (see Materials and
Methods), the classification of TF−TG pairs to belong to
either the correlated or uncorrelated class proved possible.
The median area under the ROC curve (ROC−AUC) was
obtained as 0.76 (SD = 0.061) and the median area un-
der the precision–recall curve (PR-AUC) was 0.21 (SD =
0.084) (Figure 3). Compared to randomly permuted data,
those classification performance metrics indicate that our
model performs significantly better than randomly guess-
ing (Figure 3). Thus, with the set of selected features, we
can predict with high confidence, whether a TF and its TG
will exhibit expression correlation. The considered features
used for making those predictions were indeed informative
with regard to deciding whether a TF−TG pair will be cou-
pled co-transcriptionally. The importance of features in the
RF model was measured with the MDA after permutation
of each parameter. Out of the total of 112 features, we se-
lected the 23 most informative features, 20% of all features,
with the highest MDA score (features with a MDA score >
0.006) (Figure 4).

Features associated with expression coupling of regulatory
pairs

The univariate testing identified 28 features that exhibit
significant statistical differences and large absolute effect
sizes, 14 of which were also found by the RF method as
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Figure 2. Flowchart describing the approach to feature selection associated with correlated TF−TG pairs. For each TF, information about binding events to
genomic DNA was obtained from the Plant Cistrome Database (PCD) and candidate target genes (TGs) determined. Based on the expression information
from a set of microarray expression hybridizations, the regulatory activity of each TF was calculated, yielding a set of 157 TFs considered active. For this set,
the correlation of expression was calculated for each TF−TG regulatory pair. A set of 135 molecular features, consisting of information about TFs and their
transcription factor binding sites (TFBSs), regulation of activity via post-transcriptional and post-translational modifications, including protein−protein
interactions, genomic features, and modes of epigenetic regulation were tested whether they are associated with an increased correlation of regulatory pairs.
To avoid the problem of correlated features, all biological features were clustered into 112 feature clusters. For each cluster, the difference between highly
correlated and uncorrelated pairs was assessed based on the Wilcoxon−Mann−Whitney test and Cohen’s D effect size. To evaluate more complex feature
characteristics, analysis of feature importance was performed using the Random Forest classification algorithm. From this model, information about the
importance of each feature was selected, along with information about features interactions.

judged by MDA, constituting a significant overlap (P-value
= 3.6E−5, Fisher exact test; odds ratio = 8.1). Nine features
were selected exclusively by the RF algorithm. The respec-
tive performance metrics (absolute effect size and MDA)
of the 37 features selected as important by at least one of
the two approaches were found correlated (Pearson corre-
lation coefficient, r = 0.41, P-value = 0.01). Thus, while
both methods commonly identified identical features, each
revealed specific features as well (Figure 4). The compre-
hensive overview of the results of all considered features are
available as Supplementary Figures S3−S6, and Table S4.

Interestingly, the identified discriminatory features (37
features) were significantly enriched for variables contain-
ing information about TFs (27 out of 37 important features,
P-value = 5.3E−10, Fisher exact test; odds ratio = 16.91),
and depleted for variables containing information about
TGs (7 out of 37 important features; P-value = 2.4E−11,
Fisher exact test; odds ratio = 0.046) (Figure 5A). The re-
maining informative variables concern the regulatory pair
itself (three features). This suggests that by only using in-
formation about TFs, a reliable classification would per-
haps be possible. Indeed, a Random Forest model, which
uses as TF-related features only, performed well above ran-
dom (median ROC−AUC = 0.67 and median PR−AUC

= 0.14 in 20 times cross-validation), but worse than the
model built using all variables (Supplementary Figure S2)
(ROC−AUC, P-value = 1.2E−4; PR−AUC, P-value =
2.5E−5, Wilcoxon–Mann–Whitney test).

The union of all identified informative features (37 fea-
tures) contains features belonging to all four considered cat-
egories (i) information about TFs and their TFBSs (15 fea-
tures assigned as important out of 18 features from this cat-
egory), (ii) post-transcriptional and post-translational reg-
ulation including protein−protein interactions (6 out of 18
features), (iii) genomic features and genome-derived anno-
tation (12 out of 54 features), (iv) epigenetic features (4
out of 22 features), Figure 5B). The category represent-
ing information pertaining to TFs and their TFBSs (infor-
mation about TFs and their TFBSs) was significantly en-
riched for informative features (P-value = 2.4E−6, Fisher
exact test; odds ratio = 15.86). Depletion of the fea-
tures assigned as important was observed in the category
containing information on genomic features and genome-
derived annotation (P-value = 0.027, Fisher exact test; odds
ratio = 0.38).

From the set of selected features with high importance
and a pronounced difference between correlated and un-
correlated pairs, the parameter with the highest impact on
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Figure 3. Performance of the Random Forest classification of TF−TG
pairs into the correlated or uncorrelated class based on the collected set of
features, measured by AUC of the ROC and PR curve. Green boxes repre-
sent the distribution of AUC values for prediction of the Random Forest
model and grey boxes represent the distribution of AUC values of per-
muted class-labels. Values obtained from 20 times cross-validation runs.
Median value for ROC−AUC = 0.76 and ROC-AUC (random) = 0.50.
Median value for PR-AUC = 0.21 and PR–AUC (random) = 0.08. Val-
ues of ROC-AUC and PR-AUC obtained in our model were significantly
higher than values obtained in permuted class-labels dataset, P-value =
1.0E−10 and 2.8E−10, Wilcoxon–Mann–Whitney test, respectively.

the Random Forest model, the largest MDA score, and also
with the largest absolute effect size, was ‘Mean distance be-
tween TFBS of TF and TSS across all TGs’ (effect size =
−0.42; MDA = 0.023). TFs with associated TFBS located,
on average, closer to the TSS of its all TGs were more cor-
related in the expression, than those that bind more distant
regions of promoter regions in general. Also when consider-
ing individual TF–TG pairs, those for which the respective
TFBS is closer to the TSS were more correlated (‘Distance
between TFBS and TSS in regulatory pair’: effect size =
−0.29; MDA = 0.0036). In addition to the localization, the
number of unique TFBSs in promoter regions was detected
informative. TFs with a higher number of TFBSs in their
promoter regions (‘Number of TFs regulating expression of
TF’: effect size = 0.41; MDA = 0.009) and with a higher
number of TGs (‘Number of targets assigned to TF (all tar-
gets and TFs)’: effect size = 0.10; MDA = 0.009) were en-
riched in the correlated TF−TG pairs. Those observations
suggest that the localization of TFBSs in the promoter re-
gion as well as number of TGs of the TF can be associated
with the expression regulation.

The inferred regulatory relationships between TFs and
their TGs allowed us to also estimate the position of a TF
in the network of regulatory interactions among TFs them-
selves (29). Conceptually, a TF-regulatory network can be
partitioned into an initiation layer (top-level; no incoming,
outgoing edges only), an intermediate processing layer, and
an effector layer (bottom level; incoming, but no outgoing
edges). We found that TFs positioned more at the bottom
of the regulatory TF-TF network with more incoming than
outgoing edges are associated with increased correlation;
i.e. TFs that have as targets genes other than TFs, e.g. en-
zymes (parameter: ‘Number of TFs regulating the expres-

sion of TF over all regulatory connections of TF’, effect size
= 0.089; MDA = 0.013).

In addition to the localization preferences of TFBSs
and their numbers in promoter regions, the composition
of TFBS-motifs was assigned as highly discriminatory in
our model. TFBS-entropy (Equation 1) proved informa-
tive with larger entropies, i.e. less specific motifs, associated
with uncorrelated pairs, while TFs binding to clearly de-
fined motifs (low entropy) were found associated with cor-
related pairs (‘Mean entropy of DNA binding motif (TFBS)
for five positions with lowest entropy of TF’: effect size =
−0.36; MDA = 0.015; ‘Mean entropy of DNA binding mo-
tif (TFBS) of TF’: effect size = −0.32; MDA = 0.012), as
were shorter TFBS motifs (‘Length of DNA binding motif
(TFBS)’: effect size = −0.37; MDA = 0.010). In addition to
the entropy and length of TFBSs, nucleotide composition of
TFBS-motifs was found relevant for the correlation pattern
of TF−TG pairs. TFs with a higher percentage of double
versus triple H-bonded base pairs within their TFBS-motif
(‘Ratio of AT to GC nucleotides in TFBS motif ’: effect size
= 0.27; MDA = 0.020) and with a lower ratio of purines ver-
sus pyrimidines (‘Ratio of AG to TC nucleotides in TFBS
motif ’: effect size = −0.13; MDA = 0.010) were associ-
ated with regulatory pairs with higher correlation. There-
fore, TFs binding to more specific, shorter TFBSs and with
a specific TFBS nucleotide composition showed higher cor-
relation with their TGs.

Additional features with a high impact on the model or
with a high effect size between correlated and uncorrelated
TFs were associated with domain composition of the TF-
protein. TFs with a higher numbers of DNA binding do-
mains (DBD) (‘Number of DBD present in TF’: effect size
= 0.16; MDA = 0.002) and with DBD localized further
away from N-terminus of the protein (‘Start of first and sec-
ond DBD in relation to N-terminus of TF protein’: effect
size = 0.27 and 0.27; MDA: = 0.015 and 0.004, of first and
second DBD, respectively) were enriched in the correlated
pairs. This may, however, reflect TF-family specifics rather
than having a molecular significance.

Processes involved in post-transcriptional and post-
translational regulation also prove discriminatory with re-
gard to correlated and uncorrelated regulatory pairs. TFs
with a shorter theoretical path of protein–protein interac-
tions (PPI) to establish an interaction with the largest Pol-
II subunit (‘Distance to Pol-II in PPI network’: effect size
= −0.33; MDA = 0.010) and with a higher number of in-
teracting partners (‘Node degree in PPI network of TF’:
effect size = 0.05; MDA = 0.010) were found enriched
in the correlated TF−TG pairs. At the level of mRNAs,
TFs with a high numbers of interacting miRNA (‘Number
of target sites of miRNA in mRNA of TF’: effect size =
0.20; MDA = 0.004) and also with a higher similarity with
mimic miRNA (‘Maximum of free energy ratio of mimic
miRNA:mRNA duplex of TF’: effect size = 0.27; MDA =
0.004) were found overrepresented in highly correlated fea-
tures. Those results are in line with predictions that post-
translational and PPIs can influence the expression correla-
tion of regulatory pair members.

With regard to TGs, while no molecular features asso-
ciated with TGs or their promoters met the importance
threshold in the feature extraction based on RF mod-
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Figure 4. Feature effect sizes and importance in the Random Forest classifier distinguishing between correlated and uncorrelated pairs. The left panel
presents the absolute effect size (Cohen’s D) between correlated and uncorrelated regulatory pairs. Features with green/red bars show higher/lower values
in correlated compared to uncorrelated pairs. Right panel presents MDA that results from a permutation of the selected feature in the Random Forest
after training, but before prediction. Vertical dashed lines present arbitrarily chosen thresholds for absolute effect size (0.15) and for MDA (0.006), used
to identify the most important features. Shown are the 37 most informative features out of the total of 112 tested features, taken as the union of most
significant effect size variables and MDA. Significance at the level of pFDR <0.01 was observed for 33 features, features without statistical significance:
‘Number of target sites of miRNA in mRNA of TF’, ‘Stability of mRNA measured by half-life of TF’, ‘Maximum of free energy ratio of miRNA:mRNA
duplex of TF’, ‘Mean, minimal and maximal length of 3′UTR of all isoforms of TF’.
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Figure 5. Number of features detected as relevant based on univariate test-
ing or feature importance estimation from Random Forest models relative
to all features associated with TG, TF and TF−TG regulatory pairs (A),
and the four different feature categories (B). Asterisks represent statistical
importance of enrichment (black color) or depletion (red color) of impor-
tant features measured by Fisher exact tests with P-value < 0.05.

els, some of these features were selected as important by
univariate testing. Evolutionarily younger TGs exhibit in-
creased correlation to their respective regulating TF com-
pared to evolutionarily old TGs (‘Evolutionary age of TG’:
effect size = 0.26; MDA = 0.005). Interestingly, while the
evolutionary age of the TF was not informative at all (Sup-
plementary Figure S5 and Table S4), the difference of evo-
lutionary age was found relevant by univariate testing, with
increasing age differences (younger TGs paired with older
TFs) being associated with increased correlation (‘Differ-
ence between evolutionary age of TG and TF’: effect size
= 0.18, MDA = 0.005). TGs which are a part of correlated
pairs show differences in the promoter regions in regard to
specific motifs and also nucleotide composition. TGs with
present TATA-box motif in their promoter (‘Presence of
TATA-box motif in promoter of TG’: effect size = 0.19;
MDA = 0.0004) and with a lower percentage of GC and CG
di-nucleotides (‘Percentage of GC in promoter sequence of
TG’: effect size = −0.15; MDA = 0.001; ‘Percentage of CG
in promoter sequence of TG’: effect size = −0.16; MDA
= 0.001) in the promoter region were found to be associ-
ated with higher correlation. Differences between TGs from
correlated and uncorrelated pairs were also observed at the
level of epigenetics. TGs with a lower number of differen-
tially methylated DNA regions in the gene body (‘Num-
ber of differentially methylated CpG in gene body of TG
(52,53)’: effect size = −0.23 and −0.16; MDA = 0.001 and
0.0004, respectively) were found enriched in the correlated
pairs. Interestingly, TFBSs located in stable DHS regions
in the promoter were characteristic for the correlated reg-
ulatory pairs (‘TFBS of regulating TF is located in stable

DHS’: effect size = 0.19; MDA = 0.001) along with a higher
number of dynamic DHS located in a promoter region of
TG (‘Number of dynamic DHS in promoter of TG’: effect
size = 0.18; MDA = 0.001).

Feature interaction effects

The power of applying the RF classification methodology
does not only lie in its potential to identify features with
more complex characteristics, but also to discern variable
interactions. As a metric for gauging feature interaction,
we applied the mean conditional depth between two vari-
ables as described in (62). See Materials and Methods, for
more information and explanation of rationale. Both, the
frequency of variable pairs being picked jointly as well as
their mean conditional depth between them in the RF clas-
sification trees reflect on variable interactions.

The 30 most frequent interactions between features
present in the RF model were observed between only 14 fea-
tures out of the 29 features with the largest MDA score
(Figure 6). Interestingly, almost half (14 interactions) of the
30 most frequent variable interactions were found with the
‘Mean distance between TFBS of TF and TSS across all
TGs’ being the conditioning variable, and five observed in-
teractions were found associated with the feature ‘Distance
between TFBS and TSS in regulatory pair’ as the variable
conditioned on other features such as features associated
with TFBS motif composition and average distance distri-
bution between TFBS and TSS among all TGs. This sug-
gests the distance of TFBSs to TSSs is highly relevant with
regard to conditional interactions with other features. Sur-
prisingly, no interaction between features that concern a TF
and its associated TG were detected among the top-30 vari-
able pairs.

Taken together, aside from identifying particular TF-
families that were associated with elevated levels of co-
transcriptional coupling, we discerned a set of biological
and molecular characteristics that distinguish highly corre-
lated from uncorrelated TF–TG pairs. The majority of them
were associated with TFs, but also with the status of the epi-
genetic modifications of the promoter of target genes and
their evolutionary age.

DISCUSSION

Correlation of expression of transcription factors (TFs) and
their target genes (TGs) is commonly thought to be a hall-
mark feature by which regulatory relationships between
them become evident. However, when probing for corre-
lated gene expression of known regulatory TF–TG pairs,
only a weak signal of increased correlation levels, setting
true from random pairs apart, has generally been observed
- also in this study. Using data available for the plant Ara-
bidopsis thaliana, we investigated whether this absence of
a clear-cut signal is generally true for all TF–TG pairs, or
whether there are molecular determinants that render spe-
cific TF–TG pairs correlated at the transcriptional level,
while the regulation of others is more complex such that
it is not evident from expression data alone. Indeed, we
found that particular TF-families exhibit pronounced tran-
scriptional coupling with their TGs (WRKY, TCP, MYB,
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Figure 6. Feature interactions with most frequent occurrences in the Random Forest classification run between correlated and uncorrelated pairs. Height
of the bar represents the mean conditional depth between a variable considered conditioning (first variable index in the colon-separated pair) and a second
variable (second index) tested for interaction effects. Indices assigned to each variable, listed in the table below the plot, correspond to the name of each
feature (or cluster of features for correlated features) sorted by decreasing importance as judged by MDA obtained from the Random Forest model. Color
of the bar represents the number of occurrences of each pair in the Random Forest models, counted as the number of trees containing this interaction.
Black dots represent the unconditional mean depth of the second variable of the colon-separated variable pair in the Random Forest models. All values
are averages over 20 cross-validations. Smaller values of the mean conditional depth with associated higher unconditional depth as well as increased
occurrences indicate interaction effects. See Materials and Methods for more details. Source indicates to which component of the TF–TG the respective
variable is associated with (TF, TG or TF–TG pair)

HB, E2F-DP, NAC; Table 1). As this tendency of some
TF-families to be more directly transcriptionally coupled
to their TGs they must have underlying molecular deter-
minants, we set out to test a wide range of molecular pa-
rameters that may influence the degree of transcriptional
coupling and which capture different levels of gene expres-
sion regulation (information on TF and their TFBS, post-
transcriptional and post-translational regulation including
protein–protein interaction, genome and genome annota-
tion derived information, and epigenetics). As a result, our
analysis revealed a number of molecular features that ap-
pear associated with increased or decreased levels of tran-
scriptional coupling. Hence, when aiming to infer regula-

tory relationships from the expression data, considering the
detected features as part of the inference strategy appears
very promising. And with this study, we believe to have laid
the foundation for such attempts.

We focused our analysis on the pairwise relationship be-
tween TFs and their TGs. However, it is known that TGs
are often, if not generally (72–76), regulated by the joint
action of several TFs. Hence, treating expression correla-
tion as a pairwise phenomenon may seem inappropriate.
However, our rationale was to identify simple and direct
TF–TG relationships as evidenced by transcriptional cou-
pling as well as departures from this simple model, revealed
by uncorrelated expression. Conceptually, the simple model
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would assume the transcription of a TF to always indicate
the transcriptional regulation of its TGs, irrespective of ad-
ditional factors. By contrast, our reasoning assumes more
complex relationships to be associated with de-coupled, and
thus uncorrelated expression. With the choice of many di-
verse molecular features, including, for example, the joint
action of several TFs (e.g. features ‘number of TF-binding
sites in promoter’, ‘node degree in PPI network of TF’), we
intended to cover a broad spectrum of potential molecular
determinants of either simple expression coupling or more
complex regulations.

Transcriptional coupling is associated with stress response

Before discussing the found molecular determinants of cor-
relation coupling in more detail, it is worthwhile to ask
whether there are some general trends associated with
TFs and their TGs in the correlated pairs. First, we ob-
served an enrichment of six TF-families in the correlated
pairs and of 13 TF-families in the uncorrelated regula-
tory pairs. Based on the functional annotations of the
six transcription TF-families enriched in the correlated set
(77), they are involved in a broad range of diverse bio-
logical processes, including stress response and develop-
mental or cell-regulatory processes. For example, the TF-
families NAC, WRKY, MYB-TFs have been reported to
regulate senescence (78,79). TCP–TFs have been shown
to regulate flower-developmental programs (80), and E2F-
DP-TFs cell-cycle processes (81). Members of the MYB,
TCP and WRKY have also been reported to take part in
the abiotic stress and biotic stress response (80,82,83) of
the TF-families enriched in the uncorrelated TF–TG pairs,
C2C2-Dof and BBR-BPC have been reported to regulate
the differentiation of tissues and regulation of the seed and
flower development (84,85). Members of bZIP and AP2-
EREBP families are involved in abiotic stress and develop-
mental processes, e.g. flower and seed development as well
as seed germination and early senescence (79,86,87). Thus,
based on the reported functional involvement of the en-
riched TF-families in correlated and uncorrelated TF–TG
pairs, a separation into distinct biological processes, such
as stress response versus developmental processes, seems
unclear. However, when tested statistically and basing it
on TF–TG pairs rather than TF-families, there does seem
to be a clear separation of GO-process annotations in the
two sets (correlated vs. uncorrelated) nonetheless. Corre-
lated TF–TG pairs seem frequently associated with stress-
responses, i.e. responses to external cues, while uncorre-
lated pairs seem to associate more with developmental pro-
grams (Table 2). This may suggest that the functional dif-
ferences may not be tied to TF-families as a whole, but to
the diverse properties of their respective members. In ad-
dition, when molecular features were analyzed for impor-
tance in the correlated TF–TG set, features associated with
multi stimuli response processes were detected enriched,
e.g. presence of TATA-box in the promoter of TGs (18),
and enrichment in the evolutionarily younger genes, which
are enriched in stress response GO categories (Supplemen-
tary Table S5). While this may to some degree be a con-
sequence of the available expression data, in which stress-
experience conditions dominate, this may be interpreted as

a difference in programs (stress vs. developmental) and their
regulation.

Molecular features affecting transcriptional coupling of TFs
and their TGs

The observed general trends in the correlated TF–TG pairs
with regard to enrichment of certain TF-families and asso-
ciation with stress response processes, should be supported
by molecular features, which can influence the expression
correlation between TFs and their TGs. When the set of
molecular features considered in this study was analyzed,
a strong enrichment of features associated with TFs was
observed (27 out of 37) (Figures 4 and 5A). In line with
the TF-family enrichment analysis, a high importance was
assigned to features associated with protein domain struc-
ture annotation and TFBS composition. A significant dif-
ference was observed between correlated and uncorrelated
TFs with regard to the position of the DNA binding do-
main (DBD) in relation to the N-terminus of the TF pro-
tein. TFs with a DBD located further away from the N-
terminus were observed to be more correlated with their
TGs. TFs with a more specific binding motif (lower entropy
of the TFBS motif) show a higher correlation with their
TGs, and TFs with characteristic nucleotide compositions
of their TFBS (higher ratio of AT over GC pairs (double
versus triple H-bonded base pairs)), were found enriched
in correlated pairs. As the classification of TFs into differ-
ent TF-families is performed based on the domain archi-
tecture of the TFs, it is possible that the importance of lo-
calization of the DBD in the protein sequence may be an
artificial effect associated with the architecture of certain
TF-families rather than a reflection of a 3D-structural con-
sequence of different relative DBD-sequence positions on
the regulatory mechanisms. Nevertheless, earlier studies re-
ported a significant association of the relative position of
DBDs along a TF’s primary protein sequence and the activ-
ity of a TF to function as activators or repressors (88,89). By
contrast, features associated with TFBS motif composition
may indeed reflect molecular determinants of the higher
correlation between certain TFs and their TGs. More pre-
cise TFBS motifs suggest a more specific set of TGs, while
the lower ratio of the CG to AT pairs in the targeted motif
may be associated with a lower energy needed to dissociate
the two DNA helix strands (90), which is supported also by
our observations that a low content of the CG and GC di-
nucleotides was detected in promoter regions of correlated
TGs.

Correlated TF–TG pairs were found to be associated with
a shorter theoretical interaction path needed to establish an
interaction between TFs and the largest Pol-II subunit. This
observation is in a line with the rationale that a smaller num-
ber of interactions is less dependent on additional factors,
which could interfere with the correlation between the TF
and its TGs.

TFs that are highly correlated with their TGs are regu-
lated themselves by a larger number of TFs, in comparison
to TFs not generally found in correlated pairs. This, along
with the observation that TFs in correlated pairs have rela-
tively fewer out-going regulatory interactions (‘Number of
TFs regulating expression of TF over all regulatory connec-
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tions of TF’) suggests that correlated TFs are closer to the
effector layer rather than perception and processing layer of
regulatory interactions (29).

The observed shorter half-lives of mRNA molecules of
highly correlated TFs suggest a relevance of degradation
pathways affecting mRNA level, which appears plausible as
clearance (along with induction) can be seen as a require-
ment for TF–TG correlation. Degradation may be linked
to miRNA activity via miRNA-target-mRNA-cleavage. In-
deed, the mRNA of highly correlated TFs is targeted by a
larger number of miRNAs compared to uncorrelated TFs,
although a lower degree of the sequence complementary
(measured by the ratio of the minimum free energy between
predicted miRNA-mRNA to perfect complementarity) was
observed in the correlated TFs. This suggests that not only
the mRNA cleavage pathway, which is associated with high
complementary miRNA-mRNA binding (67), is involved
in the regulation of the mRNA level, but also the transla-
tion repression via miRNA interaction that may influence
activity of the mRNA of TFs.

Surprisingly, we observed an underrepresentation of im-
portant features associated with correlated regulatory pairs
that describe properties of TGs (Figures 4 and 5A). Never-
theless, the TG-features that were found relevant, revealed
interesting properties of the highly correlated pairs. Evolu-
tionarily younger TGs and TGs regulated by older TFs were
more likely expression correlated. This implies that as new
genes emerge in evolution, they are initially under the tran-
scriptional control of TFs, with more complex regulatory
relationships developing later and over evolutionary time
frames. This is in line with observations that in prokaryotic
systems; i.e. evolutionarily old systems, such as E. coli, ev-
idence for transcriptional coupling has been stronger (13),
establishing it as an initial mode of regulation. The higher
correlation observed in younger TGs could be also associ-
ated with a higher dynamics of expression in younger genes.
Dynamic changes in the expression of the younger genes
were observed not only during embryogenesis (48), but also
in our expression dataset. By contrast, older genes exhibit
more constant (and higher) gene expression across the pro-
filed conditions (Supplementary Figure S7). Also, we ob-
served that younger genes are enriched for stress response
and signaling process involvement, while older genes seem
more associated with housekeeping functions (Supplemen-
tary Table S5). While the stress and signalling processes can
be expected to be dynamic and condition-specific, house-
keeping functions can be assumed with more constant cor-
responding expression levels. As more constant dependent
variables (TGs), by definition, are correlated less to their re-
spective independent cause (TF), the difference with regard
to evolutionary age can be explained via the respective pro-
cesses involvement and associated dynamic behavior.

Analyzing the localization of TFBSs in promoters of
TGs, we observed that a localization of the TFBS of a par-
ticular TF in regions with stable open chromatin marks was
more likely to result in increased correlation with its target
gene (feature ‘TFBS of regulating TF is located in stable
DHS’). This supports the notion that the regulation of the
promoter sequence by the chromatin status influences the
expression correlation. If the TFBS is not localized in stably

open chromatin, then an additional layer of expression reg-
ulation, via the localization of nucleosomes, could perturb
the expression correlation within a regulatory pair. This ob-
servation is in line with the reported increased accuracy of
GRN inference methods that combine information of open
chromatin and TFBS localization (91).

In addition to the localization of the TFBS in the stable
open chromatin, the localization of TFBSs in the promoter
of the TG in general i.e. distance between TFBS and TSS,
for each regulatory pair and also as a general feature of the
TFs (averaged over all TGs of a given TF). Correlated TFs
bind, on average, closer to the TSS of their TGs than un-
correlated TFs. This pattern is also observed when we tested
the standard deviation (SD) of the average distance between
TFBS and TSS for enriched TF-families. TFs that are part
of the correlated TF-families have narrower binding local-
ization intervals (SD of the average distance between TFBS
and all TGs = 78.0 bp) in comparison to the uncorrelated
TF-families (SD of the average distance between TFBS and
all TGs = 140.9bp) (P-value = 2.9E–5, Wilcoxon–Mann–
Whitney test). This observation is also reflected in the ob-
served feature interactions (Figure 6). The distance between
TFBS and TSS in each regulatory pair was often condi-
tioned on features associated with TFBS composition. This
suggests that for a group of TFs, characterized by nucleotide
motif composition of their TFBS and possibly reflecting as-
signment to a particular TF-family, the distance between
TFBS to the TSS of TGs plays an important role in regula-
tion of the expression.

Of note in particular with regard to considering addi-
tionally acting TFs and our rationale to focus on pairwise
TF–TG relationships: we found that increased number of
PPI seems associated with elevated TF–TG correlation lev-
els (Figure 4). Also when considering interactions at the TF-
family level, the number of cross-TF-family interactions as
reported in (92) for correlated TF-families (Table 1) was, on
average, larger (interaction with 12.8 different TF-families)
than for uncorrelated TF-families (on average, interacting
with 6.8). Both these observations suggest that transcrip-
tional coupling may not be associated with few, but rather
with more interactions.

In selecting molecular features, each one was chosen with
a specific rationale, rendering it a likely candidate to influ-
ence the strength of transcriptional coupling. Therefore, it
is also interesting to review those features that we thought
were relevant, but were not reported as part of the set of
most relevant features (Figure 4). Of note, in particular,
‘number of phosphorylation sites of TF’, representing an
important post-translational modification, was not among
the most informative features. Phosphorylation of TFs
has been shown to activate TFs (14,68). Hence, phospho-
rylation may render constantly expressed TFs condition-
specifically active, and therefore, would be expected to be
increased in the set of uncorrelated TF–TG pairs at the
transcript level. Indeed, in line with expectation, while not
reported among the most important features, uncorrelated
TF–TG pairs have more phosphorylation sites than corre-
lated pairs (effect size = –0.06, MDA = 0.005, Supplemen-
tary Figure S4 and Table S4), yet the adjusted P-value was
above the level of significance, pFDR = 1.5E–6.
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Promoters vs. enhancers. We based the pairing of TFs and
their TGs on observed binding of the respective TFs to the
500 bp region upstream of the transcription start site (TSS),
considered the gene promoter. TFs are also known to bind
to distant regions relative to the gene they regulate, so-called
enhancers (93,94). Also, TFs binding to intragenic and in-
tronic regions have been reported to have regulatoratory ef-
fects (95). In our study, such distant and intragenic regula-
tory binding would not be considered. If, as reported (96)
enhancers exert the regulatory effect over large genomic dis-
tances, also in A. thaliana, correct TF–TG pairing is chal-
lenging such that a pairing based on some sequence-interval
would be highly unreliable. However, it was recently sug-
gested that enhancer action in A. thaliana is rather local
(96). Hence, and because the 500 bp extends beyond what is
considered the core-promoter (70 bp around TSS (97)) our
study may, in fact, capture enhancer sites to an appreciable
degree already.

Technical aspects, limitations

DAP-seq data. We took as the dataset of true regula-
tory TF–TG interactions data generated by applying the
DNA-Affinity-Purification-Sequencing (DAP-Seq) proto-
col (17,98). In this assay, binding of a set of TFs to ge-
nomic DNA was detected. As the presented genomic DNA
in this assay is naked (i.e. without any coating by pro-
teins or other factors, except DNA methylation, which is
captured in the PCD) and fragmented (i.e. without long-
range 3D structural interactions), the assay results can-
not be expected to directly capture the in vivo binding of
TFs. Nevertheless, when results of ChIP-seq were compared
with DAP-seq, significant overlaps between the two tech-
niques were observed (36–81% of peaks present in ChIP-
seq were also present in the DAP-seq) (17). We can assume
that those regions that are not present in the DAP-seq set
may need additional co-binding factors or specific chro-
matin states not present in the DAP-seq experiment (e.g.
pioneer TFs binding to nucleosomes). This shows that the
DAP-seq dataset may indeed contain some false-negative
regions of TF binding events. On the other hand, not all
peaks reported by DAP-seq are reported in the ChIP-seq
assay either (17). As mentioned, TF binding event is highly
dependent on the structure of chromatin, e.g. openness
state, which can vary between conditions. Furthermore, and
as the developers of the DAP-seq protocol noted, the set
of amenable TFs showed a bias to particular TF-family
(bZIP, NAC, WRKY), while others were underrepresented
(MADS, C3H) (17). Moreover, only one TF at a time was
tested for the DNA binding, which eliminates all potential
binding events, where the co-binding factor is necessary for
establishing the DNA binding (false negatives). Hence, our
results have to be seen in the light of these limitations. In
particular, the over/ underrepresentation of particular TF-
families limits the general validity of the relative frequency
of correlation characteristics (occurrence of correlated vs.
uncorrelated TF-target-gene expression). By contrast, the
limitations ‘naked’ and ‘fragmented’ may not impact neg-
atively on our analyses. We required binding sites to lie
within gene promoters, a requirement to reduce the num-
ber of false-positive TFBS assignments and furthermore,

the missing properties, such as the presence of additional
factors (histone binding etc.) or the influence of varying ac-
cessibility (DHS-sites) were added by us as features, allow-
ing us to gauge their importance on the transcriptional cou-
pling of TFs and their TGs.

With regard to the detected low entropy of TFBSs associ-
ated with TFs displaying increased TF–TG correlation, it is
of note that the position-weight-matrices (PWM) of the TF-
BSs (TFBS-motifs) were computed from the DAP-seq bind-
ing events themselves. Thus, increased TFBS-entropy may
also reflect the inclusion of false-positive binding events,
which, when included, introduce false TF–TG pairs.

Expression dataset. We used a large expression dataset
generated using microarray experiments, which has the
advantage that a very large and broad set of experi-
mental conditions (5,296 hybridizations) was screened.
As in recent years, RNA-seq-based methods have largely
replaced microarray-based expression profiling, we also
tested whether our results hold when basing it on avail-
able RNA-seq data. Indeed, expression correlation of TF–
TG-pairs was consistent in both datasets, microarray and
RNA-seq data (Pearson correlation coefficient r = 0.49;
Supplementary Figure S1). Furthermore, we obtained high
correlation between determined feature importance values,
measured by MDA, of models based on the microarray
and RNA-seq expression dataset (Pearson correlation co-
efficient r = 0.84), and a large overlap between features se-
lected as important between two models was observed (21
features out of 23 features selected as informative for both
models (microarray and RNA-seq-based). Hence, we be-
lieve that our results are valid irrespective of the underlying
expression profiling technique.

Expression correlation metrics. We used Pearson correla-
tion to detect correlated expression. Pearson correlation is
best suitable for normally distributed data exhibiting lin-
ear relationships. While other metrics to detect more com-
plex and non-linear relationships such as mutual informa-
tion (99) have been proposed, we intentionally employed a
metric that detects simple relationships, as we wished to ex-
tract those, in which an increase of TF-expression is associ-
ated with an increase of expression of its TG, likewise a de-
crease in TF with decrease of TG-expression. As long as this
relationship is monotonic, Pearson correlation will iden-
tify them with reasonable sensitivity. With regard to actual
threshold of detecting a pair as correlated (r > 0.4 in this
study), we tested other thresholds as well, yielding qualita-
tively similar results, but with a trend that more pronounced
effects were obtained, when the contrast between correlated
and uncorrelated pairs was increased, i.e. requiring larger
correlation coefficients for TF–TG pairs to be considered
correlated, which has to be balanced with the simultaneous
decrease of observations.

Time-shifted correlation. In the expression correlation
analysis, we computed correlation coefficients based on val-
ues for TFs and their TGs paired up in the same sample.
This means that possible time delays between TF and the
expression of their TGs, with TFs assumed to precede any
changes of expression of their TGs, were not taken into ac-
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count. While considering such delays (time-shifted correla-
tion) was shown to be informative (100), we did not con-
sider it here, as most of the microarray experiments, on
which our analysis was based, were not time-series data, but
case-control studies such that time-shifted correlation can-
not be applied. Furthermore, it is uncertain what the rele-
vant time delay interval should be (100). In essence, we focus
on those TFs and their TGs, which show synchronous ex-
pression change given the temporal resolution of available
experiments.

Positively vs. negatively correlated TF–TG pairs, activator
vs. repressor TFs. Transcription factors are known to act
as activators or repressors, with some TFs acting as both
activators and repressors depending on the condition or
co-factors (66,78). Intuitively, activator TFs should coin-
cide with positively correlated TF–TG pairs, as the expres-
sion of a TG regulated by an activator TF should increase
along with an increased expression of the regulating TFs.
By contrast, when TFs repress the expression of their TGs,
a decrease of the TG should be observed in response to in-
creased TF-expression, and hence repressor-TF and their
TGs should be negatively correlated.

In this study, we considered as regulatory and transcrip-
tionally coupled pairs only those, in which the expression of
the TF is positively correlated with TGs. Therefore, and fol-
lowing the intuition outlined above, our results may seem
to relate to TFs acting as activators only. However, upon
further scrutiny, this conclusion may be incorrect and the
equivalence of correlation and function may be more intri-
cate. First, we did not observe increased frequencies of sig-
nificant negative regulation of true TF–TG pairs compared
to random TF–TG pairs, whereas significantly more than
expected positive correlations were indeed evident (Figure
1A and C). This absence of an expression signal originat-
ing from TFs functioning as repressors is in agreement with
reports in E. coli that surprisingly, repressor TFs are posi-
tively, rather than negatively correlated with their TGs when
probed across different conditions, but at a single timepoint
(13). When tested in our dataset and based on published re-
sults on TFs to function as activators or repressors (101), we
confirm this finding to hold in Arabidopsis as well. Repres-
sor TFs are also associated with positive expression correla-
tion to their known TGs (Supplementary Figure S8). We be-
lieve, the solution of this apparent contradiction relative to
intuition and definition of what we consider repressor func-
tion must lie in the consideration of time-shifted effects as
discussed above. However, this surprising result also means
that our results hold true for repressor TFs as well, and we
suggest to interpret our study more generally as studying
regulatory interactions, without qualifying them as activa-
tion or repression.

Of further note, it has been reported also in E. coli that ac-
tivating TFs bind DNA upstream of their target genes only,
while repressors bind downstream or as a combination of
upstream and downstream binding events (28). Assuming
a transferability of these findings to eukaryotic systems, by
identifying TF–TG pairs via upstream promoter locations
of TFBS only, our dataset can be considered enriched for
activator TFs.

The primary goal of this study was to contrast corre-
lated and non-correlated TF–TG pairs. To check whether
subsetting on positive correlation only does not introduce
a contrast of positive versus negative correlation in addi-
tion, we re-run parts of our analyses for true pairs consid-
ered with |r| > 0.4, i.e. including both positively and nega-
tively correlated pairs. The obtained results were virtually
identical as reported for r > 0.4. The TF-families found en-
riched (Table 1, Supplementary Table S6) were highly cor-
related (Spearman correlation of –log(P)-enrichment: 0.93,
P-value = 3.4E–06; as well as the determined feature im-
portance values (MDA, Pearson, r = 0.99; P-value = 7.4E–
99)). Hence, our results do not seem to be tainted by an ad-
ditional qualitative difference.

Considered features. We considered a wide array of 135
different molecular parameters as determinants of tran-
scriptional TF–TG coupling (Supplementary Table S2). It
is, however, possible that important factors were missed, ei-
ther by being unaware of them or that insufficient data was
available. Data availability was, in particular, a limitation
with regard to epigenetic factors, where a broader profiling
of epigenetic marks and properties, and associated with the
experimental conditions, for which expression data is avail-
able, would have been desirable. Of note, we intentionally
left out all parameters concerning actual expression levels
and their variance of TFs and TGs. When including those
parameters, they proved to be very informative (not shown),
which, however, is very likely simply a statistical artifact that
correlation is more likely to occur when the correlated vari-
ables display some dynamic range relative to the noise level
of expression and the measurement thereof. Also, expres-
sion levels cannot be considered molecular determinants by
themselves, and rather are a consequence than the cause.

The correct identification of gene promoter regions as ge-
nomic sequence intervals around (here, strictly upstream)
of the transcription start site (TSS) of genes, evidently, is
of central importance for our approach. Here, we wish to
point out that we assumed a single TSS per gene. However,
it is known that eukaryotic genes, in general, as well as Ara-
bidopsis genes, in particular, may have several TSSs per gene
(102), with possibly associated individual promoter regions.
However, the primary expression data used in this study
(microarray-based) does not allow for isoform-detection,
in particular not the detection of different TSSs. Thus, our
study has to be interpreted with this limitation in mind.

Feature extraction. We pursued two strategies to identify
relevant features, univariate statistics and machine learning
based on Random Forest. While the former allows gauging
the influence of all individual features and probes for simple
binary class differences, the latter allows for more complex,
non-linear relationships as well as testing for interactions
(Figure 6). We wish to stress that the goal of implement-
ing the machine learning methodology was not to develop
a classifier as such, but rather to use it as a feature selection
engine, which at the same time also allows for assessing the
predictability of outcome, and hence, relevance of the con-
sidered features.
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CONCLUSIONS

The generally observed weak transcriptional coupling be-
tween transcription factors (TFs) and their target genes
(TGs) is not a reflection of a general weak association at
the transcriptional level. Instead, molecular determinants
render particular TFs more transcriptionally coupled with
their TGs than others. The elucidation of these factors, as
reported here for the plant Arabidopsis thaliana, may con-
tribute to a deeper understanding of gene expression regu-
lation.
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